TY - GEN A1 - Hammerschmidt, Martin A1 - Pomplun, Jan A1 - Burger, Sven A1 - Schmidt, Frank T1 - Adaptive sampling strategies for efficient parameter scans in nano-photonic device simulations N2 - Rigorous optical simulations are an important tool in optimizing scattering properties of nano-photonic devices and are used, for example, in solar cell optimization. The finite element method (FEM) yields rigorous, time-harmonic, high accuracy solutions of the full 3D vectorial Maxwell's equations [1] and furthermore allows for great flexibility and accuracy in the geometrical modeling of these often complex shaped 3D nano-structures. A major drawback of frequency domain methods is the limitation of single frequency evaluations. For example the accurate computation of the short circuit current density of an amorphous silicon / micro-crystalline multi-junction thin film solar cell may require the solution of Maxwell's equations for over a hundred different wavelengths if an equidistant sampling strategy is employed. Also in optical metrology, wavelength scans are frequently used to reconstruct unknown geometrical and material properties of optical systems numerically from measured scatterometric data. In our contribution we present several adaptive numerical integration and sampling routines and study their efficiency in the context of the determination of generation rate profiles of solar cells. We show that these strategies lead to a reduction in the computational effort without loss of accuracy. We discuss the employment of tangential information in a Hermite interpolation scheme to achieve similar accuracy on coarser grids. We explore the usability of these strategies for scatterometry and solar cell simulations. T3 - ZIB-Report - 14-20 KW - finite element method KW - optical simulations KW - adaptive sampling KW - optical metrology KW - parameter scans KW - solar cells Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-50395 SN - 1438-0064 ER - TY - GEN A1 - Hammerschmidt, Martin A1 - Barth, Carlo A1 - Pomplun, Jan A1 - Burger, Sven A1 - Becker, Christiane A1 - Schmidt, Frank T1 - Reconstruction of photonic crystal geometries using a reduced basis method for nonlinear outputs N2 - Maxwell solvers based on the hp-adaptive finite element method allow for accurate geometrical modeling and high numerical accuracy. These features are indispensable for the optimization of optical properties or reconstruction of parameters through inverse processes. High computational complexity prohibits the evaluation of the solution for many parameters. We present a reduced basis method (RBM) for the time-harmonic electromagnetic scattering problem allowing to compute solutions for a parameter configuration orders of magnitude faster. The RBM allows to evaluate linear and nonlinear outputs of interest like Fourier transform or the enhancement of the electromagnetic field in milliseconds. We apply the RBM to compute light-scattering off two dimensional photonic crystal structures made of silicon and reconstruct geometrical parameters. T3 - ZIB-Report - 16-06 KW - finite element method KW - rigorous optical modeling KW - photonic crystals KW - reduced basis method KW - parameter estimation KW - optical metrology Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-57249 SN - 1438-0064 ER - TY - GEN A1 - Hammerschmidt, Martin A1 - Weiser, Martin A1 - Santiago, Xavier Garcia A1 - Zschiedrich, Lin A1 - Bodermann, Bernd A1 - Burger, Sven T1 - Quantifying parameter uncertainties in optical scatterometry using Bayesian inversion N2 - We present a Newton-like method to solve inverse problems and to quantify parameter uncertainties. We apply the method to parameter reconstruction in optical scatterometry, where we take into account a priori information and measurement uncertainties using a Bayesian approach. Further, we discuss the influence of numerical accuracy on the reconstruction result. T3 - ZIB-Report - 17-37 KW - computational metrology KW - optical metrology KW - computational lithography KW - nanolithography KW - finite- element methods KW - nanooptics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-64704 SN - 1438-0064 ER -