TY - GEN A1 - Zschiedrich, Lin A1 - Klose, Roland A1 - Schädle, Achim A1 - Schmidt, Frank T1 - A new Finite Element realization of the Perfectly Matched Layer Method for Helmholtz scattering problems on polygonal domains in 2D N2 - In this paper we propose a new finite element realization of the Perfectly Matched Layer method (PML-method). Our approach allows to deal with arbitrary shaped polygonal domains and with certain types of inhomogeneous exterior domains. Among the covered inhomogeneities are open waveguide structures playing an essential role in integrated optics. We give a detailed insight to implementation aspects. Numerical examples show exponential convergence behavior to the exact solution with the thickness of the PML sponge layer. T3 - ZIB-Report - 03-44 KW - transparent boundary conditions KW - perfectly matched layer KW - pole condition Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-7662 ER - TY - GEN A1 - Ruprecht, Daniel A1 - Schädle, Achim A1 - Schmidt, Frank A1 - Zschiedrich, Lin T1 - Transparent boundary conditons for time-dependent problems N2 - A new approach to derive transparent boundary conditions (TBCs) for wave, Schrödinger, heat and drift-diffusion equations is presented. It relies on the pole condition and distinguishes between physical reasonable and unreasonable solutions by the location of the singularities of the spatial Laplace transform of the exterior solution. To obtain a numerical algorithm, a Möbius transform is applied to map the Laplace transform onto the unit disc. In the transformed coordinate the solution is expanded into a power series. Finally, equations for the coefficients of the power series are derived. These are coupled to the equation in the interior, and yield transparent boundary conditions. Numerical results are presented in the last section, showing that the error introduced by the new approximate TBCs decays exponentially in the number of coefficients. T3 - ZIB-Report - 07-12 KW - transparent boundary condition KW - non-reflecting boundary condition KW - pole condition KW - wave equation KW - Schrödinger equation KW - drift diffusion equation Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-9558 ER - TY - GEN A1 - Schädle, Achim A1 - Zschiedrich, Lin A1 - Burger, Sven A1 - Klose, Roland A1 - Schmidt, Frank T1 - Domain Decomposition Method for Maxwell's Equations: Scattering off Periodic Structures N2 - We present a domain decomposition approach for the computation of the electromagnetic field within periodic structures. We use a Schwarz method with transparent boundary conditions at the interfaces of the domains. Transparent boundary conditions are approximated by the perfectly matched layer method (PML). To cope with Wood anomalies appearing in periodic structures an adaptive strategy to determine optimal PML parameters is developed. We focus on the application to typical EUV lithography line masks. Light propagation within the multi-layer stack of the EUV mask is treated analytically. This results in a drastic reduction of the computational costs and allows for the simulation of next generation lithography masks on a standard personal computer. T3 - ZIB-Report - 06-04 KW - domain decomposition KW - conical diffraction KW - electro-magnetic scattering KW - Maxwell's equations KW - Lithography KW - finite elements Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8984 ER - TY - GEN A1 - Schädle, Achim A1 - Zschiedrich, Lin T1 - Additive Schwarz method for scattering problems using the PML method at interfaces N2 - Scattering problems in integrated optics can be modeled in simple cases by the Helmholtz equation. The computational domain is truncated by a non-reflecting boundary condition. We investigate Schwarz algorithms with a sort of DtN operator, realized by the PML-method, at the interfaces of the sub-domains as an iterative solver. T3 - ZIB-Report - 05-27 KW - perfectly matched layer KW - Helmholtz equation KW - scattering KW - domain decomposition Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-8613 ER - TY - CHAP A1 - Burger, Sven A1 - Klose, Roland A1 - Schädle, Achim A1 - Schmidt, Frank A1 - Zschiedrich, Lin T1 - Adaptive FEM solver for the computation of electromagnetic eigenmodes in 3D photonic crystal structures T2 - Scientific Computing in Electrical Engineering Y1 - 2006 U6 - https://doi.org/10.1007/978-3-540-32862-9_24 SP - 169 EP - 175 PB - Springer Verlag ER - TY - CHAP A1 - Burger, Sven A1 - Kleemann, B. A1 - Zschiedrich, Lin A1 - Schmidt, Frank T1 - Finite-Element Simulations of Light Propagation through Circular Subwavelength Apertures T2 - Microtechnologies for the New Millenium Y1 - 2009 U6 - https://doi.org/10.1117/12.822828 VL - 7366 SP - 736621 PB - Proc. SPIE ER - TY - CHAP A1 - Burger, Sven A1 - Köhle, Roderick A1 - Zschiedrich, Lin A1 - Nguyen, H. A1 - Schmidt, Frank A1 - März, Reinhard A1 - Nölscher, Christoph ED - Martin, P. ED - Naber, R. T1 - Rigorous Simulation of 3D Masks T2 - Photomask Technology Y1 - 2006 UR - http://arxiv.org/pdf/physics/0610218 VL - 6349 SP - 63494Z PB - Proc. SPIE ER - TY - CHAP A1 - Burger, Sven A1 - Köhle, Roderick A1 - Zschiedrich, Lin A1 - Gao, W. A1 - Schmidt, Frank A1 - März, Reinhard A1 - Nölscher, Christoph ED - Weed, J. ED - Martin, P. T1 - Benchmark of FEM, Waveguide and FDTD Algorithms for Rigorous Mask Simulation T2 - Photomask Technology Y1 - 2005 U6 - https://doi.org/10.1117/12.631696 VL - 5992 SP - 378 EP - 389 PB - Proc. SPIE ER - TY - CHAP A1 - Burger, Sven A1 - Lockau, D. A1 - Zschiedrich, Lin A1 - Schmidt, Frank T1 - Finite-element simulations of light propagation through subwavelength apertures in metal films T2 - International Workshop on Optical Waveguide Theory and Numerical Modelling Y1 - 2009 VL - XVIII SP - 59 PB - Fraunhofer Institute for Applied Optics and Precision Engineering ER - TY - CHAP A1 - Burger, Sven A1 - Schmidt, Frank A1 - Zschiedrich, Lin T1 - A fast and efficient Finite-Element Solver for 2D and 3D Photonic Band-Gap Problems T2 - Dig. LEOS/IEEE 2003 Summer Topicals Y1 - 2003 U6 - https://doi.org/10.1109/LEOSST.2003.1224282 SP - 75 ER -