
Takustraße 7
D-14195 Berlin-Dahlem

Germany
Konrad-Zuse-Zentrum
für Informationstechnik Berlin

TIMO BERTHOLD

RENS– Relaxation Enforced
Neighborhood Search

http://www.zib.de/Optimization/Projects/MIP/

ZIB-Report 07-28 (Dezember 2007)

http://www.zib.de/Optimization/Projects/MIP/

Rens– The Relaxation Enforced Neighborhood

Search

Timo Berthold∗

April 25, 2008

Abstract

In the recent years, a couple of quite successful large neighborhood
search improvement heuristics for MIPs has been published. We present
a new start heuristic called Rens for general MIPs working in the spirit
of large neighborhood search. It constructs a sub-MIP which represents
the space of all feasible roundings of some fractional point – normally the
optimum of the LP-relaxation of the original MIP. Thereby, one is able to
determine whether a point can be rounded to a feasible solution and which
is the best possible rounding. This can be used for the analysis of MIP
rounding heuristics. Furthermore, a slightly modified version of Rens

proves to be a well-performing heuristic inside the branch-cut-and-price
framework SCIP.

Keywords: mixed integer programming, primal heuristics, large neigh-
borhood search

1 Introduction

Solving Mixed Integer Programs (MIPs) is one of the most important techniques
to cope with issues that arise in various areas of Combinatorial Optimization
and Operations Research. Although MIP-solving is an NP-hard optimization
problem, many practically relevant instances can be solved in reasonable time.
A MIP is defined by a set of variables, a set of linear constraints, a set of linear
constraints and a linear objective function which has to be optimized.

More formally stated:

Definition 1.1. Let R̂ := R ∪ {±∞}. Let m, n ∈ R, A ∈ R
m×n, b ∈ R

m,

c ∈ R
n, l, u ∈ R̂

n, and I ⊆ N = {1, . . . , n}. The optimization problem

min cT x

such that Ax ≤ b

l ≤ x ≤ u

xj ∈ Z for all j ∈ I

(1)

is called a mixed integer program (MIP). The optimization problem which arises
if the integrality constraints are left out, is called the LP (linear program) relax-
ation of the MIP.

∗Konrad-Zuse-Zentrum für Informationstechnik Berlin, berthold@zib.de

1

Let B := {j ∈ I | lj = 0, uj = 1}. We call {xj | j ∈ I} the set of integer
variables, {xj | j ∈ B} the set of binary variables, {xj | j ∈ I \ B} the set of
general integer variables, {xj | j ∈ N \ I} the set of continuous variables.

The standard approach to solve MIPs are LP-based branch-and-cut algo-
rithms. These are implicit enumeration strategies, for which the solution space
is recursively divided into smaller subproblems, building up a so-called branch-
and-bound tree. At each node the LP-relaxation of the current subproblem is
solved and usually a branching is performed by adding complementary bound
changes on an integer variable with a fractional value in the current LP solution.

In state-of-the-art MIP-solvers like Cplex [25] or SCIP [4], primal heuristics
play a major role in finding feasible solutions in early steps of the branch-and-
bound process (often already at the root node). The knowledge of feasible
solutions guides the remaining search process, thereby reduces the overall com-
putational effort, and nevertheless proves the feasibility of the MIP model. Fur-
thermore, a good heuristic solution may be sufficient for practical applications.

Various methods for heuristic MIP-solving have been presented in the liter-
ature, including Hillier [24], Balas and Martin [8], Saltzman and Hillier [31],
Glover and Laguna [19, 20, 21], Glover et al. [28, 22], Balas et al. [7, 9],
Løkketangen [27], Fischetti et al. [17, 16], Danna et al. [14] Bertacco et al. [10],
Achterberg and Berthold [2], Eckstein and Nediak [15], Ghosh [18] and Berthold [11].

Broadly speaking, heuristic rounding procedures and Large Neighborhood
Search (LNS) strategies are complementary with respect to the computational
effort. The running time of rounding heuristics often is linear in the number
of fractional variables, whereas LNS heuristics usually have to solve NP-hard
subproblems.

In this paper, we will present a new LNS heuristic called Rens, which in
contrast to the ones presented in the literature of the recent years does not need
an incumbent MIP solution as a start point . On the one hand, it can be used as
a tool to evaluate the performance of heuristic rounding methods, on the other
hand it proves to be a reasonable start heuristic on its own.

The rest of this article is organized as follows: In the remainder of Sec-
tion 1 we give a brief introduction into the idea of Large Neighborhood Search
and review LNS strategies which have been recently proposed. In Section 2
we introduce our new heuristic and discuss implementational issues. Finally,
Section 3 presents some computational results.

Large Neighborhood Search

The Local Search [21, 33] approach generalizes the idea of k-OPT [26]: one de-
fines a neighborhood of some reference point, determines a point of this neigh-
borhood which is optimal for some function (e.g., the objective function of the
MIP or some feasibility measure), which is then used as a new reference point
in the next iteration step. Most improvement heuristics can be formulated as
Local Search methods.

Classical Local Search uses relatively small neighborhoods which can be
quickly explored and performs a couple of iteration steps, building up a network
of visited points. During the recent years, another approach got into the focus
of attention.

2

Large Neighborhood Search or shortly LNS is a variant of Local Search.
It incorporates the complexity of general MIPs by defining a relatively large
neighborhood of some reference point – normally the incumbent solution – and
performing just a single iteration step, where the neighborhood is completely or
partially searched. Several LNS heuristics [17, 14, 30, 18] have been presented
in the literature of the last five years. They all have in common that they use
the incumbent solution as starting points and define the neighborhood to be a
sub-MIP of the original MIP which is constructed by fixing variables and adding
constraints.

The main difference is the way in which the sub-MIP is defined. Two of the
proposed methods form a sub-MIP by fixing some of the integer variables, one
adds further constraints, and one is a mixture of these approaches.

Rins (Relaxation Induced Neighborhood Search) which was described by
Danna, Rothberg, and Le Pape [14] fixes variables which take identic variables in
the incumbent and the optimum of the LP-relaxation in the current branch-and-
bound node. Crossover which was independently developed by Rothberg [30]
and Berthold [12] fixes variables which take identic values in a couple of feasible
solutions. Local Branching which was introduced by Fischetti and Lodi [17]
adds an additional distance constraint which guarantees that the solutions of
the sub-MIP does not differ in more than say k variables from the reference
point. DINS as suggested by Ghosh [18] is a mixture of all these strategies.

All of them are improvement heuristics, hence they rely on information of
at least one feasible solution. We propose a LNS heuristic, which only uses the
optimum of the LP-relaxation of a MIP and can therefore be applied as a start
heuristic.

2 Rens

In this section, we will describe an LNS heuristic which investigates the set of
all possible roundings of a (fractional) solution of the LP-relaxation.

In many practical applications, a couple of integer variables already takes
an integral value in the optimum of the LP-relaxation. The idea is to fix these
variables and perform a LNS on the remaining variables. For many MIP-solving
techniques binary variables are preferred to general integers. A bound change
automatically fixes a binary variable which is useful for branching, and specific
algorithm like probing [32], knapsack cover cuts [6, 23, 34], or Octane [7] are
only used for binary variables. Therefore, we do not only fix variables, but
rebound all general integer variables with a fractional LP-value to the nearest
integers. Summarized, the sub-MIP is created by changing the bounds of all
integer variables xj to lj = ⌊x̄j⌋ and uj = ⌈x̄j⌉, where x̄ is the optimum of the
LP-relaxation.

As the overall performance of the heuristic strongly depends on x̄ we named
it relaxation enforced neighborhood search, or shortly Rens.

Rens is of special interest for the analysis of rounding heuristics. If the
sub-MIP created by Rens is proven to be infeasible, no rounding heuristic exists
which is able to generate a feasible solution out of the fractional LP optimum.
If the sub-MIP created by Rens is completely solved, its optimal solutions are
the best roundings any pure rounding heuristic can generate.

3

Implementation Details

For the practical use as a start heuristic integrated into a branch-and-bound
framework like SCIP, one should only call Rens, if the resulting sub-MIP seems
to be substantially easier than the original one. This means that at least a
specific ratio of all integer variables, say r1, or a specific ratio of all variables
including the continuous ones, say r2, should be fixed.

The first criterion keeps control of the difficulty of the sub-MIP itself, the
second one of the LPs that will have to be solved during the solving process.
For example, think of a MIP which consists of 20 integer and 10000 continuous
variables. Even if one fixes 50% of the integer variables, Rens would be a time-
consuming heuristic since solving the LPs of the sub-MIP would be nearly as
expensive as solving the ones of the original MIP.

Another way to avoid spending too much time in solving sub-MIPs is to add
some limit to the solving process of the sub-MIP. This could be a time limit or
a limit on the solving nodes.

We decided to limit the number of solving nodes and the number of stalling
nodes of the sub-MIP. The solving node limit l1 is a hard limit on the maximum
number of branch-and-bound nodes the MIP-solver should at most process. The
stalling node limit l2 indicates how many nodes the MIP-solver should at most
process without an improvement in the incumbent solution of the sub-MIP.

The solving node limit keeps control of the overall running time of the heuris-
tic. On the other hand one does not want to abort the sub-MIP solving too
early if the objective value of the incumbent solution keeps increasing during the
search process and hence use a stalling node limit. Therefore, we decided to use
both node limitation strategies simultaneously with a relatively small stalling
node limit l2 and a large solving node limit l1.

3 Computational Results

We integrated an implementation of Rens into the branch-and-cut framework
SCIP [1, 3, 4]. All computations were made on a 2.20 GHz AMD Opteron with
1024 KB cache and 32 GB RAM.

3.1 Test Set and Settings

We use a wide test set which consists of very different classes of MIP instances.
Altogether, there are 129 instances which were taken from:

• the Miplib 3.0 [13],

• the Miplib 2003 [5], and

• the MIP collection of Mittelmann [29].

Our test set contains all instances of these three collections except for the
following: gen, mod010, p0033, vpm1, manna81, neos4, neos8, for which the
optimum of the LP-relaxation using SCIP default settings is already integer
feasible, momentum3, stp3d, whose root node LPs could not be solved by SCIP

within a time limit of half an hour, and markshare1 1, harp2, which caused
numerical troubles when running SCIP with default settings.

4

Our first test evaluates the roundability of LP optima of our test instances.
We applied Rens on the optimum of the LP-relaxation after the processing of
the root node, hence using MIP preprocessing and cutting planes.

We used a time limit of one hour for the overall computation; solving the
root node of the original MIP and the Rens sub-MIP.

In order to evaluate the roundability and therefrom the potential power of
Rens as a heuristic, we aimed to completely solve the Rens sub-MIP in all
cases. Therefore, we set l1 = l2 = +∞ and r1 = r2 = 0.

Next, we examined the integration of Rens into an LP-based branch-and-
cut framework. Therefore, we performed a second test, where we set limits on
the number of nodes l1 = 10000 and l2 = 500, r1 = 0.5, and r2 = 0.25. We
applied SCIP without Rens, SCIP with Rens used in the root node only, and
SCIP with Rens used at every tenth depth of the branch-and-bound tree.

3.2 Results

Table 2 shows the results of applying Rens without regarding the number of
fixed variables and node limits to the mentioned test set.

Rens found a feasible solution for 82 out of 129 MIPs, for 47 instances it
failed. 23 times it could find an optimal solution of the original MIP. 16 times
the Rens sub-MIP could not be solved within the time limit of one hour, for 13
of these 16 instances Rens could find at least one feasible solution.

This means that for 69 instances the solution found by Rens is the best
possible rounding of the LP-relaxation’s optimum and for 44 instances there
does not exist any feasible rounding.

For the three instances a1c1s1, momentum1, and momentum2 it could not be
decided, whether a feasible rounding of the root-LP optimum exists. Rens did
not find any feasible solution within the time limit, but it was not able to prove
the infeasibility of the problem.

There are a bundle of instances for which Rens with this settings consumes
too much time, e.g., qiu, where SCIP needs 2.7 seconds for processing the root
node, but Rens does not finish within an hour. For most of these instances this
can be explained by the high number of branch-and-bound nodes processed in
order to solve the Rens sub-MIP. Therefore, we suggest to set some limit on
the number of total nodes and stalling nodes for the Rens sub-MIP, as it is
described above.

However, there are also some instances such as dano3 5 for which Rens

needs much time, but not so many branch-and-bound nodes. One can see, that
the number of fixed variables is relatively small for such instances, e.g., 15.4%
of all variables in the mentioned case. Therefore, we recommend to set the
parameters r1 and r2 to a sufficiently large value.

Next, we examined the integration of Rens into SCIP. Therefore, we ap-
plied SCIP without Rens, SCIP with Rens used in the root node only, and
SCIP with Rens used at every tenth depth of the branch-and-bound tree.

The test set is now separated into two groups:

• the easy test set, all 97 instances which could be solved to optimality by
SCIP with default settings within a time limit of one hour, and

• the hard test set, all 32 instances which could not be solved to optimality
by SCIP with default settings within a time limit of one hour.

5

Criterion SCIPNoR SCIPRRoot SCIPRFreq10

Time Geometric Mean 36.7 35.9 36.3
Nodes Geometric Mean 704 614 615
Fewest Nodes 11 24 21
Fastest (of 19) 8 10 5
Best Primal Bound (hard) 3 7 4

Table 1. Summarized results of different integrations of Rens into SCIP, easy instances

The results are shown in Tables 3 and 4.
To keep the following paragraphs short, we will abbreviate the three ver-

sions as follows: SCIP with Rens only used at the root node should be called
SCIPRRoot, SCIP with Rens completely deactivated should be called SCIPNoR,
and SCIP with Rens used every tenth depth should be called SCIPRFreq10.

For our easy test set, SCIPNoR needs 36.7 seconds in the geometric mean to
find and prove an optimal solution, SCIPRRoot needs 35.9 seconds, SCIPRFreq10

36.3 seconds. SCIPNoR needs 704 nodes in the geometric mean to finish,
SCIPRRoot needs 614, and SCIPRFreq10 615 nodes.

There are 32 instances for which the number of solving nodes differs among
the three versions. SCIPNoR needs fewest solving nodes 11 times, SCIPRRoot

24 times, and SCIPRFreq10 21 times.
In many cases, the differences in the solving time are only marginal. How-

ever, there are 19 instances, for which the longest solving time and the shortest
solving time differ by more than 10%. Among these, SCIPNoR is fastest 8 times,
SCIPRRoot 10 times, and SCIPRFreq10 5 times.

We also notice that, on our hard test set, SCIP with Rens performs better
than SCIP without Rens. There are 10 instances for which the primal bound
differs at the moment we reach the time limit. Among these, SCIPRRoot has
found the best incumbent 7 times, SCIPRFreq10 4 times and SCIPNoR 3 times.

The results of calling Rens at the root node with a stalling node limit of
500, an absolute node limit of 10000, r1 = 0.5, and r2 = 0.25 showed that Rens

still finds feasible solutions for 66 instances (of 82 without these settings). It
achieves an optimal or best known rounding in 45 cases, and finds an optimal
solution 9 times.
After all, Rens turns out to be a reasonable root node heuristic.

6

Name Primal Bound P Gap FixInt FixAll Nodes Rens PreTime HeurTime

10teams – – 91.312 91.312 3 5.7 9.5
30:70:4 5:0 5:100 25 177.8 82.086 82.086 506825 239.7 3361.7
30:70:4 5:0 95:98 155 1191.7 80.871 80.871 544291 189.2 3412.3
30:70:4 5:0 95:100 9 200.0 84.456 84.456 606852 227.3 3376.9
acc-0 – – 79.383 79.383 1 10.7 2.2
acc-1 – – 74.074 74.074 1 22.6 1.7
acc-2 – – 68.889 68.889 1917 24.0 17.5
acc-3 – – 59.427 59.427 2845 40.2 32.3
acc-4 – – 65.350 65.350 197 39.9 9.4
acc-5 – – 64.700 64.700 5 22.1 5.4
acc-6 – – 59.921 59.921 23 18.8 6.5
aflow30a 1158 0.0 81.948 80.760 13639 4.0 12.7
air03 394874 16.1 99.662 99.662 15 35.7 0.3
air04 – – 96.866 96.866 3 72.5 6.9
air05 – – 96.323 96.323 5 48.8 4.9
bc1 3.4198842 2.4 95.635 48.104 125 21.9 2.9
bell3a 878430.316 0.0 98.214 57.273 2 0.0 0.1
bell5 – – 76.923 43.617 0 0.0 0.0
bienst1 46.75 0.0 0.000 0.000 97684 1.1 258.1
bienst2 54.6 0.0 0.000 0.000 971372 2.5 3598.2
blend2 8.103921 6.6 96.761 96.552 2 0.1 0.0
cap6000 -2443599 0.3 99.966 99.966 1 1.3 0.1
dano3 3 576.344633 0.0 85.507 9.947 32 44.4 72.4
dano3 4 576.435225 0.0 80.435 12.651 88 57.6 153.3
dano3 5 576.924916 0.0 78.261 15.361 1115 63.3 561.3
disctom – – 99.259 99.259 0 47.2 2.0
dcmulti 188182 0.0 35.135 22.303 309 1.3 0.7
dsbmip -305.198175 0.0 91.429 19.314 1 0.4 0.1
egout 572.23465 0.7 92.857 94.231 1 0.0 0.0
eilD76 979.945566 10.7 92.046 92.046 255 22.8 1.0
enigma – – 97.000 97.000 0 0.0 0.0
fast0507 177 1.7 99.562 99.562 4821 106.7 118.3
fiber 419895.5 3.4 96.777 96.777 107 0.4 0.1
fixnet6 3986 0.1 92.593 85.861 153 0.7 0.1
flugpl – – 22.222 13.333 0 0.0 0.0
gesa2-o – – 89.722 80.882 1395 4.5 1.0
gesa2 25782398.1 0.0 84.804 73.039 494 2.7 0.5
gesa3 27991430 0.0 89.062 76.773 71 2.6 0.1
gesa3 o – – 90.586 83.245 28 3.8 0.2
gt2 – – 97.688 97.688 0 0.0 0.0
irp 12409.4125 2.1 99.850 99.850 1 10.1 0.4
khb05250 106940226 0.0 83.333 40.801 5 0.4 0.0
l152lav – – 97.788 97.788 3 1.8 1.2
lseu 1148 2.5 78.409 78.409 23 0.0 0.0
mas74 14372.8713 21.8 91.946 91.333 89 0.0 0.0
mas76 40560.0518 1.4 92.617 92.000 19 0.0 0.0
mas284 93597.2337 2.4 86.577 86.000 14244 0.1 2.9
misc03 – – 86.957 86.957 1 0.3 0.0
misc06 12852.2468 0.0 94.643 41.649 19 0.2 0.1
misc07 – – 98.276 98.276 0 0.2 0.0
mitre 115170 0.0 99.972 99.972 1 17.0 0.3
mod008 308 0.3 94.984 94.984 13 0.1 0.0
mod011 -54205576.1 0.6 57.292 21.969 2311 21.5 57.1
modglob 20930259.7 0.9 51.020 41.085 73591 0.3 39.5
mzzv11 – – 88.569 88.060 0 341.9 0.3
mzzv42z – – 93.139 92.762 0 304.2 0.3
neos1 20 5.3 98.495 98.495 1 4.5 0.0
neos2 – – 96.146 94.269 3 18.0 0.3
neos3 – – 95.938 93.842 1 28.6 0.1
neos5 -4.86034408e+10 0.0 96.510 89.345 1 326.0 0.7
neos6 – – 98.669 96.356 1549 19.2 3.4
neos7 721934 0.0 97.266 81.794 13 5.1 0.8
neos10 -372 67.2 99.748 99.748 1 312.9 0.1
neos11 – – 71.429 61.770 325 8.9 3.5
neos13 -63.1134148 33.9 78.788 78.270 109547 139.8 3460.5

continue next page

7

Name Primal Bound P Gap FixInt FixAll Nodes Rens PreTime HeurTime

neos21 7 0.0 74.291 74.291 5098 2.3 10.2
neos22 779715 0.0 85.683 31.192 10558 4.9 31.4
neos632659 -94 0.0 57.000 53.333 3569 0.2 0.8
noswot – – 90.526 89.167 39 0.0 0.2
nug08 – – 61.458 61.458 5 75.6 8.2
nw04 22494 33.4 99.970 99.970 9 74.3 2.1
p0201 7905 3.8 64.103 64.103 33 0.2 0.5
p0282 258945 0.2 77.228 77.228 90 0.2 0.1
p0548 8763 0.8 99.127 99.127 1 0.3 0.0
p2756 3359 7.5 99.658 99.658 1 1.2 0.1
pk1 26 136.4 70.909 45.349 1140 0.0 0.2
pp08a 7480 1.8 59.375 33.750 2896 0.4 2.2
pp08aCUTS 7350 0.0 50.000 29.583 1388 0.5 1.3
prod1 – – 73.826 73.092 49 0.3 0.5
qap10 – – 69.494 69.494 3 262.3 55.3
qiu -128.466917 3.3 25.000 25.000 806811 2.7 3599.2
qnet1 21159.9639 32.0 96.965 96.965 1 1.4 0.0
qnet1 o 19351.9 20.7 95.625 95.625 7 1.4 0.0
ran8x32 5329 1.6 81.250 82.422 1403 0.3 0.5
ran10x26 4347 1.8 74.615 75.769 292670 1.0 129.4
ran12x21 3754 2.5 73.809 74.603 162252 1.0 68.2
ran13x13 3364 3.4 70.414 71.302 335888 0.7 115.7
rentacar 30356761 0.0 75.000 7.756 11 1.8 2.2
rgn 82.1999991 0.0 78.000 44.571 363 0.0 0.1
rout – – 86.349 86.667 65 0.4 0.7
set1ch 54628 0.2 96.170 91.441 23 1.2 0.0
seymour1 410.963143 0.0 78.495 23.267 251965 14.9 3585.5
stein27 18 0.0 11.111 11.111 2302 0.0 1.9
stein45 30 0.0 17.778 17.778 12219 0.2 9.2
swath1 – – 99.426 47.263 21 41.9 78.3
swath2 – – 99.038 43.275 43 45.7 84.2
vpm2 13.75 0.0 56.627 50.276 6359 0.4 2.1
a1c1s1 – – 19.271 8.188 207911 79.8 3521.4
aflow40b 1168 0.0 92.815 92.302 200655 32.8 197.1
arki001 – – 86.542 67.188 89 2.9 1.8
atlanta-ip – – 91.201 88.210 0 265.1 0.4
binkar10 1 6746.76002 0.1 48.235 47.230 726439 0.9 833.6
dano3mip 743.133333 6.5 73.913 70.410 15191 168.8 3431.8
danoint 65.6666667 0.0 7.143 0.768 53320 3.5 175.2
ds 1045.71 268.9 99.211 99.211 224694 318.6 3282.5
glass4 2.90001895e+09 141.7 86.242 81.073 11939411 0.1 3021.3
liu 3132 167.2 53.634 50.520 1561530 10.3 3594.6
markshare1 136 Large 82.000 82.000 17 0.0 0.0
markshare2 212 Large 85.000 85.000 50 0.0 0.0
mkc -541.112 4.0 97.133 97.114 72971 12.4 19.8
mkc1 -596.519 1.8 98.635 97.234 121 6.2 0.1
momentum1 – – 81.203 72.316 323807 127.6 3472.9
momentum2 – – 85.118 78.420 426888 128.7 3474.1
msc98-ip – – 93.313 91.532 0 373.9 0.3
neos616206 – – 55.454 55.454 207953 2.0 119.2
net12 – – 83.738 75.772 0 189.9 0.3
nsrand-ipx 57120 11.6 98.561 98.546 5304594 16.4 1381.6
opt1217 -16 0.0 97.230 97.101 19 0.2 0.0
protfold – – 74.060 74.060 757 24.6 4.2
rd-rplusc-21 – – 78.934 64.330 17281 1073.0 30.8
roll3000 13974 8.1 85.501 72.077 11535 5.5 11.9
seymour 430 1.7 62.151 62.151 310809 30.6 3570.1
sp97ar 691318495 4.0 98.766 98.766 2395490 58.9 3555.1
swath – – 99.984 98.718 1 31.7 0.2
swath3 – – 98.864 49.399 55 75.48 56.87
t1717 – – 99.194 99.194 179 609.3 17.1
timtab1 902037 17.9 26.712 20.398 1621418 1.4 690.2
timtab2 – – 13.386 9.971 16035 5.2 25.6
tr12-30 131616 0.8 65.625 45.134 2673240 23.6 3590.9

Table 2. Rens applied to the optimum of the LP-relaxation

8

Rens Rens only Rens

deactivated at root node every 10th depth

Name Nodes Time Nodes Time Nodes Time

10teams 324 30.8 324 31.0 324 31.2
30:70:4 5:0 5:100 167 349.5 167 364.7 167 366.1
30:70:4 5:0 95:98 125 298.9 125 312.1 125 313.8
30:70:4 5:0 95:100 109 315.4 109 323.5 109 324.7
acc-0 1 14.8 1 14.7 1 15.0
acc-1 1 29.3 1 29.3 1 29.5
acc-2 79 91.3 79 99.8 79 99.1
acc-3 75 169.5 75 186.1 75 186.6
acc-4 236 401.7 236 423.0 236 417.4
acc-5 5011 1449.4 5011 1434.5 5011 1435.1
acc-6 18 75.1 18 80.7 18 81.0
aflow30a 8309 47.8 6026 35.3 6026 35.3
air03 2 25.5 2 25.8 2 25.8
air04 153 157.8 153 158.0 153 159.0
air05 239 90.7 239 96.9 239 98.3
bc1 19008 843.1 16043 735.1 16043 741.2
bell3a 48995 44.4 48995 45.2 48995 45.1
bell5 1170 1.2 1170 1.2 1170 1.2
bienst1 9574 48.2 9574 48.0 10358 57.8
bienst2 101372 605.2 101372 598.5 91427 561.8
blend2 5761 9.8 879 3.4 879 3.4
cap6000 2937 37.5 2937 37.5 2937 37.8
dano3 3 19 191.1 19 190.7 19 191.2
dano3 4 41 247.9 41 248.2 41 248.8
dano3 5 186 513.7 186 511.8 186 513.7
disctom 1 66.7 1 66.5 1 66.7
dcmulti 168 4.8 168 4.8 168 4.9
dsbmip 1 0.8 1 0.8 1 0.8
egout 2 0.0 2 0.0 2 0.0
eilD76 4636 103.7 1359 107.7 1359 107.8
enigma 4455 1.5 4455 1.5 4455 1.6
fast0507 1488 2424.6 1488 2432.9 1488 2430.7
fiber 209 3.8 137 2.4 137 2.4
fixnet6 68 1.6 17 1.5 17 1.5
flugpl 474 0.3 474 0.4 474 0.4
gesa2-o 1604 12.0 1604 12.5 1604 12.6
gesa2 444 6.3 93 4.5 93 4.5
gesa3 928 10.6 28 3.7 28 3.8
gesa3 o 725 10.8 725 10.7 725 10.9
gt2 137 0.1 137 0.2 137 0.1
irp 544 94.7 312 59.1 312 59.2
khb05250 12 0.5 10 0.5 10 0.5
l152lav 63 5.6 63 7.1 63 7.1
lseu 415 0.4 302 0.8 302 0.8
mas74 4856815 1534.6 4856815 1527.1 4856815 1567.1
mas76 366438 178.1 347300 103.7 347300 105.1
mas284 17489 31.6 17379 31.6 17379 32.3
misc03 52 1.4 52 2.0 52 1.9
misc06 24 0.5 24 0.6 24 0.6
misc07 34963 47.0 34963 47.9 34963 47.0
mitre 27 86.7 27 86.8 27 86.8
mod008 212 0.8 212 0.9 212 0.8
mod011 2449 171.5 2449 172.6 2449 180.7
modglob 3125 5.5 3815 7.0 3815 7.0
mzzv11 2541 1138.7 2541 1159.6 2541 1143.0
mzzv42z 1452 677.3 1452 685.5 1452 677.8

continue next page

9

Rens Rens only Rens

deactivated at root node every 10th depth

Name Nodes Time Nodes Time Nodes Time

neos1 1 6.1 1 6.0 1 6.0
neos2 51967 203.5 51967 203.4 51967 207.8
neos3 508140 2463.8 508140 2392.5 508140 2399.5
neos5 2 138.7 2 141.2 2 139.6
neos6 3738 396.3 3738 398.4 3738 399.8
neos7 55463 599.1 51407 557.0 51407 562.1
neos10 7 183.5 7 183.9 7 183.9
neos11 6796 788.0 6796 783.3 6796 799.9
neos13 11242 768.4 11242 798.4 11242 822.6
neos21 2223 41.3 2223 41.9 2223 42.3
neos22 35891 394.8 35891 419.3 35891 397.6
neos632659 45635 29.8 31971 20.8 31971 21.1
nug08 3 73.3 3 78.8 3 79.5
nw04 3 65.8 3 67.4 3 66.8
p0201 262 1.9 262 2.4 262 2.4
p0282 76 0.9 35 0.5 35 0.5
p0548 46 0.7 46 0.8 46 0.8
p2756 194 12.8 194 12.7 194 12.8
pk1 267839 116.2 293834 131.7 293834 142.3
pp08a 1817 4.1 1817 4.1 1874 3.8
pp08aCUTS 2408 6.3 2514 7.9 2514 8.0
prod1 59023 47.9 59023 48.9 59023 53.9
qap10 5 404.3 5 448.4 5 448.2
qiu 10584 184.7 10584 184.9 12232 216.3
qnet1 130 6.3 132 6.6 132 6.5
qnet1 o 275 6.6 134 6.1 134 6.0
ran8x32 15057 30.0 15693 28.6 15693 28.8
ran10x26 34306 75.0 29868 67.1 29868 67.3
ran12x21 122274 222.6 136566 242.1 136566 240.3
ran13x13 66728 83.2 67410 82.6 67410 81.5
rentacar 4 4.8 4 4.8 4 4.8
rgn 2341 1.0 2341 1.1 2341 1.1
rout 32398 68.1 32398 68.9 32398 69.1
set1ch 59 2.0 54 2.0 54 1.9
seymour1 4564 979.4 4564 988.1 4564 986.0
stein27 4173 4.0 4173 3.9 4173 3.7
stein45 53354 56.4 53354 55.7 54951 59.0
swath1 2435 87.5 2435 102.9 2435 172.9
swath2 12543 167.9 12543 181.8 12543 195.3
vpm2 10029 8.8 9890 9.6 9890 9.6

Total (96) 6929908 21447.7 6915451 21364.1 6909592 21537.8
Geom. Mean 704 36.7 614 35.9 615 36.3

Table 3. Integration of Rens into SCIP, easy instances

10

Rens Rens only Rens

deactivated at root node every 10th depth

Name Primal Bound Nodes Primal Bound Nodes Primal Bound Nodes

a1c1s1 12657.4229 24653 12657.4229 24391 12657.4229 20031
aflow40b 1232 264660 1235 229040 1250 217989
arki001 7584054.38 592707 7584054.38 591564 7584054.38 590693
atlanta-ip 1e+20 436 1e+20 436 1e+20 436
binkar10 1 6746.76002 433757 6746.76002 433757 6746.76002 433757
dano3mip 727.0625 1063 729.608696 877 729.608696 804
danoint 66.375 219986 66.375 220165 66.375 217115
ds 360.715161 617 360.715161 615 360.715161 615
glass4 1.7000151e+09 3726852 1.77663851e+09 3689102 1.70001355e+09 3771237
liu 2948 720469 2490 656324 2510 627469
markshare1 6 26340583 6 26340591 6 26340591
markshare2 15 18686795 15 18686795 15 18686795
mkc -552.744 284256 -556.212 319354 -549.692 348444
mkc1 -606.717 610712 -606.767 614881 -606.767 610207
momentum1 160490.615 2205 160490.615 2205 160490.615 2197
momentum2 1e+20 1949 1e+20 1910 1e+20 1917
msc98-ip 1e+20 220 1e+20 220 1e+20 220
neos616206 937.6 815310 937.6 814177 937.6 802986
net12 296 1364 296 1360 296 1350
noswot -41 9731424 -41 9760690 -41 9551961
nsrand-ipx 55680 144107 54880 153612 55520 119355
opt1217 -16.000007 2425474 -16.000007 2469635 -16.000007 2462413
protfold 1e+20 871 1e+20 864 1e+20 853
rd-rplusc-21 1e+20 37134 1e+20 36465 1e+20 36822
roll3000 12960 173560 12960 172091 12960 172575
seymour 426 5761 425 5550 426 5328
sp97ar 690159742 12132 674161010 11411 674161010 11515
swath 499.694345 189986 499.694345 189986 499.694345 189986
swath3 397.761344 227579 397.761344 227579 397.761344 227579
t1717 192060 447 192060 443 192060 443
timtab1 915760.996 3148630 915760.996 3110297 915760.996 3107288
timtab2 1661007 1858791 1661007 1855999 1661007 1857879
tr12-30 130723 387478 130701 405614 130701 405614

Table 4. Integration of Rens into SCIP, hard instances

1
1

References

[1] T. Achterberg. Constraint Integer Programming. PhD thesis, Technische Univer-
sität Berlin, 2007.

[2] T. Achterberg and T. Berthold. Improving the Feasibility Pump. Discrete Opti-

mization, Special Issue 4(1):77–86, 2007.

[3] T. Achterberg, T. Berthold, T. Koch, and K. Wolter. Constraint Integer Pro-
gramming: a new approach to integrate CP and MIP. In CPAIOR 2008. To
appear, available as ZIB-Report 08-01.

[4] T. Achterberg, T. Berthold, M. Pfetsch, and K. Wolter. SCIP (Solving Constraint
Integer Programs), documentation. http://scip.zib.de.

[5] T. Achterberg, T. Koch, and A. Martin. MIPLIB 2003. Operations Research

Letters, 34(4):1–12, 2006. http://miplib.zib.de.

[6] E. Balas. Facets of the knapsack polytope. Mathematical Programming, 8:146–
164, 1975.

[7] E. Balas, S. Ceria, M. Dawande, F. Margot, and G. Pataki. OCTANE: A New
Heuristic for Pure 0-1 Programs. Operations Research, 49, 2001.

[8] E. Balas and C. H. Martin. Pivot-and-Complement: A Heuristic for 0-1 Program-
ming. Management Science, 26(1):86–96, 1980.

[9] E. Balas, S. Schmieta, and C. Wallace. Pivot and shift - a mixed integer pro-
gramming heuristic. Discrete Optimization, 1(1):3–12, June 2004.

[10] L. Bertacco, M. Fischetti, and A. Lodi. A feasibility pump heuristic for general
mixed-integer problems. Discrete Optimization, Special Issue 4(1):77–86, 2007.

[11] T. Berthold. Heuristics of the branch-cut-and-price-framework SCIP. In Proceed-

ings of Operations Research 2007.

[12] T. Berthold. Primal Heuristics for Mixed Integer Programs. Master’s thesis,
Technische Universität Berlin, 2006.

[13] R. E. Bixby, S. Ceria, C. M. McZeal, and M. W. Savelsbergh. An updated mixed
integer programming library: MIPLIB 3.0. Optima, (58):12–15, 1998.

[14] E. Danna, E. Rothberg, and C. L. Pape. Exploring relaxation induced neighbor-
hoods to improve MIP solutions. Mathematical Programming A, 102(1):71–90,
2004.

[15] J. Eckstein and M. Nediak. Pivot, Cut, and Dive: a heuristic for 0-1 mixed integer
programming. Journal of Heuristics, 13(5):471–503, 2007.

[16] M. Fischetti, F. Glover, and A. Lodi. The feasibility pump. Mathematical Pro-

gramming A, 104(1):91–104, 2005.

[17] M. Fischetti and A. Lodi. Local branching. Mathematical Programming B, 98(1-
3):23–47, 2003.

[18] S. Ghosh. Dins, a mip improvement heuristic. In IPCO, pages 310–323, 2007.

[19] F. Glover and M. Laguna. General Purpose Heuristics for Integer Programming
- Part I. Journal of Heuristics 3, 1997.

[20] F. Glover and M. Laguna. General Purpose Heuristics for Integer Programming
- Part II. Journal of Heuristics 3, 1997.

[21] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publisher, Boston,
Dordrecht, London, 1997.

[22] F. Glover, A. Løkketangen, and D. L. Woodruff. Scatter Search to Generate
Diverse MIP Solutions. OR Computing Tools for Modeling, Optimization and

Simulation: Interfaces in Computer Science and Operations Research, 2000.

12

http://scip.zib.de
http://miplib.zib.de

[23] P. L. Hammer, E. L. Johnson, and U. N. Peled. Facets of regular 0-1 polytopes.
Mathematical Programming, 8:179–206, 1975.

[24] F. S. Hillier. Efficient heuristic procedures for integer linear programming with
an interior. Operations Research, 17:600–637, 1969.

[25] ILOG CPLEX 10.01. Reference Manual. http://www.ilog.com/products/cplex.

[26] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the travelling-
salesman problem. Operations Research, 21:498–516, 1973.

[27] A. Løkketangen. Heuristics for 0-1 mixed integer programming. Handbook of

Applied Optimization, 2002.

[28] A. Løkketangen and F. Glover. Solving zero/one mixed integer programming
problems using tabu search. European Journal of Operations Research, 106:624–
658, 1998.

[29] H. Mittelmann. Decision tree for optimization software: Benchmarks for opti-
mization software. http://plato.asu.edu/bench.html.

[30] E. Rothberg. An Evolutionary Algorithm for Polishing Mixed Integer Program-
ming Solutions. Technical report, ILOG Inc., 2005. to appear in INFORMS
Journal on Computing.

[31] R. M. Saltzman and F. S. Hillier. A heuristic ceiling point algorithm for general
integer linear programming. Management Science, 38(2):263–283, February 1992.

[32] M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer
programming problems. ORSA Journal on Computing, 6:445–454, 1994.

[33] J. P. Walser. Integer Optimization by Local Search, volume 1637 of Lecture Notes

in Computer Science. Springer, Berlin et al., 1999.

[34] L. A. Wolsey. Faces for a linear inequality in 0-1 variables. Mathematical Pro-

gramming, 8:165–178, 1975.

13

http://www.ilog.com/products/cplex
http://plato.asu.edu/bench.html

	Introduction
	Rens
	Computational Results
	Test Set and Settings
	Results

