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Abstract

The paper surveys recent progress in the mathematical modelling
and simulation of essential molecular dynamics. Particular emphasis
is put on computational drug design wherein time scales of msec up
to min play the dominant role. Classical long-term molecular dynam-
ics computations, however, would run into ill-conditioned initial value
problems already after time spans of only psec = 10−12sec. There-
fore, in order to obtain results for times of pharmaceutical interest,
a combined deterministic-stochastic model is needed.

The concept advocated in this paper is the direct identification of
metastable conformations together with their life times and their tran-
sition patterns. It can be interpreted as a transfer operator approach
corresponding to some underlying hybrid Monte Carlo process, wherein
short-term trajectories enter. Once this operator has been discretized,
which is a hard problem of its own, a stochastic matrix arises. This
matrix is then treated by Perron cluster analysis, a recently devel-
oped cluster analysis method involving the numerical solution of an
eigenproblem for a Perron cluster of eigenvalues. In order to avoid
the ’curse of dimension’, the construction of appropriate boxes for the
spatial discretization of the Markov operator requires careful consid-
eration. As a biomolecular example we present a rather recent SARS
protease inhibitor.
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Introduction

In recent years, prion diseases, like the mad cow disease, but also viral
diseases such as HIV or SARS, have attracted much public and political
interest. Whenever any new such disease shows up, there is a highly com-
petitive race for new drugs against them. This race typically starts in the
computer.
For quite a while, algorithms from discrete mathematics or computer science
have already played a publicly visible role – for example, in the decoding
of the human genome. These approaches primarily aim at the geometry of
the molecules under consideration, i.e., on the secondary or tertiary struc-
ture. A real understanding of biological function, however, requires detailed
knowledge about biomolecular dynamics.
In dynamics, the situation is characterized by the fact that real times of phar-
maceutical interest are in the region of msec up to min, whereas simulation
times are presently in the region of nsec = 10−9sec with timesteps of less
than 5fsec = 5 · 10−15sec. The established ’molecular dynamics’ approach
(usually just called MD) realizes numerical integration of the Hamiltonian
dynamics of the molecular systems – often limited by the available computer
power. This kind of approach, however, has an even stricter mathematical
limitation: the Hamiltonian trajectories to be computed are known to be
asymptotically chaotic. Consequently, traditional long-term trajectory sim-
ulations may, at best, give information about time averages, which, under
some ergodic hypothesis, are equivalent to statistical ensemble averages.
As a result of this insight, any investigation of the dynamics of molecular
systems for time scales of interest in drug design will require a rather different
mathematical approach. In the past few years, the present authors and their
joint research group have created such a different approach based on concepts
of nonlinear dynamics – for early papers see, e.g., [9, 39, 38, 13]. This
approach, now called conformation dynamics, has already been surveyed in
articles like [7, 40]. The present paper updates the state of the art in this
fast moving research topic.

1 Transfer Operators and Metastable Conforma-
tions

Hamiltonian dynamics. We assume that the dynamics of the molecular
system under consideration is characterized by a separable Hamilton function

H(q, p) =
1
2
pT M−1p + V (q) ,

where the first term, the kinetic energy, only depends on the generalized mo-
menta variables p, while the second term, the potential energy, only depends
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on the position variables q. From given H, the Hamiltonian differential equa-
tions for N atoms are defined as

q′i =
∂H

∂pi
, p′i = −∂H

∂qi
, i = 1, . . . , N. (1.1)

Of course, the quality of any molecular dynamics calculation is strongly
dependent on the quality of the available potential data (we mostly use
MMFF [27]). Details of the numerical integration of these ODEs are omitted
here, they can be found, e.g., in Section 1.2. of the textbook [8].
The unique solution of this initial value problem can be written in terms of
the flow Φt as

x(t) = (q(t), p(t)) = Φtx0 .

The sensitivity of the solution, i.e. the solution perturbation δx(t) versus
the initial perturbation δx0, is characterized by the condition number κ.
Following [8, Sect. 3.1.2], this quantity is defined (in first order perturbation
analysis) as

‖δx(t)‖≤̇κ(t)‖δx0‖ , κ(t) = ‖∂Φt/∂x0‖ .

As already discovered by H. Poincaré, Hamiltonian systems can be chaotic.
In Numerical Analysis, we want to know the critical finite time, after which
some kind of chaoticity (in the sense of almost complete loss of information
about the initial state) occurs. In almost all molecular dynamics problems
the condition number seems to grow exponentially such that almost all in-
formation concerning the initial state is lost after critical times tcrit no longer
than a few psec. That is why the traditional MD with numerical long term
integration can only interpreted as computing ensemble averages via time
averages in the sense of the ergodic theorem – which need not hold in all
cases.
On this basis, we are led to the following conclusion:
Instead of the point concept of classical mechanics based on deterministic
trajectories, with which it is only able to model short-term dynamics, we need
to derive some set concept including stochastic elements to model long-term
dynamics.

Smoluchowski or Langevin dynamics. In the literature, several stochas-
tic dynamical systems are discussed as alternative models for certain aspects
of molecular motion in a heat bath. The most prominent of these are the
Langevin or Smoluchowski dynamics. For medium to large molecular sys-
tems these models are believed to describe the effective dynamical behavior
well enough. The Smoluchowski system models the dynamics in the position
space only. It defines a reversible Markov process by means of the stochastic
differential equation

γ q̇ = −∇qV (q) + σ Ẇt. (1.2)
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Here γ > 0 denotes some friction constant and Fext = σẆt the external forc-
ing given by a 3N -dimensional Brownian motion Wt. The external stochastic
force is assumed to model the influence of the heat bath surrounding the
molecular system. The stochastic differential equation (1.2) defines a contin-
uous time Markov process Qt on the state space Ω with invariant probability
measure [36]

Q(dq) ∝ exp(−βV (q))dq .

There is a long history of using it as a simple toolkit for investigation of
dynamical behavior in complicated energy landscapes [4]. We will herein
use it for the same purpose, i.e., we will concentrate on the stochastic re-
formulation of Hamiltonian motion (see next section) but use Smoluchowski
dynamics for simplified illustration and comparison.

Biomolecular conformations and metastable sets. Today, the effec-
tive dynamics of many biomolecules is understood to be governed by statis-
tically rare transitions between so-called conformations of the biomolecule
(cf. [47]). In a conformation, the large scale geometric structure of the
molecule is understood to be conserved, whereas on smaller scales the sys-
tem may well rotate, oscillate or fluctuate. Furthermore, transitions between
conformations are rare events or, in other words, a typical trajectory of a
molecular system stays for long periods of time within the conformation,
while exits are long-term events. Hence, the term conformation includes
both geometric and dynamical aspects. From the geometrical point of view,
conformations are understood to represent all molecules with the same large
scale geometric structure and may thus be identified with a subset of the
state space. From the dynamical point of view, a conformation typically
persists for long periods of time (compared to the fastest molecular mo-
tions) such that the associated subset of the state space is metastable and
the resulting macroscopic dynamical behavior can be described as a flipping
process between the metastable subsets. Consequently, it is of utmost inter-
est to decompose the state space of the molecular motion into some main
metastable sets, evaluate the transition probabilities between them and per-
haps learn about the transition pathways between these conformations.
The standard biophysical explanation for the existence of conformations is
as follows: The free energy landscape of a molecular system, say a protein or
peptide, decomposes into particularly deep wells each containing huge num-
bers of local minima. These wells are separated by relatively large barriers—
as measured on the scale of the thermal energy (∼ T : temperature)—from
each other and represent different metastable conformations. The hierarchy
of barrier heights induces a hierarchy of conformations [17, 21, 20]. The cor-
responding hierarchy of time scales observed for conformational transitions
seems to confirm the biophysical explanation for the existence of conforma-
tions [35]. However, this concept does not (at least not directly) refer to
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dynamical aspects but describes conformation transitions in terms of a ther-
modynamic quantity, the free energy. In Section 2 below we will show that
the Smoluchowski dynamics is an ideal setting to discuss similarities and dif-
ferences between this thermodynamic concept and the dynamical concepts
to be presented herein.

1.1 Transfer operators

The just mentioned set concept can be realized by virtue of some stochastic
transfer operator (or Markov operator), which is discussed here to necessary
detail.

Perron–Frobenius operator. Starting point for the new approach was
the pioneering work of M. Dellnitz and co-workers [6] on the numerical
approximation of invariant measures µ̄ and their corresponding invariant
sets B̄ via the (unitary) Perron–Frobenius operator U. In terms of this
operator, µ̄ and B̄ are characterized by the eigenvalue problem

Uµ̄ = µ̄, Φ−t(B̄) ⊂ B̄, ∀t ≥ 0 (1.3)

for the Perron eigenvalue λ = 1. Moreover, eigenvalues λ 	= 1 close to
the Perron eigenvalue seemed to have an interpretation in terms of almost
invariant sets of the dynamical system.
The success of that approach was intimately linked to dynamical systems
that asymptotically collapse to some dynamics on a low-dimensional man-
ifold. This is definitely not the case in Hamiltonian dynamics, so that a
generalization to molecular dynamics is all but trivial. A first attempt in
this direction has been published in [9]. However, the subdivision technique
applied there caused some curse of dimension that restricted the applicabil-
ity of the method to a domain far away from realistic molecules.
Self-adjoint transfer operator. In [39, 38] a new stochastic operator T
has been constructed, which embeds U into a canonical distribution

f0(q, p) =
1
Z

exp
(
−β(pT M−1p/2 + V (q))

)
with Z as normalization factor and β proportional to the inverse temper-
ature. For separable Hamiltonian H this distribution may be factorized
according to

f0 = PQ , Z = ZpZq ,

∫
P(p)dp =

∫
Q(q)dq = 1 , (1.4)

where

P(p) =
1
Zp

exp(−β

2
pT M−1p) , Q(q) =

1
Zq

exp(−βV (q)) .
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At this point recall that metastable conformations are understood to be
objects in position space q ∈ Ω rather than in the whole phase space Γ. Let
A, B ⊂ Ω be subsets in position space and define cylinders

Γ(A) = {(q, p) : q ∈ A}.

The required transfer operator may then be constructed integrating the
Perron-Frobenius operator U over the cylinders Γ(·) – thus achieving an
operator Tτ that acts on functions in position space:

Tτu(q) =
∫

Rd

u(ΠqΦ−τ (q, ξ))P(ξ)dξ, (1.5)

where Π denotes the projection Π(q, p) = q onto the position space. In the
sequel we will often omit the superindex τ , if the time scale τ that has been
chosen is clear and does not change.
As has been shown in [38], Tτ can be interpreted as the transfer operator
associated with the Markov chain, to be called Hamiltonian system with
randomized momenta,

qk+1 = Π Φτ (qk, pk) , pk : P − distributed . (1.6)

For a schematic representation see Fig. 1. This Markov chain combines a
short term deterministic model, characterized by the flow Φτ , with a sta-
tistical model, characterized by the P-distribution, the momentum part of
the canonical distribution, which is just a Gaussian distribution due to the
quadratic kinetic energy – see (1.4). For a discussion of the physical meaning
of this stochastic model of the dynamics visit [41].

deterministic

dynamics

statistical

     distributionP−

p

qq2q0 q3 q1

Figure 1: Markov chain (1.6).
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The operator Tτ is defined over the weighted spaces

Lr
Q(Ω) = {u : Ω → C,

∫
Ω
|u(q)|rQ dq < ∞}, r = 1, 2 .

The Hilbert space L2
Q(Ω) is naturally associated with the weighted inner

product

〈u, v〉Q =
∫
Ω

u(q)v(q)Q(q)dq (1.7)

Among the properties of Tτ for all τ we mention (from [38]):

• Tτ is a Markov operator on L1
Q(Ω).

• Tτ is self-adjoint in L2
Q(Ω).

Hence, its spectrum satisfies σ(Tτ ) ⊂ [−1, 1]. Moreover, under certain quite
general conditions the existence of metastable sets is deeply related to a
cluster of eigenvalues close to the Perron eigenvalue λ = 1, called the Perron
cluster, which is well-separated from the remaining (continuous) part of the
spectrum (see Theorem 1.1 for details). Discretization of this operator (to
be studied in Section 4 below) generates a stochastic sparse matrix T , which
inherits the self-adjointness of the operator as symmetry with respect to a
discrete analog of the weighted inner product 〈·, ·〉Q.
With these preparations, we are ready to express all relevant information
about the dynamical system. Let χ(A) denote the characteristic function of
A, a set function that is 1 inside A and 0 outside. Then we obtain:

• The probability for the dynamical system to be within A is

π(A) =
∫

Γ(A)

f0(p, q)dq dp =
∫
A

Q(q)dq = 〈χA, χA〉Q . (1.8)

• The conditional probability for the system, once it is in A, to move
from A to B during time τ can be defined by virtue of Tτ as

w(A, B, τ) =
〈χA,TτχB〉Q
〈χA, χA〉Q

. (1.9)

• The probability for the system, once it is in A, to stay in A during
time τ (more exactly: to be found in A at time t = τ after being in A
at time t = 0) comes out as

w(A, A, τ) =
〈χA,TτχA〉Q
〈χA, χA〉Q

. (1.10)
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Given open sets A and B, we could compute these probabilities by means
of long-term iteration of the Markov chain (1.6) associated with Tτ . Any
realization would yield an sequence of positions {qk} that can be proved to
be distributed according to Q asymptotically [38]. The relative frequency
of transitions from A to B in this sequence asymptotically approximates
w(A, B, τ) (see Section 4 for algorithmic consequences and difficulties ). In
addition we get a sequence of τ -sub-trajectories of the Hamiltonian system
under consideration. If long enough this sequence will explore the state
space entirely and contain all necessary information about the dynamical
features of the system.

Transfer operator for Smoluchowski dynamics. The transfer oper-
ator describes the evolution of probability densities under the dynamics in
question. For the Smoluchowski system (1.2) the evolution of probability
densities f (w.r.t. the Lebesgue measure) is governed by the Fokker-Planck
equation

∂tf =
(

σ2

2γ2
∆q +

1
γ

(∇qV (q) · ∇q + D2V (q))
)

u.

Upon introducing the probability distribution v = u/Q, this evolution equa-
tion reads

∂tv = ASmo v =
(

σ2

2γ2
∆q −

1
γ

(∇qV (q) · ∇q)
)

v.

Thus, the associated transfer operators Tt
Smo form a semigroup. For twice

continuously differentiable u ∈ Lr
Q(Ω) with 1 ≤ r < ∞, this semigroup

admits ASmo as a strong generator such that in this case

Tt
Smo = exp(tASmo) .

For details on ASmo see the theory of Fokker-Planck equations and Kol-
mogoroff forward and backward equations [36, 42, 28].
Hence the Smoluchowski case gives us the opportunity to study the relation
between dominant eigenvectors of the transfer operator and metastable sets
by means of partial differential operators. The fact that the Smoluchowski
system has at least some relation to the Hamiltonian case is reflected in
the following relation between the transfer operator Tτ of the Hamiltonian
system with randomized momenta and the Smoluchowski generator:

Tτ = Id + τ2ASmo + O(τ4).

For u ∈ L2
Q(Ω) the reversibility of the Smoluchowski dynamics implies that

ASmo is self-adjoint.
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1.2 Dominant Spectra and Metastability

There are several recent articles on the relation between metastability and
dominant eigenmodes of the transfer operator associated with the considered
dynamical system [41, 30, 28, 6, 39]. Within these approaches, metastability
is a set-wise notion and conceptually defined in the following way: some
dynamical system is said to exhibit metastability or to have a metastable
decomposition, if its state space can be decomposed into a finite (hopefully
small) number of disjoint sets such that the probability of exit from each
of these sets is extremely small [41, 6]. There are basically two different
concepts of probability of exit: (a) the probability of exit from a set is
defined via an ensemble of systems and measures the fraction of systems
that exit from the set during some fixed time interval [41, 39], (b) in case of
a stochastic process the probability of exit is measured from the distribution
of exit times from the set, i.e., the probability of exit is the smaller the larger
the expected exit time is [3], or, equivalently, the slower the decay of the
distribution of exit times is [30]. However, both concepts (a) and (b) are
related to the dominant eigenvectors of the transfer operator. Accordingly,
the basic insight of the transfer operator approach to metastability is [41]:

Identification of metastable decompositions. Metastable decomposi-
tions can be detected via the discrete eigenvalues of the transfer operator Tτ

close to its maximal eigenvalue λ = 1; they can be identified by exploiting
structural properties of the corresponding eigenfunctions. In doing so, the
number of sets in the metastable decomposition is equal to the number of
eigenvalues close to 1, including λ = 1 and counting multiplicity.
We will later learn about the identification algorithm constructed based on
this idea. Furthermore, we will present illustrating examples in Section 2.
In the final paragraphs of this section however, we will present one of sev-
eral mathematical statements supporting this idea. To this end, recall the
formula for the probability to remain within some set A during time span
τ :

w(A, A, τ) =
〈χA,TτχA〉Q
〈χA, χA〉Q

.

The metastability of a set A may be measured by w(A, A, τ).

Definition: Metastability of a decomposition. For an arbitrary de-
composition D = {A1, . . . , Am} of the state space into m disjoint sets Ak,
we define

wm(τ) =
m∑

i=1

w(Ai, Ai, τ) (1.11)

as the corresponding metastability.
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The following crucial result is due to [31]; a specialized version for two
subsets has been published by Huisinga in his thesis [28].

Theorem 1.1. Let T τ : L2
Q(Ω) → L2

Q(Ω) denote a reversible transfer oper-
ator whose essential spectral radius is strictly less than 1 and for which the
eigenvalue λ = 1 is simple. Then Tτ is self–adjoint and the spectrum has
the form

σ(Tτ ) ⊂ [a, b] ∪ {λm} ∪ . . . ∪ {λ2} ∪ {1}

with −1 < a ≤ b < λm ≤ . . . ≤ λ1 = 1 and isolated, not necessarily
simple eigenvalues of finite multiplicity that are counted according to mul-
tiplicity. Denote by vm, . . . , v1 the corresponding eigenfunctions, normal-
ized to ‖vk‖L2

Q(Ω) = 1. Let Q be the orthogonal projection of L2
Q(Ω) onto

span{χA1 , . . . , χAm}. Then the following bounds hold:

1 + κ2λ2 + . . . + κmλm + c ≤ wm(τ) ≤ 1 + λ2 + . . . + λm,

where κj = ‖Qvj‖2
L2
Q(Ω)

≤ 1 , j = 1, . . . , m , and c = |a| (1−κ2) . . . (1−κm) <

1.

This theorem obviously holds for the transfer operator of the Hamiltonian
system with randomized momenta as well as for the one related to Smolu-
chowski dynamics. Whenever the dominant eigenfunctions v2, . . . , vm are
almost constant on the metastable subsets A1, . . . , Am – which then implies
that κj ≈ 1 and thus c ≈ 0 – then the above lower and upper bound are
close. Moreover, Huisinga et al. [31] have even shown that both bounds are
sharp and asymptotically exact. The idea to exploit almost constancy and
sign changes of the dominant eigenmodes lies exactly at the heart of the
algorithm to be presented that identifies a metastable decomposition into m
sets via the m dominant eigenmodes, see Section 3 for details.

2 A Complete Picture in a Simplified Setting

In principle, the transfer operator approach as presented so far allows us to
identify an almost optimal metastable decomposition of the state space. In
terms of the biochemical background this gives us the main conformations
of the molecular system under consideration. However, this solves “only”
one of the four most important biophysical problems: One may want to
(a) identify the dominant conformations, (b) characterize the geometric and
dynamical flexibility of the molecule within one of its main conformations,
(c) estimate the transition probabilities between conformations or the exit
rates from a single one, and (d) characterize the transition regions and
pathways on which the transitions between conformations will occur most
probably.
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The characterization of the internal flexibility and (roughly) of the tran-
sition regions are automatic by-products of the algorithmic realization of
the transfer operator approach via sequences of sub-trajectories exploring
state space (see Section 4 below). Furthermore this algorithmic realization
will permit the direct computation of the transition probabilities w.r.t. some
prescribed time span τ by means of formula (1.9).
In order to illustrate the relation between the different concepts (transfer
operator approach, exit rates, transition pathways) we now work out details
at a rather simple test case from Smoluchoswki dynamics.

Test system (2D). We consider the two-dimensional system given by the
potential

V (x, y) = 3 exp(−x2 − (y − 1/3)2) − 3 exp(−x2 − (y − 5/3)2)
− 5 exp(−(x − 1)2 − y2) − 5 exp(−(x + 1)2 − y2);

The potential is illustrated in Fig. 2. We observe that there are two equally
important deep wells with minima at (x, y) = (1, 0) and (x, y) = (−1, 0),
and a not so important one around (x, y) = (0, 5/3). The barrier between
the two dominant wells is substantially higher than the barrier between each
of the dominant ones and the less important wells. The inverse temperature
β = 2γ/σ2 is set to β = 3 (with γ = 1) such that crossing the barriers in
the potential certainly will be a rare event.
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−4
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−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Figure 2: Smoluchowski test problem: Contour lines of potential V . Regions between
the contour lines are shaded according to average value of potential.

Metastable decomposition. The eigenvalue problem of the generator
ASmo of the transfer operator Tt

Smo can be solved numerically by means
of finite element eigenvalue solvers for elliptic problems. This leads to the
following numerical results for the dominant eigenvalues of ASmo in L2

Q(Ω):
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λ1 λ2 λ3 λ4 . . .
0.000 −0.002 −0.144 −2.330 . . .

The eigenfunction associated with λ1 = 0 obviously is the constant function.
The eigenfunctions associated with λ2 and λ3 are shown in Fig. 3.
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Figure 3: Smoluchowski test problem: second and third eigenfunction. Illustration via
contour lines as explained in Fig. 2.

From Fig. 3 we observe: (a) the three metastable sets given by the three wells
in the potential show up as regions of almost constancy of the three eigen-
functions, (b) the less important well (being coded into the third eigenfunc-
tion with a significantly larger eigenvalue) obviously exhibits less metasta-
bilty than the other two ones.
In Section 3 below, we will present an algorithm for the identification of
metastable decompositions as shown in Fig. 4.
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Figure 4: State space decomposition into sets A, B, C by identification algorithm as
presented in Section 3.
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Exit times and exit rates. The exit rate from a set A is defined as the
decay rate of the exponential decay of the distribution of exit times from the
set [30]. If A is the open set defined by one of the strictly positive or negative
components of an eigenfunction of ASmo, then the exit rate can be shown
to equal the modulus of the eigenvalue associated with this eigenfunction
[30]. If, for example, A is the left of the main wells of our example, the exit
rate for β = 3 is given by |λ2| = 0.002, i.e., most exit times will be in the
hundreds of units. If β is asymptotically large, the expected exit time τ̄ is
known to scale like

τ̄ = C exp(β∆V )

where ∆V denotes the smallest energy barrier via which the exit is possible.
However, the preconstant C increases with the “narrowness” of the saddle
point region through which the exit occurs. Situations like in our example
are of utmost interest: there are two such regions, one that is a little bit
wider but whose energy barrier is a little higher than that of the other one
(which is more narrow). If β is not asymptotically large exits will occur
in both regions. For real life applications this is the crucial problem of all
algorithms designed to identify transition regions, pathways, or states: one
always has to ask whether all important regions have been explored.

Transition pathways. Transition state theory tells us that the transition
pathways between two (disjoint) wells W1 and W2 can be computed from
some reaction coordinate ξ : X → R where X may denote the important
portion of the state space in which the wells W1 ⊂ X and W2 ⊂ X are
dominant. IN the case of our test system, W1, and W2 should be left and
right main wells of the potential energy landscape, i.e., the core sets of the
metastable sets A and B of Fig. 4. In general, ξ is given by the following
boundary value problem [43]:

ASmo ξ = 0, in X \ {W1 ∪ W2}
ξ|∂W1 = 0

ξ|∂W2 = 1

∂nξ|∂X = 0 .

(2.1)

Under certain circumstances the solution is closely related to the dominant
eigenvalues: Let, e.g., µ denote the probability measure generated by the
invariant density exp(−βV ), and suppose that almost all weight is concen-
trated in W1 and W2, i.e., µ(W1 ∪W2) ≈ 1. Moreover, let there be only one
negative eigenvalue λ2 of ASmo very close to λ1 = 0. Then we approximately
have

ξ ≈ µ(W1)χX +
√

µ(W1)µ(W2) u2,

where u2 denotes the eigenfunction associated with λ2.
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Figure 5: Reaction coordinate ξ for the system under consideration with W1 being
the left and W2 the right main well. Illustration via contour lines in the same sense as
explained in Fig. 2.

This is obviously the case in our test system: as we can see in Fig. 5, the
solution of (2.1) for the case where W1 and W2 are identical to the left and
right main well, respectively. The figure exhibits the level set ξ = ξ0 for
given ξ0 of ξ. Transition state theory tells us that the transition pathways
intersect the level sets of ξ perpendicularly [43].
From all possible transition paths only those are of importance that intersect
the level sets where the restricted invariant distributions

ν|ξ0 =
1

Z(ξ0)
exp(−βV )|ξ=ξ0 , Z(ξ0) =

∫
δ(ξ − ξ0) exp(−βV (x, y)) dx dy

is large enough.
Fig. 6 exhibits some of these restricted invariant distributions together with
the level sets of the reaction coordinate ξ for a transition from the left to
the right main well of our test system. We observed that there are at least
two different transition regions, that contain different optional transition
pathways. In situations like this the usual concept of free energy landscapes
is not general enough; e.g., it is not clear over which variables the energy
landscape has to be averaged in order to compute an useful free energy for
both transition regions. However, it should be obvious that the identification
of transition regions is closely related to the dominant eigenmodes of the
transfer operator, and that a complete picture of the effective dynamical
effects of the systems has to be based on the information coded in these
dominant eigenmodes. An very promising direction of work that combines
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Figure 6: Level sets of ξ (left) and restricted invariant distribution ν|ξ0 (right) on the
level sets ξ = ξ0 for some ξ0 = 0.1, . . . , 0.9 for the system under consideration.

aspects of the ”global” transfer operator approach with a ”localized”, so-
called string method [16] for the direct computation of transition pathways
is presented in [43].

3 Perron cluster analysis

Suppose we have already discretized the above transfer operator T – a topic
postponed to the subsequent Section 4, since it requires techniques to be
presented first. Then, in order to identify m almost invariant sets corre-
sponding to m metastable chemical conformations, we need only deal with
a stochastic (generalized symmetric) matrix T of dimension N . This is a
problem of cluster analysis, where, in addition, m is unknown in advance.
Comparable to (1.3), we start from the eigenvalue problem

πT T = πT , T e = e , πT e = 1 , (3.2)

where the left eigenvector πT = (π1, . . . , πN ) represents the discrete invariant
measure and the right eigenvector eT = (1, . . . , 1) the characteristic function
of the discrete invariant set – each corresponding to the Perron eigenvalue
λ1 = 1. The basic approach to be described requires an analysis of the
Perron cluster of eigenvalues

λ1 = 1, λ2 ≈ 1, . . . , λm ≈ 1

and their corresponding eigenvectors Vm = [v1, . . . , vm]. For given u, v ∈ R
N

we will use the special inner product and norm

〈u, v〉π =
N∑

l=1

ulπlvl = uT D2v , ‖v‖π = 〈v, v〉1/2
π , (3.3)
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where D = diag(
√

π1, . . .
√

πN ) is a diagonal scaling matrix. Obviously,
(3.3) is the discrete analog of the continuous inner product (1.7). Any
reversible stochastic matrix T is symmetric under this inner product; as a
consequence, for any right eigenvector y = (y1, . . . , yN ) there exists a left
eigenvector z = (z1, . . . , zN ) with zl = πlyl, or, equivalently,

z = D2y . (3.4)

Algorithm PCCA. The first algorithm to tackle this problem has been
the PCCA method (abbreviated from: Perron Cluster Cluster Analysis),
as worked out in detail in [13]; for a rather elementary introduction see also
Section 5.5 of the latest edition of the undergraduate textbook [11]. We will
also sketch the more robust variant called PCCA+, which has originally
been suggested by M. Weber [44, 45] and will be further improved in a
forthcoming paper [14].
Uncoupled Markov chains. Let S = {1, 2, . . . , N} denote the total index set
decomposed as

S = S1 ⊕ · · · ⊕ Sm

into m disjoint index subsets, which represent m uncoupled Markov chains,
each of which is running “infinitely long” within the corresponding subset.
Then the total transition matrix T is strictly block diagonal with block sub-
matrices {T1, . . . , Tm} – see, e.g., [33]. Each of these submatrices is stochas-
tic and gives rise to a single Perron eigenvalue λ(Ti) = 1, i = 1, . . . , m. Let
the submatrices be primitive. Then, due to the Perron-Frobenius theorem,
each block Ti possesses a unique right eigenvector eSi = (1, . . . , 1)T of length
dim(Ti) having unit entries over the index subset Si. Therefore, in terms of
the total transition matrix T , the eigenvalue λ = 1 has multiplicity m and
the corresponding eigenspace is spanned by the vectors

χi = (0, . . . , 0, eSi
T , 0, . . . , 0)T , i = 1, . . . , m .

Our notation deliberately emphasizes that these eigenvectors can be inter-
preted as characteristic functions of the invariant index subsets (see Fig. 7,
left).
In general, any Perron eigenbasis Vm = {v1, . . . , vm} can be written as a
linear combination of the characteristic functions χ = [χ1, . . . , χm] such
that

χ = VmA , Vm = χA−1 (3.5)

wherein the (m, m)-matrix A = (αij) is nonsingular (due to dim ker(A) = 0)
so that A−1 = (aij) exists. In PCCA, each subset Si for i = 1, . . . , m
is identified by some componentwise sign structure of the eigenvectors Vm

using the three values {+, 0,−} for the sign function — compare [12].
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Figure 7: Uncoupled Markov chain over m = 3 disjoint index subsets. The state space
S = {s1, . . . , s90} divides into the index subsets S1 = {s1, . . . , s29}, S2 = {s30, . . . , s49},
and S3 = {s50, . . . , s90}. Left: Characteristic function χ2 = eT

S2 . Right: Perron eigenbasis
V3 = {v1, v2, v3} corresponding to 3-fold Perron eigenvalue λ = 1.

Nearly uncoupled Markov chains. Suppose now we have m nearly uncoupled
Markov chains, each of which is staying “for a long time” in one of the
conformations i. For the transition probabilities (1.9) and (1.10) this means
that

w(i, i, τ) = 1 − O(ε), w(i, j, τ) = O(ε), i 	= j , (3.6)

in terms of some perturbation parameter ε not further specified here. In
this case the transition matrix T is (after some unknown permutation) block
diagonally dominant. As a perturbation of the m-fold Perron root in the
uncoupled case ε = 0, the Perron cluster

λ1 = 1, λi = 1 − O(ε), i = 2, . . . , m

arises. In the PCCA approach, the cluster identification is done exploiting
the fact that, for ε = 0, each cluster is clearly associated with the set of
signs of the components of the eigenvectors v1, . . . , vm, where v1 = e is set.
Clearly, the signs of the components are preserved as long as the perturba-
tion ε is ’small enough’; for ’too small’ entries in an eigenvector vi, i > 1,
however, we will have to define some ’dirty zero’ as a perturbation of the
exact sign function value 0 – compare v3 over the index subset S3 in Fig. 7,
right. Therefore, in PCCA, the least squares requirement

‖χ − VmA‖π = min (3.7)

is imposed and solved iteratively by successive reduction of the ’dirty zero’
parameter. In this way, some discontinuity enters into the algorithm, which
leads to some lack of robustness of the PCCA approach as a whole.
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Figure 8: Perron cluster λ = 1, 0.99, 0.98 in butane molecule. Left: Eigenbasis v1, v2, v3.
Right: Soft characteristic functions.

Algorithm PCCA+. In this approach, the linear least squares problem
(3.7) is replaced by modifying the ’crisp’ characteristic functions χi to certain
’soft characteristic functions’ χ̃i(ε) as represented schematically in Fig. 8.
This may be interpreted as replacing the sets by ’fuzzy sets’. The soft
characteristic functions are defined such that the relation (3.5) is modified
according to

χ̃ = VmÃ . (3.8)

Moreover, they are assumed to satisfy the positivity property

χ̃i(l) ≥ 0 , i = 1, . . . , m , l = 1, 2, . . . , N (3.9)

and the partition of unity property

m∑
i=1

χ̃i(l) = 1 , l = 1, 2, . . . , N . (3.10)

The actual computation of χ̃ is performed such that the metastability wm(τ)
as defined in (1.11) above is maximized, which is a well–known problem from
discrete mathematics; the link to Theorem 1.1 is obvious. More details will
be given in [14].
In view of the property (3.4), we may define

π̃i = D2χ̃i = D2viÃ

via the left eigenvectors D2vi corresponding to the right eigenvectors vi. In
other words, we may interpret the soft characteristic functions χ̃i via the
modified probabilities

π̃i = (π̃i(1), . . . , π̃i(N) ) = (π1χ̃i(1), . . . , πN χ̃i(N)) (3.11)

associated with conformation i.
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From this analysis we finally obtain the desired m metastable chemical con-
formations via the m soft characteristic functions χ̃1, . . . , χ̃m. They may
be interpreted as “mixed states” generated by perturbation of “pure states”
χ1, . . . , χm. For these conformations the algorithm supplies the following
information:

• the probabilities π̃i for the system to be within state i as

π̃i = πT χ̃i = 〈χ̃i, e〉π , (3.12)

which is a variation of (1.8),

• the probabilities wii = w(i, i, τ) for the system, once it is in state i, to
stay during time τ

wii =
〈χ̃i, T χ̃i〉π
〈χ̃i, e〉π

=
〈χ̃i, T χ̃i〉π

π̃i
, (3.13)

which is a variation of (1.10), and

• the probabilities wij = w(i, j, τ) , i 	= j, for the system, once it is in
state i, to move to state j,

wij =
〈χ̃i, T χ̃j〉π
〈χ̃i, e〉π

=
〈χ̃i, T χ̃j〉π

π̃i
, (3.14)

which is a variation of (1.9).

As for the parameter ε used above without specification, we quote the defi-
nition

ε = max
i=1,...,m

(1 − wii) = 1 − min
i=1,...,m

wii , (3.15)

which has been derived in [13].
Summarizing, we may state the following:
Given a sufficiently accurate approximation matrix T of the transfer operator
T, the Perron cluster analysis supplies the number, the life times, and the
decay pattern of the metastable chemical conformations.

4 Approximation of Stochastic Operator

The whole Perron cluster analysis as described in Section 3 will only work, if
the stochastic operator T can be approximated appropriately, which is the
topic of this section. As has been shown in [38], T can be interpreted as a
transition operator associated with the Markov chain (1.6).
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Hybrid Monte Carlo method (HMC). First we want to briefly de-
scribe the mixed deterministic-stochastic process that directly mimics the
Markov chain shown in Fig. 1. For details see references [15, 39].
In order to approximate the Hamiltonian flow Φτ in the definition of the
transfer operator, we will have to discretize the Hamiltonian equations of
motion (1.1). Suppose that this discretization with time step h = τ/k yields
the discrete flow Ψh such that Φτx0 is approximated by

xj+1 = Ψhxj , j = 0, . . . , k − 1 .

All explicit discretizations with certain long-term stability properties, e.g.,
symplectic ones, do not exactly conserve the energy. Therefore, the chain

qk+1 = π (Ψh)N (qk, pk) , pk : P − distributed ,

will in general not sample the distribution Q of interest. In order to cor-
rect this, one has to use the Metropolis acceptance procedure. This yields
the HMC chain, which leads to a chain of the same structure as the one
shown in Fig. 1, has the correct invariant measure, and still contains good
approximations of sub-trajectories of the Hamiltonian system.
Monte Carlo approximation of transition probabilities. Given a
discretization of the position space Ω in terms of boxes {B1, . . . , BN}, and a
realization {q1, . . . , qM} of the HMC chain, the elements Tij of the transition
matrix T can be computed by virtue of

Tij =
#{qk+1 ∈ Bj ∧ qk ∈ Bi}

#{qk ∈ Bi}
i, j = 1, . . . N .

By means of this we obtain an approximation T (M) with an error like

|T − T (M)| ≤ γ/
√

M ,

where this estimate has to be understood in the sense of the central limit
theorem for Markov chains (under special conditions there are much sharper
convergence results [34]). As in all Monte Carlo type processes, however,
trapping within local minima will occur, unless we take special precautions.
In fact, the above constant γ exceeds any bound, if the spectral gap at the
Perron root approaches 0. However, as we want to analyze Perron clusters,
this is just the case treated here. Below we will present a temperature
embedding technique especially designed to deal with this difficulty.
Spatial box discretizations. The number N of spatial boxes is also the
dimension of the arising transition matrix T . Of course, we must assure that
N remains of moderate size even for larger molecular systems. From chem-
ical insight into the problem, different conformations occur corresponding
to the double or triple well structure in the torsion angle potentials – see
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Fig. 9. Let s be the number of minima in the torsion potential (s = 2 or
s = 3) and n the number of torsion angles (n ≈ 7 per nucleotide), then our
first applied subdivision technique from [9] would have led to a number

N ≈ sn

of boxes. For the small RNA segment with 70 atoms and three genetic letters
(ACC) given in [7], we have n = 37; this would have led to N > 1011, which
is, of course, intolerable! This combinatorial explosion is the well-known
“curse of dimension”.
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Figure 9: Molecular torsion potential with triple well (s = 3)

In order to overcome this undesirable effect, we have experimented with sev-
eral heuristics. First, we adapted the method suggested by Amadei et al.
[1] to circular coordinates [29, 39]; this method identifies “essential degrees
of freedom” by principal component analysis (PCA) of dynamical fluctua-
tions. This technique turned out to lack robustness already for quite small
molecules. Next, we tried self-organizing maps (SOM) due to Kohonen [32]
in combination with our PCCA: the speed-up of the combined cluster al-
gorithm has been reported in [25]; an advanced multilevel version called
self-organizing box maps (SOBM) has been developed in detail by Galliat
et al. [22, 23, 24]. Our present favorite box discretization technique is a
combination of the two heuristics to be described next.

Successive PCCA of dihedrals. This kind of box discretization heuris-
tics is due to Cordes et al. [5]. It starts from the chemical insight that di-
hedrals (or torsion angles) are useful indicators for conformational changes.
The principle of the algorithm is as follows: On the basis of a precomputed
HMC series, we afford to construct rather fine discretizations for each of the
dihedrals separately. This defines separate “dihedral transition matrices” T
for each dihedral decomposition, which are analyzed in terms of PCCA+.
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Among these matrices, the one with eigenvalue λ2 closest to λ1 = 1 is
selected and subdivided according to the PCCA+ strategy. Upon apply-
ing this idea recursively to the remaining dihedral subspaces, a rather useful
“coarse grid” is constructed, which is then taken as the box discretization for
the final transition matrix to be analyzed as a whole. In Fig. 10, a few steps
of this recursive scheme are schematically presented in a two-dimensional
dihedral plane.

a. b.

c. d.

Figure 10: Algorithmic scheme for successive PCCA of dihedrals: Four metastable
regions are drawn as ellipses in a 2-dimensional dihedral space. Thin lines show the
successive fine discretizations of each dihedral. Figures a. to d. illustrate the alternation
between fine discretization and coarse grid construction. The final coarse grid (Fig. d)
consists of four spatial boxes.

This rather simple strategy is surprisingly robust and works well even for
rather complex molecules. It will clearly fail whenever there is a coupling
between torsion angles that have successively been selected for PCCA+.
We are therefore planning to combine this technique with our former neural
network strategy (SOM, see above) to avoid such a situation already at the
level where it could occur. At present, such an occurrence is detected and
corrected at some later stage of the UCMC strategy to be described next.

Uncoupling-Coupling Monte Carlo method (UCMC). This tech-
nique has been developed by A. Fischer et al. [19, 18]. From an abstract
point of view, the algorithmic scheme is a Monte Carlo extension of aggrega-
tion/disaggregation techniques suggested in 1989 by C. D. Meyer [33]; there,
however, the stationary distribution was the object of interest, which in our
context is given as input.
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As the starting point for an algorithmic realization of the transfer operator
approach we need a sample of the state space distributed according to the
canonical distribution Q∗ ∝ exp(−β∗V ) at inverse temperature β∗. Yet, a
direct sampling of the state space via the associated HMC Markov chain
(1.6) will result in slow mixing and, hence, poor convergence caused by the
presence of metastabilities – which we actually want to compute.
In order to address this problem, an iterative scheme of alternating uncou-
pling and coupling is applied, which realizes the steps

(a) embedding Q∗ in a series of canonical distributions of increasing tem-
peratures – which decreases metastability,

(b) hierarchical decomposition of state space into metastable sets and
restart of restricted Markov chains therein, applying a type of an-
nealing strategy, and

(c) coupling the samples from restricted Markov chains for proper reweigh-
ing of the samples at Q∗.

The sampling starts with one HMC Markov chain at the highest tempera-
ture level searching the whole state space. Step (b) already includes transfer
operator techniques for the identification of metastable sets, but within the
annealing strategy the state space is decomposed as soon as some metasta-
bility emerges. By construction, all restricted HMC Markov chains exhibit
rapid mixing, which speeds up the computation and, at the same time, in-
creases robustness of the overall algorithm. In coupling step (c) we set
up a coupling matrix by computing quotients of normalizing constants be-
tween samples at neighboring temperatures with an overlapping domain in
the hierarchy. Coupling factors connecting samples from different domains
are then given by the entries of the stationary distribution of the coupling
matrix. The situation is illustrated in Fig. 11.
As a result of the UCMC technique, we obtain a weighted sample, which
is distributed according to Q∗. Technical details of this quite complicated
process can be found in [19, 18].

5 Example: SARS Protease Inhibitor

The here described bunch of new mathematical methods for the identifica-
tion of metastable conformations has been published in a series of papers
by the research group of the authors, among which the surveys [7, 40] also
contain numerical results for interesting biomolecules, e.g., the green tea
molecule epigallocatechine, a suspected anti-cancer drug, or an HIV pro-
tease inhibitor.
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Figure 11: Hierarchical simulation protocol for UCMC: After decomposition, the
metastable subsets of the conformational space are sampled independently at a lower
temperature level. Two temperature levels are connected via bridge samplings.

In the present paper we restrict our attention to SARS (abbreviation for
Severe Acute Respiratory Syndrome). The corresponding corona virus re-
sponsible for the sudden occurrence of the epidemics arose early this year,
unknown until then. It is only since May 30, 2003, that the 3D struc-
ture of one of its enzymes, a protease, is available on the internet [46]; this
molecule takes part in the viral metabolism by cutting larger proteins into
smaller peptide strands. The underlying biochemical experiments have been
published by the research group of Hilgenfeld [2]. In Fig. 12, we show the
result obtained from a homology model on top of an X-ray analysis of a sim-
ilar molecule, which seemed to reveal some active site of the SARS protease;
the associated molecule in the active site has been observed to fit into the
molecular pocket, but is not expected to be a drug against SARS. Instead
the search race continues with high speed.

Figure 12: SARS protease: active site as suspected from X-ray analysis

Starting from the internet data, we investigated a molecule, the inhibitor
AG7088, with our mathematical tools for conformation dynamics. Upon
applying the UCMC technique for box discretization at the temperatures
1500K, 1000K, 600K, and 300K, we obtained the results arranged in Table 5.
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T[K] coarse spectrum coupling matrix

1500

1.000
0.984
0.975
0.861

0.982 0.003 0.015
0.003 0.976 0.021
0.001 0.002 0.997

1000

1.000
0.994
0.987
0.971
0.955

0.992 0.001 0.005 0.002
0.000 0.966 0.024 0.010
0.001 0.014 0.982 0.003
0.001 0.006 0.003 0.990

1000

1.000
0.999
0.997
0.990
0.985
0.982
0.971

0.987 0.000 0.009 0.000 0.004 0.000
0.000 0.997 0.001 0.000 0.000 0.002
0.001 0.000 0.984 0.002 0.008 0.005
0.000 0.000 0.001 0.970 0.000 0.029
0.000 0.001 0.001 0.000 0.985 0.013
0.000 0.000 0.000 0.002 0.003 0.995

1000

1.000
0.995
0.992
0.990
0.988
0.982

0.978 0.002 0.016 0.004 0.000
0.002 0.976 0.000 0.014 0.008
0.003 0.000 0.987 0.009 0.001
0.000 0.002 0.005 0.986 0.007
0.000 0.001 0.001 0.017 0.981

600

1.000
0.998
0.994
0.988
0.987
0.979

0.959 0.032 0.001 0.000 0.008
0.008 0.981 0.003 0.002 0.006
0.001 0.012 0.980 0.002 0.005
0.000 0.001 0.000 0.966 0.033
0.000 0.001 0.000 0.006 0.993

Table 1: SARS protease inhibitor: hierarchical temperature sequence and coarse grid
spectra, as obtained from UCMC and successive PCCA+. At 600K only the metastable
conformation with highest thermodynamical weight has been selected, which then decom-
poses into 5 subsets at human body temperature 300K.
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On each of the subsets we ran the fast mixing Markov chains based on
HMC. The Perron clusters obtained from PCCA+ in connection with the
box discretization technique of successive PCCA are included. As can be
seen, we detected m = 3 metastable conformations at 1500K, which divide
into 4, 6, and 5 conformations separately at 1000K. At 600K, only the
metastable conformation with highest thermodynamical weight has been
selected, which then decomposes into 5 subsets at room temperature or
human body temperature 300K, respectively.
Of course, these data are mainly of interest for the drug designer. That
is why, in Fig. 13, we additionally present an image of the molecule in
the frame of conformation dynamics: there we combine a volume rendering
visualization of the (discrete) invariant measure at 1500K together with one
snapshot of the molecule in ball and stick representation.

Figure 13: SARS protease inhibitor: volume rendering representation of invariant mea-
sure at temperature T = 1500K. Insertion of ball and stick representation of two dominant
conformations

More insight into these conformations can be gained from the isosurfaces for
the conformations as given in Fig. 14 for the dominant one and in Fig 15
for the subdominant one.
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Figure 14: SARS protease inhibitor: isosurface representation of dominant conformation
(probability ∼ 56.5 % to be within)

Figure 15: SARS protease inhibitor: isosurface representation of subdominant confor-
mation (probability ∼ 35.6 % to be within)
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Remark. The authors are aware of the fact that in prion diseases (such
as scrapie or the mad cow disease) rather rare conformations with high
probability to stay within may nevertheless well play a decisive role – as has
been pointed out by Griffith [26] already in 1967.

Acknowledgements. The authors want to thank all of their coworkers
for their collaboration in this fascinating field, in particular Frank Cordes,
Alexander Fischer, Wilhelm Huisinga, and Marcus Weber for invaluable
groundwork to this article.
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