TY - GEN A1 - Fügenschuh, Armin A1 - Geißler, Björn A1 - Gollmer, Ralf A1 - Hayn, Christine A1 - Henrion, Rene A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Martin, Alexander A1 - Mirkov, Radoslava A1 - Morsi, Antonio A1 - Römisch, Werner A1 - Rövekamp, Jessica A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Steinbach, Marc A1 - Willert, Bernhard T1 - Mathematical Optimization for Challenging Network Planning Problems in Unbundled Liberalized Gas Markets N2 - The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor where united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We show that these new paradigms lead to new and challenging mathematical optimization problems. In order to solve them and to provide meaningful results for practice, all aspects of the underlying problems, such as combinatorics, stochasticity, uncertainty, and nonlinearity, have to be addressed. With such special-tailored solvers, free network capacities and topological network extensions can, for instance, be determined. T3 - ZIB-Report - 13-13 KW - Gas Market Liberalization KW - Entry-Exit Model KW - Gas Network Access Regulation KW - Mixed-Integer Nonlinear Nonconvex Stochastic Optimization Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17821 SN - 1438-0064 ER - TY - JOUR A1 - Fügenschuh, Armin A1 - Geißler, Björn A1 - Gollmer, Ralf A1 - Hayn, Christine A1 - Henrion, René A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Martin, Alexander A1 - Mirkov, Radoslava A1 - Morsi, Antonio A1 - Römisch, Werner A1 - Rövekamp, Jessica A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schultz, Rüdiger A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Steinbach, Marc A1 - Willert, Bernhard T1 - Mathematical optimization for challenging network planning problems in unbundled liberalized gas markets JF - Energy Systems N2 - The recently imposed new gas market liberalization rules in Germany lead to a change of business of gas network operators. While previously network operator and gas vendor were united, they were forced to split up into independent companies. The network has to be open to any other gas trader at the same conditions, and free network capacities have to be identified and publicly offered in a non-discriminatory way. We discuss how these changing paradigms lead to new and challenging mathematical optimization problems. This includes the validation of nominations, that asks for the decision if the network’s capacity is sufficient to transport a specific amount of flow, the verification of booked capacities and the detection of available freely allocable capacities, and the topological extension of the network with new pipelines or compressors in order to increase its capacity. In order to solve each of these problems and to provide meaningful results for the practice, a mixture of different mathematical aspects have to be addressed, such as combinatorics, stochasticity, uncertainty, and nonlinearity. Currently, no numerical solver is available that can deal with such blended problems out-of-the-box. The main goal of our research is to develop such a solver, that moreover is able to solve instances of realistic size. In this article, we describe the main ingredients of our prototypical software implementations. Y1 - 2013 U6 - https://doi.org/10.1007/s12667-013-0099-8 VL - 5 IS - 3 SP - 449 EP - 473 PB - Springer Berlin Heidelberg CY - Berlin ER - TY - CHAP A1 - Fügenschuh, Armin A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Szabo, Jacint T1 - Gas Network Topology Optimization for Upcoming Market Requirements T2 - International Conference on the European Energy Market (EEM) N2 - Gas distribution networks are complex structures that consist of passive pipes, and active, controllable elements such as valves and compressors. Controlling such network means to find a suitable setting for all active components such that a nominated amount of gas can be transmitted from entries to exits through the network, without violating physical or operational constraints. The control of a large-scale gas network is a challenging task from a practical point of view. In most companies the actual controlling process is supported by means of computer software that is able to simulate the flow of the gas. However, the active settings have to be set manually within such simulation software. The solution quality thus depends on the experience of a human planner. When the gas network is insufficient for the transport then topology extensions come into play. Here a set of new pipes or active elements is determined such that the extended network admits a feasible control again. The question again is how to select these extensions and where to place them such that the total extension costs are minimal. Industrial practice is again to use the same simulation software, determine extensions by experience, add them to the virtual network, and then try to find a feasible control of the active elements. The validity of this approach now depends even more on the human planner. Another weakness of this manual simulation-based approach is that it cannot establish infeasibility of a certain gas nomination, unless all settings of the active elements are tried. Moreover, it is impossible to find a cost-optimal network extension in this way. In order to overcome these shortcomings of the manual planning approach we present a new approach, rigorously based on mathematical optimization. Hereto we describe a model for finding feasible controls and then extend this model such that topology extensions can additionally and simultaneously be covered. Numerical results for real-world instances are presented and discussed. Y1 - 2011 U6 - https://doi.org/10.1109/EEM.2011.5953035 SP - 346 EP - 351 ER - TY - GEN A1 - Fügenschuh, Armin A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Lehmann, Thomas A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Szabó, Jácint T1 - Gas Network Topology Optimization for Upcoming Market Requirements N2 - Gas distribution networks are complex structures that consist of passive pipes, and active, controllable elements such as valves and compressors. Controlling such network means to find a suitable setting for all active components such that a nominated amount of gas can be transmitted from entries to exits through the network, without violating physical or operational constraints. The control of a large-scale gas network is a challenging task from a practical point of view. In most companies the actual controlling process is supported by means of computer software that is able to simulate the flow of the gas. However, the active settings have to be set manually within such simulation software. The solution quality thus depends on the experience of a human planner. When the gas network is insufficient for the transport then topology extensions come into play. Here a set of new pipes or active elements is determined such that the extended network admits a feasible control again. The question again is how to select these extensions and where to place them such that the total extension costs are minimal. Industrial practice is again to use the same simulation software, determine extensions by experience, add them to the virtual network, and then try to find a feasible control of the active elements. The validity of this approach now depends even more on the human planner. Another weakness of this manual simulation-based approach is that it cannot establish infeasibility of a certain gas nomination, unless all settings of the active elements are tried. Moreover, it is impossible to find a cost-optimal network extension in this way. In order to overcome these shortcomings of the manual planning approach we present a new approach, rigorously based on mathematical optimization. Hereto we describe a model for finding feasible controls and then extend this model such that topology extensions can additionally and simultaneously be covered. Numerical results for real-world instances are presented and discussed. T3 - ZIB-Report - 11-09 KW - Mathematical Optimization KW - Gas Distribution Networks KW - Topology Planning Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-12348 ER - TY - GEN A1 - Fügenschuh, Armin A1 - Humpola, Jesco T1 - A Unified View on Relaxations for a Nonlinear Network Flow Problem N2 - We consider a nonlinear nonconvex network flow problem that arises, for example, in natural gas or water transmission networks. Given is such network with active and passive components, that is, valves, compressors, pressure regulators (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes of the network. Besides flow conservation constraints in the nodes the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. The problem is how to numerically compute this flow and pressures. We review an existing approach of Maugis (1977) and extend it to the case of networks with active elements (for example, compressors). We further examine different ways of relaxations for the nonlinear network flow model. We compare different approaches based on nonlinear optimization numerically on a set of test instances. T3 - ZIB-Report - 13-31 KW - Nonlinear Network Flow KW - Mixed-Integer Nonlinear Programming KW - Relaxations Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18857 ER - TY - CHAP A1 - Hayn, Christine A1 - Humpola, Jesco A1 - Koch, Thorsten A1 - Schewe, Lars A1 - Schweiger, Jonas A1 - Spreckelsen, Klaus T1 - Perspectives T2 - Evaluating Gas Network Capacities N2 - After we discussed approaches to validate nominations and to verify bookings, we consider possible future research paths. This includes determining technical capacities and planning of network extensions. Y1 - 2015 SN - 9781611973686 VL - SIAM-MOS series on Optimization ER - TY - CHAP A1 - Hiller, Benjamin A1 - Humpola, Jesco A1 - Lehmann, Thomas A1 - Lenz, Ralf A1 - Morsi, Antonio A1 - Pfetsch, Marc A1 - Schewe, Lars A1 - Schmidt, Martin A1 - Schwarz, Robert A1 - Schweiger, Jonas A1 - Stangl, Claudia A1 - Willert, Bernhard T1 - Computational results for validation of nominations T2 - Evaluating Gas Network Capacities N2 - The different approaches to solve the validation of nomination problem presented in the previous chapters are evaluated computationally in this chapter. Each approach is analyzed individually, as well as the complete solvers for these problems. We demonstrate that the presented approaches can successfully solve large-scale real-world instances. Y1 - 2015 SN - 9781611973686 VL - SIAM-MOS series on Optimization ER - TY - GEN A1 - Humpola, Jesco T1 - Sufficient Pruning Conditions for MINLP in Gas Network Design N2 - One quarter of Europe’s energy demand is provided by natural gas distributed through a vast pipeline network covering the whole of Europe. At a cost of 1 million Euros per kilometer the extension of the European pipeline network is already a multi billion Euro business. Therefore, automatic planning tools that support the decision process are desired. We model the topology extension problem in gas networks by a mixed-integer nonlinear program (MINLP). This gives rise to a so-called active transmission problem, a continuous nonlinear non-convex feasibility problem which emerges from the MINLP model by fixing all integral variables. In this article we offer novel sufficient conditions for proving the infeasibility of this active transmission problem. These conditions can be expressed in the form of a mixed-integer program (MILP), i.e., the infeasibility of a non-convex NLP can be certified by solving an MILP. These results provide an efficient bounding procedure in a branch-and-bound algorithm. Our computational results demonstrate a substantial speed-up for the necessary computations. T3 - ZIB-Report - 15-04 KW - Network Design KW - Mixed-Integer Nonlinear Programming KW - Infeasibility Detection Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-53489 ER - TY - THES A1 - Humpola, Jesco T1 - Gas Network Optimization by MINLP N2 - One quarter of Europe's energy demand is provided by natural gas distributed through a vast pipeline network covering the whole of Europe. At a cost of 1 million Euros per kilometer the extension of the European pipeline network is already a multi billion Euro business. The challenging question is how to expand and operate the network in order to facilitate the transportation of specified gas quantities at minimum cost. This task can be formulated as a mathematical optimization problem that reflects to real-world instances of enormous size and complexity. The aim of this thesis is the development of novel theory and optimization algorithms which make it possible to solve these problems. Gas network topology optimization problems can be modeled as nonlinear mixed-integer programs (MINLPs). Such an MINLP gives rise to a so-called active transmission problem (ATP), a continuous nonlinear non-convex feasibility problem which emerges from the MINLP model by fixing all integral variables. The key to solving the ATP as well as the overall gas network topology optimization problem and the main contribution of this thesis is a novel domain relaxation of the variable bounds and constraints in combination with a penalization in the objective function. In case the domain relaxation does not yield a primal feasible solution for the ATP we offer novel sufficient conditions for proving the infeasibility of the ATP. These conditions can be expressed in the form of an MILP, i.e., the infeasibility of a non-convex NLP can be certified by solving an MILP. These results provide an efficient bounding procedure in a branch-and-bound algorithm. If the gas network consists only of pipes and valves, the ATP turns into a passive transmission problem (PTP). Although its constraints are non-convex, its domain relaxation can be proven to be convex. Consequently, the feasibility of the PTP can be checked directly in an efficient way. Another advantage of the passive case is that the solution of the domain relaxation gives rise to a cutting plane for the overall topology optimization problem that expresses the infeasibility of the PTP. This cut is obtained by a Benders argument from the Lagrange function of the domain relaxation augmented by a specially tailored pc-regularization. These cuts provide tight lower bounds for the passive gas network topology optimization problem. The domain relaxation does not only provide certificates of infeasibility and cutting planes, it can also be used to construct feasible primal solutions. We make use of parametric sensitivity analysis in order to identify binary variables to be switched based on dual information. This approach allows for the first time to compute directly MINLP solutions for large-scale gas network topology optimization problems. All the research in this thesis has been realized within the collaborative research project "Forschungskooperation Netzoptimierung (ForNe)". The developed software is in use by the cooperation partner Open Grid Europe GmbH. Parts of this thesis have been published in book chapters, journal articles and technical reports. An overview of the topics and solution approaches within the research project is given by Martin et al. (2011) and Fügenschuh et al. (2013). Gas network operation approaches and solution methods are described in detail by Pfetsch et al. (2014) and with a special focus on topology optimization in Fügenschuh et al. (2011). The primal heuristic presented in this thesis is published by Humpola et al. (2014b). The method for pruning nodes of the branch-and-bound tree for an approximation of the original problem is described in Fügenschuh and Humpola (2013) and Humpola et al. (2014a). The Benders like inequality is introduced by Humpola and Fügenschuh (2013). N2 - Ein Viertel des europäischen Energiebedarfs wird durch Gas gedeckt, das durch ein europaweites Pipelinesystem verteilt wird. Aufgrund von Ausbaukosten von 1 Mio. Euro pro Kilometer ist der Netzausbau ein Milliardenunterfangen. Die größte Herausforderung besteht darin zu entscheiden, wie das Netzwerk kostengünstig ausgebaut und genutzt werden kann, um notwendige Gasmengen zu transportieren. Diese Aufgabe kann mit Hilfe eines mathematischen Optimierungsproblems formuliert werden, wobei anwendungsnahe Instanzen eine enorme Größe und Komplexität aufweisen. Ziel der vorliegenden Arbeit ist die Entwicklung neuer mathematischer Theorien und damit einhergehender Optimierungsalgorithmen, die es ermöglichen, derartige Probleme zu lösen. Die Optimierung der Topologie eines Gasnetzwerks kann mit Hilfe eines nichtlinearen gemischt-ganzzahligen Programms (MINLP) modelliert werden. Durch Fixierung aller ganzzahligen Variablen ergibt sich ein kontinuierliches Zulässigkeitsproblem, das als aktives Transmissionsproblem (ATP) bezeichnet wird. Die zentrale Methode um dieses ATP zu lösen, ist eine neuartige Relaxierung, welche Variablenschranken und einige Nebenbedingungen relaxiert und in der Zielfunktion bestraft. Diese Relaxierung bildet den Kern der in dieser Arbeit vorgestellten Theorie und ermöglicht so die effiziente Lösung der Topologieoptimierung eines Gasnetzwerkes. Für den Fall, dass die Relaxierung keine Primallösung für das ATP liefert, ist es uns gelungen, hinreichende Bedingungen für die Unzulässigkeit des ATP zu formulieren, die durch ein MILP dargestellt werden. Kurz gefasst kann die Unzulässigkeit eines nicht-konvexen NLP durch Lösung eines MILP bewiesen werden. Beide Methoden liefern effiziente Schranken in einem branch-and-bound Lösungsverfahren. Besteht ein Gasnetzwerk nur aus Rohren und Schiebern, dann wird das ATP als passives Transmissionsproblem (PTP) bezeichnet. Obwohl die Nebenbedingungen des PTP nicht konvex sind, konnten wir zeigen, dass seine Relaxierung konvex ist. Daher kann die Unzulässigkeit des PTP direkt auf effiziente Weise geprüft werden. Außerdem können mit Hilfe der Relaxierung in diesem speziellen Fall Schnittebenen für das Topologieoptimierungsproblem aufgestellt werden. Diese repräsentieren die Unzulässigkeit des PTP und folgen aus der Lagrange Funktion der Relaxierung zusammen mit einer speziellen Erweiterung, der sogenannten pc-Regularisierung. Abgesehen von den genannten Klassifizierungen kann die Relaxierung auch genutzt werden, um primale Lösungen zu konstruieren. Hier nutzen wir die parametrische Sensitivitätsanalyse, um mit Hilfe dualer Informationen Binärvariablen des ATP zu identifizieren, deren Werte angepasst werden müssen. Dieser Ansatz erlaubt es zum ersten Mal, direkt MINLP Lösungen für das Topologieoptimierungsproblem realer Gasnetzwerke zu berechnen. Die Resultate dieser Arbeit wurden im Rahmen des Forschungsprojekts "Forschungskooperation Netzoptimierung (ForNe)" erarbeitet. Die entwickelte Software wird vom Kooperationspartner Open Grid Europe GmbH aktiv genutzt. Teile dieser Arbeit sind in Buchkapiteln, Journalen und technischen Berichten publiziert. Eine Übersicht über die Themen und Lösungsansätze im ForNe-Projekt veröffentlichten Martin u. a. (2011) und Fügenschuh u. a. (2013). Für Lösungsmethoden für die operative Nutzung von Gasnetzwerken verweisen wir auf Pfetsch u. a. (2014). Ansätze für eine Topologieoptimierung wurden von Fügenschuh u. a. (2011) beschrieben. Die in dieser Arbeit präsentierte primale Heuristik ist publiziert von Humpola u. a. (2014b). Die genannte Methode, um Knoten innerhalb des branch-and-bound Baums abzuschneiden, wurde für eine Approximation des Topologieproblems von Fügenschuh und Humpola (2013) und Humpola u. a. (2014a) beschrieben. Ein Bericht über die Ungleichungen nach Benders ist in Humpola und Fügenschuh (2013) nachzulesen. T2 - Gas Netzwerk Optimierung mittels MINLP Y1 - 2014 UR - http://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/docId/5904 ER - TY - GEN A1 - Humpola, Jesco A1 - Fügenschuh, Armin T1 - A New Class of Valid Inequalities for Nonlinear Network Design Problems N2 - We consider a nonlinear nonconvex network design problem that arises in the extension of natural gas transmission networks. Given is such network with active and passive components, that is, valves, compressors, pressure regulators (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes of the network. Besides flow conservation constraints in the nodes the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. Assume that there does not exist a feasible flow that fulfills all physical constraints and meets the desired entry and exit amounts. Then a natural question is where to extend the network by adding pipes in the most economic way such that this flow becomes feasible. Answering this question is computationally demanding because of the difficult problem structure. We use mixed-integer nonlinear programming techniques that rely on an outer approximation of the overall problem, and a branching on decision variables. We formulate a new class of valid inequalities (or cutting planes) which reduce the overall solution time when added to the formulation. We demonstrate the computational merits of our approach on test instances. T3 - ZIB-Report - 13-06 KW - Network Design KW - Mixed-Integer Nonlinear Programming KW - Cutting Planes Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-17771 SN - 1438-0064 ER -