TY - GEN A1 - Hartmann, Carsten A1 - Banisch, Ralf A1 - Sarich, Marco A1 - Badowski, Thomas A1 - Schütte, Christof T1 - Characterization of Rare Events in Molecular Dynamics N2 - A good deal of molecular dynamics simulations aims at predicting and quantifying rare events, such as the folding of a protein or a phase transition. Simulating rare events is often prohibitive, especially if the equations of motion are high-dimensional, as is the case in molecular dynamics. Various algorithms have been proposed for efficiently computing mean first passage times, transition rates or reaction pathways. This article surveys and discusses recent developments in the field of rare event simulation and outlines a new approach that combines ideas from optimal control and statistical mechanics. The optimal control approach described in detail resembles the use of Jarzynski's equality for free energy calculations, but with an optimized protocol that speeds up the sampling, while (theoretically) giving variance-free estimators of the rare events statistics. We illustrate the new approach with two numerical examples and discuss its relation to existing methods. T3 - ZIB-Report - 13-51 KW - rare events KW - moleculare dynamics KW - optimal pathways KW - stochastic control KW - dynamic programming KW - change of measure KW - cumulant generating function Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42410 SN - 1438-0064 ER - TY - GEN A1 - Zhang, Wei A1 - Hartmann, Carsten A1 - Schütte, Christof T1 - Effective Dynamics Along Given Reaction Coordinates, and Reaction Rate Theory N2 - In molecular dynamics and related fields one considers dynamical descriptions of complex systems in full (atomic) detail. In order to reduce the overwhelming complexity of realistic systems (high dimension, large timescale spread, limited computational resources) the projection of the full dynamics onto some reaction coordinates is examined in order to extract statistical information like free energies or reaction rates. In this context, the effective dynamics that is induced by the full dynamics on the reaction coordinate space has attracted considerable attention in the literature. In this article, we contribute to this discussion: We first show that if we start with an ergodic diffusion processes whose invariant measure is unique then these properties are inherited by the effective dynamics. Then, we give equations for the effective dynamics, discuss whether the dominant timescales and reaction rates inferred from the effective dynamics are accurate approximations of such quantities for the full dynamics, and compare our findings to results from approaches like Zwanzig-Mori, averaging, or homogenization. Finally, by discussing the algorithmic realization of the effective dynamics, we demonstrate that recent algorithmic techniques like the ”equation-free” approach and the ”heterogeneous multiscale method” can be seen as special cases of our approach. T3 - ZIB-Report - 16-35 KW - Ergodic diffusion KW - reaction coordinate KW - effective dynamics KW - model reduction KW - equation-free KW - heterogeneous multiscale method Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-59706 SN - 1438-0064 ER - TY - GEN A1 - Hartmann, Carsten A1 - Richter, Lorenz A1 - Schütte, Christof A1 - Zhang, Wei T1 - Variational characterization of free energy: Theory and algorithms N2 - The article surveys and extends variational formulations of the thermodynamic free energy and discusses their information-theoretic content from the perspective of mathematical statistics. We revisit the well-known Jarzynski equality for nonequilibrium free energy sampling within the framework of importance sampling and Girsanov change-of-measure transformations. The implications of the different variational formulations for designing efficient stochastic optimization and nonequilibrium simulation algorithms for computing free energies are discussed and illustrated. T3 - ZIB-Report - 17-52 KW - Importance sampling KW - Donsker-Varadhan principle KW - thermodynamic free energy KW - nonequilibrium molecular dynamics KW - stochastic approximation KW - cross-entropy method Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-65045 SN - 1438-0064 ER - TY - GEN A1 - Zhang, Wei A1 - Wang, Han A1 - Hartmann, Carsten A1 - Weber, Marcus A1 - Schütte, Christof T1 - Applications of the cross-entropy method to importance sampling and optimal control of diffusions N2 - We study the cross-entropy method for diffusions. One of the results is a versatile cross-entropy algorithm that can be used to design efficient importance sampling strategies for rare events or to solve optimal control problems. The approach is based on the minimization of a suitable cross-entropy functional, with a parametric family of exponentially tilted probability distributions. We illustrate the new algorithm with several numerical examples and discuss algorithmic issues and possible extensions of the method. T3 - ZIB-Report - 14-10 KW - important sampling KW - optimal control KW - cross-entropy method KW - rare events KW - change of measure Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-49720 SN - 1438-0064 ER - TY - GEN A1 - Sarich, Marco A1 - Banisch, Ralf A1 - Hartmann, Carsten A1 - Schütte, Christof T1 - Markov State Models for Rare Events in Molecular Dynamics N2 - Rare but important transition events between long lived states are a key feature of many molecular systems. In many cases the computation of rare event statistics by direct molecular dynamics (MD) simulations is infeasible even on the most powerful computers because of the immensely long simulation timescales needed. Recently a technique for spatial discretization of the molecular state space designed to help overcome such problems, so-called Markov State Models (MSMs), has attracted a lot of attention. We review the theoretical background and algorithmic realization of MSMs and illustrate their use by some numerical examples. Furthermore we introduce a novel approach to using MSMs for the efficient solution of optimal control problems that appear in applications where one desires to optimize molecular properties by means of external controls. T3 - ZIB-Report - 13-52 KW - rare events KW - Markov state models KW - long timescales KW - optimal control Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-42420 SN - 1438-0064 ER - TY - JOUR A1 - Zhang, Wei A1 - Hartmann, Carsten A1 - Schütte, Christof T1 - Effective dynamics along given reaction coordinates, and reaction rate theory JF - Faraday Discussions Y1 - 2016 U6 - https://doi.org/10.1039/C6FD00147E IS - 195 SP - 365 EP - 394 ER - TY - GEN A1 - Wang, Han A1 - Hartmann, Carsten A1 - Schütte, Christof T1 - Linear response theory and optimal control for a molecular system under nonequilibrium conditions N2 - In this paper, we propose a straightforward generalization of linear response theory to systems in nonequilibrium that are subject to nonequilibrium driving. We briefly revisit the standard linear response result for equilibrium systems, where we consider Langevin dynamics as a special case, and then give an alternative derivation using a change-of-measure argument that does not rely on any stationarity or reversibility assumption. This procedure moreover easily enables us to calculate the second order correction to the linear response formula (which may or may not be useful in practice). Furthermore, we outline how the novel nonequilibirum linear response formula can be used to compute optimal controls of molecular systems for cases in which one wants to steer the system to maximize a certain target expectation value. We illustrate our approach with simple numerical examples. T3 - ZIB-Report - 13-33 KW - nonequilibrium molecular dynamics KW - linear response KW - Girsanov transformation KW - stochastic control Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:0297-zib-18944 ER - TY - JOUR A1 - Hartmann, Carsten A1 - Schütte, Christof A1 - Zhang, Wei T1 - Jarzynski's equality, fluctuation theorems, and variance reduction: Mathematical analysis and numerical algorithms JF - Journal of Statistical Physics N2 - In this paper, we study Jarzynski's equality and fluctuation theorems for diffusion processes. While some of the results considered in the current work are known in the (mainly physics) literature, we review and generalize these nonequilibrium theorems using mathematical arguments, therefore enabling further investigations in the mathematical community. On the numerical side, variance reduction approaches such as importance sampling method are studied in order to compute free energy differences based on Jarzynski's equality. Y1 - 2018 U6 - https://doi.org/10.1007/s10955-019-02286-4 VL - 175 IS - 6 SP - 1214 EP - 1261 ER - TY - JOUR A1 - Wang, Han A1 - Hartmann, Carsten A1 - Schütte, Christof A1 - Site, Luigi Delle T1 - Grand-canonical-like molecular-dynamics simulations by using an adaptive-resolution technique JF - Phys. Rev. X Y1 - 2013 U6 - https://doi.org/10.1103/PhysRevX.3.011018 VL - 3 SP - 011018 ER - TY - JOUR A1 - Hartmann, Carsten A1 - Schütte, Christof A1 - Weber, Marcus A1 - Zhang, Wei T1 - Importance sampling in path space for diffusion processes with slow-fast variables JF - Probability Theory and Related Fields N2 - Importance sampling is a widely used technique to reduce the variance of a Monte Carlo estimator by an appropriate change of measure. In this work, we study importance sampling in the framework of diffusion process and consider the change of measure which is realized by adding a control force to the original dynamics. For certain exponential type expectation, the corresponding control force of the optimal change of measure leads to a zero-variance estimator and is related to the solution of a Hamilton–Jacobi–Bellmann equation. We focus on certain diffusions with both slow and fast variables, and the main result is that we obtain an upper bound of the relative error for the importance sampling estimators with control obtained from the limiting dynamics. We demonstrate our approximation strategy with an illustrative numerical example. Y1 - 2017 UR - http://rdcu.be/oA51 U6 - https://doi.org/10.1007/s00440-017-0755-3 N1 - If you are not subscribing to the journal please use the http link below as part of the Springer Nature SharedIt initiative SP - 1 EP - 52 ER -