@misc{HarksHeinzPfetsch, author = {Harks, Tobias and Heinz, Stefan and Pfetsch, Marc}, title = {Competitive Online Multicommodity Routing}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9212}, number = {06-27}, abstract = {We study online multicommodity minimum cost routing problems in networks, where commodities have to be routed sequentially. Arcs are equipped with load dependent price functions defining the routing weights. We discuss an online algorithm that routes each commodity by minimizing a convex cost function that depends on the demands that are previously routed. We present a competitive analysis of this algorithm showing that for affine linear price functions this algorithm is \$4K/2+K\$-competitive, where \$K\$ is the number of commodities. For the parallel arc case this algorithm is optimal. Without restrictions on the price functions and network, no algorithm is competitive. Finally, we investigate a variant in which the demands have to be routed unsplittably.}, language = {en} } @misc{HarksHeinzPfetsch, author = {Harks, Tobias and Heinz, Stefan and Pfetsch, Marc}, title = {Competitive Online Multicommodity Routing}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9599}, number = {07-16}, abstract = {In this paper we study online multicommodity routing problems in networks, in which commodities have to be routed sequentially. The flow of each commodity can be split on several paths. Arcs are equipped with load dependent price functions defining routing costs, which have to be minimized. We discuss a greedy online algorithm that routes each commodity by minimizing a convex cost function that only depends on the demands previously routed. We present a competitive analysis of this algorithm showing that for affine linear price functions this algorithm is 4K2 (1+K)2 -competitive, where K is the number of commodities. For the single-source single-destination case, this algorithm is optimal. Without restrictions on the price functions and network, no algorithm is competitive. Finally, we investigate a variant in which the demands have to be routed unsplittably.}, language = {en} } @misc{Harks, author = {Harks, Tobias}, title = {Nash Equilibria in Online Sequential Routing Games}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-9376}, number = {06-43}, abstract = {In this paper, we study the efficiency of Nash equilibria for a sequence of nonatomic routing games. We assume that the games are played consecutively in time in an online fashion: by the time of playing game \$i\$, future games \$i+1,\dots,n\$ are not known, and, once players of game \$i\$ are in equilibrium, their corresponding strategies and costs remain fixed. Given a sequence of games, the cost for the sequence of Nash equilibria is defined as the sum of the cost of each game. We analyze the efficiency of a sequence of Nash equilibria in terms of competitive analysis arising in the online optimization field. Our main result states that the online algorithm \$\sl {SeqNash}\$ consisting of the sequence of Nash equilibria is \$\frac{4n}{2+n}\$-competitive for affine linear latency functions. For \$n=1\$, this result contains the bound on the price of anarchy of \$\frac{4}{3}\$ for affine linear latency functions of Roughgarden and Tardos [2002] as a special case. Furthermore, we analyze a problem variant with a modified cost function that reflects the total congestion cost, when all games have been played. In this case, we prove an upper bound of \$\frac{4n}{2+n}\$ on the competitive ratio of \$\sl {SeqNash}\$. We further prove a lower bound of \$\frac{3n-2}{n}\$ of \$\sl {SeqNash}\$ showing that for \$n=2\$ our upper bound is tight.}, language = {en} } @misc{Wolf, author = {Wolf, Thomas}, title = {A Study of Genetic Algorithms solving a combinatorial Puzzle}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-3445}, number = {SC-98-01}, abstract = {The suitability of Genetic Algorithms (GAs) to solve a combinatorial problem with only one solution is investigated. The dependence of the performance is studied for GA-hard and GA-soft fitness functions, both with a range of different parameter values and different encodings.}, language = {en} } @misc{BertholdHeinzPfetschetal., author = {Berthold, Timo and Heinz, Stefan and Pfetsch, Marc and Vigerske, Stefan}, title = {Large Neighborhood Search beyond MIP}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-12989}, number = {11-21}, abstract = {Large neighborhood search (LNS) heuristics are an important component of modern branch-and-cut algorithms for solving mixed-integer linear programs (MIPs). Most of these LNS heuristics use the LP relaxation as the basis for their search, which is a reasonable choice in case of MIPs. However, for more general problem classes, the LP relaxation alone may not contain enough information about the original problem to find feasible solutions with these heuristics, e.g., if the problem is nonlinear or not all constraints are present in the current relaxation. In this paper, we discuss a generic way to extend LNS heuristics that have been developed for MIP to constraint integer programming (CIP), which is a generalization of MIP in the direction of constraint programming (CP). We present computational results of LNS heuristics for three problem classes: mixed-integer quadratically constrained programs, nonlinear pseudo-Boolean optimization instances, and resource-constrained project scheduling problems. Therefore, we have implemented extended versions of the following LNS heuristics in the constraint integer programming framework SCIP: Local Branching, RINS, RENS, Crossover, and DINS. Our results indicate that a generic generalization of LNS heuristics to CIP considerably improves the success rate of these heuristics.}, language = {en} } @misc{Sagnol, author = {Sagnol, Guillaume}, title = {Approximation of a Maximum-Submodular-Coverage problem involving spectral functions, with application to Experimental Design}, volume = {151}, number = {1--2}, issn = {1438-0064}, doi = {10.1016/j.dam.2012.07.016}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14956}, pages = {258 -- 276}, abstract = {We study a family of combinatorial optimization problems defined by a parameter \$p\in[0,1]\$, which involves spectral functions applied to positive semidefinite matrices, and has some application in the theory of optimal experimental design. This family of problems tends to a generalization of the classical maximum coverage problem as \$p\$ goes to \$0\$, and to a trivial instance of the knapsack problem as \$p\$ goes to \$1\$. In this article, we establish a matrix inequality which shows that the objective function is submodular for all \$p\in[0,1]\$, from which it follows that the greedy approach, which has often been used for this problem, always gives a design within \$1-1/e\$ of the optimum. We next study the design found by rounding the solution of the continuous relaxed problem, an approach which has been applied by several authors. We prove an inequality which generalizes a classical result from the theory of optimal designs, and allows us to give a rounding procedure with an approximation factor which tends to \$1\$ as \$p\$ goes to \$1\$.}, language = {en} } @misc{BorndoerferOmontSagnoletal., author = {Bornd{\"o}rfer, Ralf and Omont, Bertrand and Sagnol, Guillaume and Swarat, Elmar}, title = {A Stackelberg game to optimize the distribution of controls in transportation networks}, issn = {1438-0064}, doi = {10.1007/978-3-642-35582-0_17}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14995}, abstract = {We propose a game theoretic model for the spatial distribution of inspectors on a transportation network. The problem is to spread out the controls so as to enforce the payment of a transit toll. We formulate a linear program to find the control distribution which maximizes the expected toll revenue, and a mixed integer program for the problem of minimizing the number of evaders. Furthermore, we show that the problem of finding an optimal mixed strategy for a coalition of \$N\$ inspectors can be solved efficiently by a column generation procedure. Finally, we give experimental results from an application to the truck toll on German motorways.}, language = {en} } @misc{HillerKlugTuchscherer, author = {Hiller, Benjamin and Klug, Torsten and Tuchscherer, Andreas}, title = {An Exact Reoptimization Algorithm for the Scheduling of Elevator Groups}, issn = {1438-0064}, doi = {10.1007/s10696-013-9175-6}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-16485}, abstract = {The task of an elevator control is to schedule the elevators of a group such that small waiting and travel times for the passengers are obtained. We present an exact reoptimization algorithm for this problem. A reoptimization algorithm computes a new schedule for the elevator group each time a new passenger arrives. Our algorithm uses column generation techniques and is, to the best of our knowledge, the first exact reoptimization algorithms for a group of passenger elevators. To solve the column generation problem, we propose a Branch \& Bound method.}, language = {en} } @misc{HillerVredeveld, author = {Hiller, Benjamin and Vredeveld, Tjark}, title = {Stochastic dominance analysis of Online Bin Coloring algorithms}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-16502}, abstract = {This paper proposes a new method for probabilistic analysis of online algorithms. It is based on the notion of stochastic dominance. We develop the method for the online bin coloring problem introduced by Krumke et al (2008). Using methods for the stochastic comparison of Markov chains we establish the result that the performance of the online algorithm GreedyFit is stochastically better than the performance of the algorithm OneBin for any number of items processed. This result gives a more realistic picture than competitive analysis and explains the behavior observed in simulations.}, language = {en} } @misc{WessaelyWernerEckeletal., author = {Wess{\"a}ly, Roland and Werner, Axel and Eckel, Klaus and Seibel, Julia and Orlowski, Sebastian and Louchet, Hadrien and Patzak, Erwin and Bentz, Winfried}, title = {Sch{\"a}tze heben bei der Planung von FTTx-Netzen: optimierte Nutzung von existierenden Leerrohren - eine Praxisstudie}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14861}, abstract = {Das vom BMBF gef{\"o}rderte Projekt FTTX-PLAN entwickelt mathematische Modelle und Optimierungsverfahren, um automatisiert kostenoptimierte FTTx-Netze berechnen zu k{\"o}nnen. Wir zeigen anhand einer Praxisstudie in Zusammenarbeit mit der Regensburger R-KOM, wie ein Planer von diesen Verfahren profitieren kann, um die Auswirkungen bestimmter Entscheidungen auf die Netzstruktur und -kosten zu untersuchen. Wir illustrieren dies am Beispiel eines FTTB/FTTH-Vergleichs, der Variation von Kundenanbindungsraten und der gezielten Ausnutzung existierender Leerrohre, um Tiefbau zu vermeiden.}, language = {de} } @misc{Werner, author = {Werner, Axel}, title = {Kombinatorische Optimierung und die 40-Punkte-Regel}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14871}, abstract = {Wieviele Punkte braucht eine Mannschaft in der Fußball-Bundesliga mindestens, um sicher dem Abstieg zu entgehen? Wir benutzen kombinatorische Optimierung, um diese und {\"a}hnliche Fragen zu beantworten.}, language = {de} } @misc{OrlowskiWernerWessaely, author = {Orlowski, Sebastian and Werner, Axel and Wess{\"a}ly, Roland}, title = {Estimating trenching costs in FTTx network planning}, issn = {1438-0064}, doi = {10.1007/978-3-642-29210-1_15}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14884}, abstract = {In this paper we assess to which extent trenching costs of an FTTx network are unavoidable, even if technical side constraints are neglected. For that purpose we present an extended Steiner tree model. Using a variety of realistic problem instances we demonstrate that the total trenching cost can only be reduced by about 5 percent in realistic scenarios. This work has been funded by BMBF (German Federal Ministry of Education and Research) within the program "KMU-innovativ".}, language = {en} } @misc{Sagnol, author = {Sagnol, Guillaume}, title = {Network-related problems in Optimal Experimental Design and Second Order Cone Programming}, volume = {51}, number = {51}, issn = {1438-0064}, doi = {10.2478/v10127-012-0016-x}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14942}, pages = {161 -- 171}, abstract = {In the past few years several applications of optimal experimental designs have emerged to optimize the measurements in communication networks. The optimal design problems arising from this kind of applications share three interesting properties: (i) measurements are only available at a small number of locations of the network; (ii) each monitor can simultaneously measure several quantities, which can be modeled by ``multiresponse experiments"; (iii) the observation matrices depend on the topology of the network. In this paper, we give an overview of these experimental design problems and recall recent results for the computation of optimal designs by Second Order Cone Programming (SOCP). New results for the network-monitoring of a discrete time process are presented. In particular, we show that the optimal design problem for the monitoring of an AR1 process can be reduced to the standard form and we give experimental results.}, language = {en} } @misc{FuegenschuhHumpola, author = {F{\"u}genschuh, Armin and Humpola, Jesco}, title = {A Unified View on Relaxations for a Nonlinear Network Flow Problem}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18857}, abstract = {We consider a nonlinear nonconvex network flow problem that arises, for example, in natural gas or water transmission networks. Given is such network with active and passive components, that is, valves, compressors, pressure regulators (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes of the network. Besides flow conservation constraints in the nodes the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. The problem is how to numerically compute this flow and pressures. We review an existing approach of Maugis (1977) and extend it to the case of networks with active elements (for example, compressors). We further examine different ways of relaxations for the nonlinear network flow model. We compare different approaches based on nonlinear optimization numerically on a set of test instances.}, language = {en} } @misc{BorndoerferFuegenschuhKlugetal., author = {Bornd{\"o}rfer, Ralf and F{\"u}genschuh, Armin and Klug, Torsten and Schang, Thilo and Schlechte, Thomas and Sch{\"u}lldorf, Hanno}, title = {The Freight Train Routing Problem}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18991}, abstract = {We consider the following freight train routing problem (FTRP). Given is a transportation network with fixed routes for passenger trains and a set of freight trains (requests), each defined by an origin and destination station pair. The objective is to calculate a feasible route for each freight train such that a sum of all expected delays and all running times is minimal. Previous research concentrated on microscopic train routings for junctions or inside major stations. Only recently approaches were developed to tackle larger corridors or even networks. We investigate the routing problem from a strategic perspective, calculating the routes in a macroscopic transportation network of Deutsche Bahn AG. Here macroscopic refers to an aggregation of complex real-world structures are into fewer network elements. Moreover, the departure and arrival times of freight trains are approximated. The problem has a strategic character since it asks only for a coarse routing through the network without the precise timings. We give a mixed-integer nonlinear programming~(MINLP) formulation for FTRP, which is a multi-commodity flow model on a time-expanded graph with additional routing constraints. The model's nonlinearities are due to an algebraic approximation of the delays of the trains on the arcs of the network by capacity restraint functions. The MINLP is reduced to a mixed-integer linear model~(MILP) by piecewise linear approximation. The latter is solved by a state of the art MILP solver for various real-world test instances.}, language = {en} } @misc{Gamrath, author = {Gamrath, Gerald}, title = {Improving strong branching by propagation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17701}, abstract = {Strong branching is an important component of most variable selection rules in branch-and-bound based mixed-integer linear programming solvers. It predicts the dual bounds of potential child nodes by solving auxiliary LPs and thereby helps to keep the branch-and-bound tree small. In this paper, we describe how these dual bound predictions can be improved by including domain propagation into strong branching. Computational experiments on standard MIP instances indicate that this is beneficial in three aspects: It helps to reduce the average number of LP iterations per strong branching call, the number of branch-and-bound nodes, and the overall solving time.}, language = {en} } @misc{HumpolaFuegenschuh, author = {Humpola, Jesco and F{\"u}genschuh, Armin}, title = {A New Class of Valid Inequalities for Nonlinear Network Design Problems}, issn = {1438-0064}, doi = {10.1007/s00291-015-0390-2}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17771}, abstract = {We consider a nonlinear nonconvex network design problem that arises in the extension of natural gas transmission networks. Given is such network with active and passive components, that is, valves, compressors, pressure regulators (active) and pipelines (passive), and a desired amount of flow at certain specified entry and exit nodes of the network. Besides flow conservation constraints in the nodes the flow must fulfill nonlinear nonconvex pressure loss constraints on the arcs subject to potential values (i.e., pressure levels) in both end nodes of each arc. Assume that there does not exist a feasible flow that fulfills all physical constraints and meets the desired entry and exit amounts. Then a natural question is where to extend the network by adding pipes in the most economic way such that this flow becomes feasible. Answering this question is computationally demanding because of the difficult problem structure. We use mixed-integer nonlinear programming techniques that rely on an outer approximation of the overall problem, and a branching on decision variables. We formulate a new class of valid inequalities (or cutting planes) which reduce the overall solution time when added to the formulation. We demonstrate the computational merits of our approach on test instances.}, language = {en} } @misc{SchielaWachsmuth, author = {Schiela, Anton and Wachsmuth, Daniel}, title = {Convergence Analysis of Smoothing Methods for Optimal Control of Stationary Variational Inequalities}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-13125}, number = {11-23}, abstract = {In the article an optimal control problem subject to a stationary variational inequality is investigated. The optimal control problem is complemented with pointwise control constraints. The convergence of a smoothing scheme is analyzed. There, the variational inequality is replaced by a semilinear elliptic equation. It is shown that solutions of the regularized optimal control problem converge to solutions of the original one. Passing to the limit in the optimality system of the regularized problem allows to prove C-stationarity of local solutions of the original problem. Moreover, convergence rates with respect to the regularization parameter for the error in the control are obtained. These rates coincide with rates obtained by numerical experiments, which are included in the paper.}, language = {en} } @masterthesis{Hendel, type = {Bachelor Thesis}, author = {Hendel, Gregor}, title = {New Rounding and Propagation Heuristics for Mixed Integer Programming}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-13322}, school = {Zuse Institute Berlin (ZIB)}, pages = {95}, abstract = {Die vorliegende Arbeit befasst sich mit Primalheuristiken f{\"u}r gemischt-ganzzahlige, lineare Optimierungsprobleme (engl.: mixed integer program MIP). Zahlreiche Optimierungsprobleme aus der Praxis lassen sich als MIP modellieren, Beispiele hierf{\"u}r sind u. a. Optimierungsprobleme im {\"o}ffentlichen Nah- und Fernverkehr, bei logistischen Fragestellungen oder im Bereich der Chip-Verifikation. Das L{\"o}sen von MIP ist NP-schwer und wird heutzutage meistens mit Hilfe von Branch-and-Bound-basierenden Algorithmen versucht. Das Branch-and-Bound-Ver\-fah\-ren profitiert unter Umst{\"a}nden von bereits fr{\"u}hzeitig zur Verf{\"u}gung stehenden L{\"o}sungen, daher sind wir sehr an heuristischen Verfahren interessiert, die in der Praxis schnell eine gute L{\"o}sung f{\"u}r eine große Zahl an MIPs liefern und somit die L{\"o}sezeit des Branch-and-Bound-Verfahrens erheblich beschleunigen k{\"o}nnen. Primalheuristiken sind Suchverfahren zum Auffinden zul{\"a}ssiger L{\"o}sungen eines MIP. Verschiedene Typen von Primalheuristiken sollen dabei den jeweiligen Bedarf des Anwenders zu unterschiedlichen Zeiten w{\"a}hrend der Branch-and-Bound-Suche decken. W{\"a}hrend Start- und Rundeheuristiken zu Beginn des L{\"o}seprozesses eine große Rolle bei der Suche nach der ersten zul{\"a}ssigen L{\"o}sung haben, arbeiten Verbesserungs-heuristiken auf schon bekannten L{\"o}sungen, um neue, bessere L{\"o}sungen zu produzieren. Diese Arbeit besch{\"a}ftigt sich mit Primalheuristiken, welche Teil des MIP-L{\"o}sers SCIP sind. Im ersten Kapitel werden nach der Erarbeitung grundlegender Definitionen viele der durch Tobias Achterberg und Timo Berthold in SCIP integrierten heuristischen Verfahren vorgestellt und kategorisiert. Auf dieser Grundlage bauen dann die Kapitel 2-4 der Arbeit auf. In diesen werden drei zus{\"a}tzliche Heuristiken vorgestellt, im Einzelnen sind dies ZI Round, eine Rundeheuristik, welche zuerst von Wallace beschrieben wurde, außerdem eine 2-Opt-Heuristik f{\"u}r MIP und eine neue Startheuristik, Shift-And-Propagate. Großer Wert wird in jedem Kapitel auf die algorithmische Beschreibung der Heuristiken gelegt, die stets anhand von motivierenden Beispielen eingef{\"u}hrt und anhand von Pseudocode-Algorithmen begleitet werden. Zus{\"a}tzlich enth{\"a}lt jedes Kapitel Auswertungen der mit den neuen Heuristiken gemessenen Ergebnisse von SCIP. Eine kurze Zusammenfassung in Kapitel 5 schließt diese Arbeit ab.}, language = {en} } @misc{BorndoerferReutherSchlechteetal., author = {Bornd{\"o}rfer, Ralf and Reuther, Markus and Schlechte, Thomas and Weider, Steffen}, title = {A Hypergraph Model for Railway Vehicle Rotation Planning}, issn = {1438-0064}, doi = {/10.4230/OASIcs.ATMOS.2011.146}, url = {http://nbn-resolving.de/urn:nbn:de:0030-drops-32746}, number = {11-36}, abstract = {We propose a model for the integrated optimization of vehicle rotations and vehicle compositions in long distance railway passenger transport. The main contribution of the paper is a hypergraph model that is able to handle the challenging technical requirements as well as very general stipulations with respect to the ``regularity'' of a schedule. The hypergraph model directly generalizes network flow models, replacing arcs with hyperarcs. Although NP-hard in general, the model is computationally well-behaved in practice. High quality solutions can be produced in reasonable time using high performance Integer Programming techniques, in particular, column generation and rapid branching. We show that, in this way, large-scale real world instances of our cooperation partner DB Fernverkehr can be solved.}, language = {en} } @misc{HeinzSchlechteStephanetal., author = {Heinz, Stefan and Schlechte, Thomas and Stephan, R{\"u}diger and Winkler, Michael}, title = {Solving steel mill slab design problems}, issn = {1438-0064}, doi = {10.1007/s10601-011-9113-8}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14089}, number = {11-38}, abstract = {The steel mill slab design problem from the CSPLIB is a combinatorial optimization problem motivated by an application of the steel industry. It has been widely studied in the constraint programming community. Several methods were proposed to solve this problem. A steel mill slab library was created which contains 380 instances. A closely related binpacking problem called the multiple knapsack problem with color constraints, originated from the same industrial problem, was discussed in the integer programming community. In particular, a simple integer program for this problem has been given by Forrest et al. The aim of this paper is to bring these different studies together. Moreover, we adapt the model of Forrest et al. for the steel mill slab design problem. Using this model and a state-of-the-art integer program solver all instances of the steel mill slab library can be solved efficiently to optimality. We improved, thereby, the solution values of 76 instances compared to previous results. Finally, we consider a recently introduced variant of the steel mill slab design problem, where within all solutions which minimize the leftover one is interested in a solution which requires a minimum number of slabs. For that variant we introduce two approaches and solve all instances of the steel mill slab library with this slightly changed objective function to optimality.}, language = {en} } @misc{BuesingD'Andreagiovanni, author = {B{\"u}sing, Christina and D'Andreagiovanni, Fabio}, title = {A new theoretical framework for Robust Optimization under multi-band uncertainty}, issn = {1438-0064}, doi = {10.1007/978-3-319-00795-3_17}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42644}, abstract = {We provide an overview of our main results about studying Linear Programming Problems whose coefficient matrix is subject to uncertainty and the uncertainty is modeled through a multi-band set. Such an uncertainty set generalizes the classical one proposed by Bertsimas and Sim and is particularly suitable in the common case of arbitrary non-symmetric distributions of the parameters. Our investigations were inspired by practical needs of our industrial partner in ongoing projects with focus on the design of robust telecommunications networks.}, language = {en} } @misc{BleyD'AndreagiovanniKarch, author = {Bley, Andreas and D'Andreagiovanni, Fabio and Karch, Daniel}, title = {Scheduling technology migration in WDM Networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42654}, abstract = {The rapid technological evolution of telecommunication networks demands service providers to regularly update their technology, with the aim of remaining competitive in the marketplace. However, upgrading the technology in a network is not a trivial task. New hardware components need to be installed in the network and during the installation network connectivity may be temporarily compromised. The Wavelength Division Multiplexing (WDM) technology, whose upgrade is considered in here, shares fiber links among several optical connections and tearing down a single link may disrupt several optical connections at once. When the upgrades involve large parts of a network, typically not all links can be upgraded in parallel, which may lead to an unavoidable longer disruption of some connections. A bad scheduling of the overall endeavor, however, can dramatically increase the disconnection time of parts of the networks, causing extended service disruption. In this contribution, we study the problem of finding a schedule of the fiber link upgrades that minimizes the total service disruption time. To the best of our knowledge, this problem has not yet been formalized and investigated. The aim of our work is to close this gap by presenting a mathematical optimization model for the problem and an innovative solution algorithm that tackles the intrinsic difficulties of the problem. Computational experience on realistic instances completes our study. Our original investigations have been driven by real needs of DFN, operator of the German National Research and Education Network and our partner in the BMBF research project ROBUKOM (http://www.robukom.de/).}, language = {en} } @misc{ZakrzewskaD'AndreagiovanniRueppetal., author = {Zakrzewska, Anna and D'Andreagiovanni, Fabio and Ruepp, Sarah and Berger, Michael S.}, title = {Biobjective Optimization of Radio Access Technology Selection and Resource Allocation in Heterogeneous Wireless Networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42675}, abstract = {We propose a novel optimization model for resource assignment in heterogeneous wireless network. The model adopts two objective functions maximizing the number of served users and the minimum granted utility at once. A distinctive feature of our new model is to consider two consecutive time slots, in order to include handover as an additional decision dimension. Furthermore, the solution algorithm that we propose refines a heuristic solution approach recently proposed in literature, by considering a real joint optimization of the considered resources. The simulation study shows that the new model leads to a significant reduction in handover frequency, when compared to a traditional scheme based on maximum SNR.}, language = {en} } @misc{BlancoSchlechte, author = {Blanco, Marco and Schlechte, Thomas}, title = {Analysis of Micro-Macro Transformations of Railway Networks}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42710}, abstract = {A common technique in the solution of large or complex optimization problems is the use of micro-macro transformations. In this paper, we carry out a theoretical analysis of such transformations for the track allocation problem in railway networks. We prove that the cumulative rounding technique of Schlechte et al. satisfies two of three natural optimality criteria and that this performance cannot be improved. We also show that under extreme circumstances, this technique can perform inconvieniently by underestimating the global optimal value.}, language = {en} } @misc{FischerSchlechte, author = {Fischer, Frank and Schlechte, Thomas}, title = {Strong Relaxations for the Train Timetabling Problem using Connected Configurations}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-64743}, abstract = {The task of the train timetabling problem or track allocation problem is to find conflict free schedules for a set of trains with predefined routes in a railway network. Especially for non-periodic instances models based on time expanded networks are often used. Unfortunately, the linear programming relaxation of these models is often extremely weak because these models do not describe combinatorial relations like overtaking possibilities very well. In this paper we extend the model by so called connected configuration subproblems. These subproblems perfectly describe feasible schedules of a small subset of trains (2-3) on consecutive track segments. In a Lagrangian relaxation approach we solve several of these subproblems together in order to produce solutions which consist of combinatorially compatible schedules along the track segments. The computational results on a mostly single track corridor taken from the INFORMS RAS Problem Solving Competition 2012 data indicate that our new solution approach is rather strong. Indeed, for this instance the solution of the Lagrangian relaxation is already integral.}, language = {en} } @misc{BlancoBorndoerferHoangetal., author = {Blanco, Marco and Bornd{\"o}rfer, Ralf and Hoang, Nam-Dung and Kaier, Anton and Maristany de las Casas, Pedro and Schlechte, Thomas and Schlobach, Swen}, title = {Cost Projection Methods for the Shortest Path Problem with Crossing Costs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-64817}, abstract = {Real world routing problems, e.g., in the airline industry or in public and rail transit, can feature complex non-linear cost functions. An important case are costs for crossing regions, such as countries or fare zones. We introduce the shortest path problem with crossing costs (SPPCC) to address such situations; it generalizes the classical shortest path problem and variants such as the resource constrained shortest path problem and the minimum label path problem. Motivated by an application in flight trajectory optimization with overflight costs, we focus on the case in which the crossing costs of a region depend only on the nodes used to enter or exit it. We propose an exact Two-Layer-Dijkstra Algorithm as well as a novel cost-projection linearization technique that approximates crossing costs by shadow costs on individual arcs, thus reducing the SPPCC to a standard shortest path problem. We evaluate all algorithms' performance on real-world flight trajectory optimization instances, obtaining very good {\`a} posteriori error bounds.}, language = {en} } @misc{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Generalized preprocessing techniques for Steiner tree and maximum-weight connected subgraph problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-65439}, abstract = {This article introduces new preprocessing techniques for the Steiner tree problem in graphs and one of its most popular relatives, the maximum-weight connected subgraph problem. Several of the techniques generalize previous results from the literature. The correctness of the new methods is shown, but also their NP-hardness is demonstrated. Despite this pessimistic worst-case complexity, several relaxations are discussed that are expected to allow for a strong practical efficiency of these techniques in strengthening both exact and heuristic solving approaches.}, language = {en} } @misc{RenkenAhmadiBorndoerferetal., author = {Renken, Malte and Ahmadi, Amin and Bornd{\"o}rfer, Ralf and Sahin, Guvenc and Schlechte, Thomas}, title = {Demand-Driven Line Planning with Selfish Routing}, issn = {1438-0064}, doi = {10.1007/978-3-319-89920-6_91}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-64547}, abstract = {Bus rapid transit systems in developing and newly industrialized countries are often operated at the limits of passenger capacity. In particular, demand during morning and afternoon peaks is hardly or even not covered with available line plans. In order to develop demand-driven line plans, we use two mathematical models in the form of integer programming problem formulations. While the actual demand data is specified with origin-destination pairs, the arc-based model considers the demand over the arcs derived from the origin-destination demand. In order to test the accuracy of the models in terms of demand satisfaction, we simulate the optimal solutions and compare number of transfers and travel times. We also question the effect of a selfish route choice behavior which in theory results in a Braess-like paradox by increasing the number of transfers when system capacity is increased with additional lines.}, language = {en} } @misc{MiltenbergerRalphsSteffy, author = {Miltenberger, Matthias and Ralphs, Ted and Steffy, Daniel}, title = {Exploring the Numerics of Branch-and-Cut for Mixed Integer Linear Optimization}, series = {Operations Research Proceedings 2017}, journal = {Operations Research Proceedings 2017}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-64645}, abstract = {We investigate how the numerical properties of the LP relaxations evolve throughout the solution procedure in a solver employing the branch-and-cut algorithm. The long-term goal of this work is to determine whether the effect on the numerical conditioning of the LP relaxations resulting from the branching and cutting operations can be effectively predicted and whether such predictions can be used to make better algorithmic choices. In a first step towards this goal, we discuss here the numerical behavior of an existing solver in order to determine whether our intuitive understanding of this behavior is correct.}, language = {en} } @misc{D'AndreagiovanniRaymond, author = {D'Andreagiovanni, Fabio and Raymond, Annie}, title = {Multiband Robust Optimization and its Adoption in Harvest Scheduling}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-43380}, abstract = {A central assumption in classical optimization is that all the input data of a problem are exact. However, in many real-world problems, the input data are subject to uncertainty. In such situations, neglecting uncertainty may lead to nominally optimal solutions that are actually suboptimal or even infeasible. Robust optimization offers a remedy for optimization under uncertainty by considering only the subset of solutions protected against the data deviations. In this paper, we provide an overview of the main theoretical results of multiband robustness, a new robust optimization model that extends and refines the classical theory introduced by Bertsimas and Sim. After introducing some new results for the special case of pure binary programs, we focus on the harvest scheduling problem and show how multiband robustness can be adopted to tackle the uncertainty affecting the volume of produced timber and grant a reduction in the price of robustness.}, language = {en} } @misc{Gamrath, type = {Master Thesis}, author = {Gamrath, Gerald}, title = {Generic Branch-Cut-and-Price}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57543}, pages = {208}, abstract = {In this thesis, we present the theoretical background, implementational details and computational results concerning the generic branch-cut-and-price solver GCG.}, language = {en} } @misc{FischerGrimmKlugetal., author = {Fischer, Frank and Grimm, Boris and Klug, Torsten and Schlechte, Thomas}, title = {A Re-optimization Approach for Train Dispatching}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60493}, abstract = {The Train Dispatching Problem (TDP) is to schedule trains through a network in a cost optimal way. Due to disturbances during operation existing track allocations often have to be re-scheduled and integrated into the timetable. This has to be done in seconds and with minimal timetable changes to guarantee smooth and conflict free operation. We present an integrated modeling approach for the re-optimization task using Mixed Integer Programming. Finally, we provide computational results for scenarios provided by the INFORMS RAS Problem Soling Competition 2012.}, language = {en} } @misc{CheungGleixnerSteffy, author = {Cheung, Kevin K. H. and Gleixner, Ambros and Steffy, Daniel}, title = {Verifying Integer Programming Results}, issn = {1438-0064}, doi = {10.1007/978-3-319-59250-3_13}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61044}, abstract = {Software for mixed-integer linear programming can return incorrect results for a number of reasons, one being the use of inexact floating-point arithmetic. Even solvers that employ exact arithmetic may suffer from programming or algorithmic errors, motivating the desire for a way to produce independently verifiable certificates of claimed results. Due to the complex nature of state-of-the-art MILP solution algorithms, the ideal form of such a certificate is not entirely clear. This paper proposes such a certificate format, illustrating its capabilities and structure through examples. The certificate format is designed with simplicity in mind and is composed of a list of statements that can be sequentially verified using a limited number of simple yet powerful inference rules. We present a supplementary verification tool for compressing and checking these certificates independently of how they were created. We report computational results on a selection of mixed-integer linear programming instances from the literature. To this end, we have extended the exact rational version of the MIP solver SCIP to produce such certificates.}, language = {en} } @misc{BorndoerferArslanElijazyferetal., author = {Bornd{\"o}rfer, Ralf and Arslan, Oytun and Elijazyfer, Ziena and G{\"u}ler, Hakan and Renken, Malte and Sahin, G{\"u}venc and Schlechte, Thomas}, title = {Line Planning on Path Networks with Application to the Istanbul Metrob{\"u}s}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60119}, abstract = {Bus rapid transit systems in developing and newly industrialized countries often consist of a trunk with a path topology. On this trunk, several overlapping lines are operated which provide direct connections. The demand varies heavily over the day, with morning and afternoon peaks typically in reverse directions. We propose an integer programming model for this problem, derive a structural property of line plans in the static (or single period) ``unimodal demand'' case, and consider approaches to the solution of the multi-period version that rely on clustering the demand into peak and off-peak service periods. An application to the Metrob{\"u}s system of Istanbul is discussed.}, language = {en} } @misc{BlancoBorndoerferHoangetal., author = {Blanco, Marco and Bornd{\"o}rfer, Ralf and Hoang, Nam-Dung and Kaier, Anton and Schlechte, Thomas and Schlobach, Swen}, title = {The Shortest Path Problem with Crossing Costs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61240}, abstract = {We introduce the shortest path problem with crossing costs (SPPCC), a shortest path problem in a directed graph, in which the objective function is the sum of arc weights and crossing costs. The former are independently paid for each arc used by the path, the latter need to be paid every time the path intersects certain sets of arcs, which we call regions. The SPPCC generalizes not only the classical shortest path problem but also variants such as the resource constrained shortest path problem and the minimum label path problem. We use the SPPCC to model the flight trajectory optimization problem with overflight costs. In this paper, we provide a comprehensive analysis of the problem. In particular, we identify efficient exact and approximation algorithms for the cases that are most relevant in practice.}, language = {en} } @misc{SchwartzBorndoerferBartz, author = {Schwartz, Stephan and Bornd{\"o}rfer, Ralf and Bartz, Gerald}, title = {The Graph Segmentation Problem}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60750}, abstract = {We investigate a graph theoretical problem arising in the automatic billing of a network toll. Given a network and a family of user paths, we study the graph segmentation problem (GSP) to cover parts of the user paths by a set of disjoint segments. The GSP is shown to be NP-hard but for special cases it can be solved in polynomial time. We also show that the marginal utility of a segment is bounded. Computational results for real-world instances show that in practice the problem is more amenable than the theoretic bounds suggest.}, language = {en} } @misc{BauschertBuesingD'Andreagiovannietal., author = {Bauschert, Thomas and B{\"u}sing, Christina and D'Andreagiovanni, Fabio and Koster, Arie M.C.A. and Kutschka, Manuel and Steglich, Uwe}, title = {Network Planning under Demand Uncertainty with Robust Optimization}, issn = {1438-0064}, doi = {10.1109/MCOM.2014.6736760}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42557}, abstract = {The planning of a communication network is inevitably depending on the quality of both the planning tool and the demand forecast used. In this article, we show exemplarily how the emerging area of Robust Optimization can advance the network planning by a more accurate mathematical description of the demand uncertainty. After a general introduction of the concept and its application to a basic network design problem, we present two applications: multi-layer and mixed-line-rate network design. We conclude with a discussion of extensions of the robustness concept to increase the accuracy of handling uncertainties.}, language = {en} } @misc{BorndoerferMehrgardtReutheretal., author = {Bornd{\"o}rfer, Ralf and Mehrgardt, Julika and Reuther, Markus and Schlechte, Thomas and Waas, Kerstin}, title = {Re-optimization of Rolling Stock Rotations}, issn = {1438-0064}, doi = {10.1007/978-3-319-07001-8_8}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42569}, abstract = {The Rolling Stock Rotation Problem is to schedule rail vehicles in order to cover timetabled trips by a cost optimal set of vehicle rotations. The problem integrates several facets of railway optimization, i.e., vehicle composition, maintenance constraints, and regularity aspects. In industrial applications existing schedules often have to be re-optimized to integrate timetable changes or construction sites. We present an integrated modeling and algorithmic approach for this task as well as computational results for industrial problem instances of DB Fernverkehr AG.}, language = {en} } @misc{GrimmBorndoerferReutheretal., author = {Grimm, Boris and Bornd{\"o}rfer, Ralf and Reuther, Markus and Schade, Stanley and Schlechte, Thomas}, title = {A Propagation Approach to Acyclic Rolling Stock Rotation Optimization}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-63930}, abstract = {The rolling stock, i.e., railway vehicles, are one of the key ingredients of a running railway system. As it is well known, the offer of a railway company to their customers, i.e., the railway timetable, changes from time to time. Typical reasons for that are different timetables associated with different seasons, maintenance periods or holidays. Therefore, the regular lifetime of a timetable is split into (more or less) irregular periods where parts of the timetable are changed. In order to operate a railway timetable most railway companies set up sequences that define the operation of timetabled trips by a single physical railway vehicle called (rolling stock) rotations. Not surprisingly, the individual parts of a timetable also affect the rotations. More precisely, each of the parts brings up an acyclic rolling stock rotation problem with start and end conditions associated with the beginning and ending of the corresponding period. In this paper, we propose a propagation approach to deal with large planning horizons that are composed of many timetables with shorter individual lifetimes. The approach is based on an integer linear programming formulation that propagates rolling stock rotations through the irregular parts of the timetable while taking a large variety of operational requirements into account. This approach is implemented within the rolling stock rotation optimization framework ROTOR used by DB Fernverkehr AG, one of the leading railway operators in Europe. Computational results for real world scenarios are presented to evaluate the approach.}, language = {en} } @misc{GilgKlugMartienssenetal., author = {Gilg, Brady and Klug, Torsten and Martienssen, Rosemarie and Paat, Joseph and Schlechte, Thomas and Schulz, Christof and Seymen, Sinan and Tesch, Alexander}, title = {Conflict-Free Railway Track Assignment at Depots}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-63843}, abstract = {Managing rolling stock with no passengers aboard is a critical component of railway operations. In particular, one problem is to park the rolling stock on a given set of tracks at the end of a day or service. Depending on the parking assignment, shunting may be required in order for a parked train to depart or for an incoming train to park. Given a collection of tracks M and a collection of trains T with fixed arrival-departure timetable, the train assignment problem (TAP) is to determine the maximum number of trains from T that can be parked on M according to the timetable and without the use of shunting. Hence, efficiently solving the TAP allows to quickly compute feasible parking schedules that do not require further shunting adjustments. In this paper, we present two integer programming models for solving the TAP. To our knowledge, this is the first integrated approach that considers track lengths along with the three most common types of parking tracks. We compare these models on a theoretical level. We also prove that a decision version of the TAP is NP-complete, justifying the use of integer programming techniques. Using stochastic and robust modelling techniques, both models produce parking assignments that are optimized and robust according to random train delays. We conclude with computational results for both models, observing that they perform well on real timetables.}, language = {en} } @misc{SchadeBorndoerferBreueretal., author = {Schade, Stanley and Bornd{\"o}rfer, Ralf and Breuer, Matthias and Grimm, Boris and Reuther, Markus and Schlechte, Thomas and Siebeneicher, Patrick}, title = {Pattern Detection For Large-Scale Railway Timetables}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-63390}, abstract = {We consider railway timetables of our industrial partner DB Fernverkehr AG that operates the ICE high speed trains in the long-distance passenger railway network of Germany. Such a timetable covers a whole year with 364 days and, typically, includes more than 45,000 trips. A rolling stock rotation plan is not created for the whole timetable at once. Instead the timetable is divided into regular invariant sections and irregular deviations (e.g. for public holidays). A separate rotation plan with a weekly period can then be provided for each of the different sections of the timetable. We present an algorithmic approach to automatically recognize these sections. Together with the supplementing visualisation of the timetable this method has shown to be very relevant for our industrial partner.}, language = {en} } @misc{VierhausFuegenschuhGottwaldetal., author = {Vierhaus, Ingmar and F{\"u}genschuh, Armin and Gottwald, Robert Lion and Gr{\"o}sser, Stefan N.}, title = {Modern Nonlinear Optimization Techniques for an Optimal Control of System Dynamics Models}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-48159}, abstract = {We study System Dynamics models with several free parameters that can be altered by the user. We assume that the user's goal is to achieve a certain dynamic behavior of the model by varying these parameters. In order to the find best possible combination of parameter settings, several automatic parameter tuning methods are described in the literature and readily available within existing System Dynamic software packages. We give a survey on the available techniques in the market and describe their theoretical background. Some of these methods are already six decades old, and meanwhile newer and more powerful optimization methods have emerged in the mathematical literature. One major obstacle for their direct use are tabled data in System Dynamics models, which are usually interpreted as piecewise linear functions. However, modern optimization methods usually require smooth functions which are twice continuously differentiable. We overcome this problem by a smooth spline interpolation of the tabled data. We use a test set of three complex System Dynamic models from the literature, describe their individual transition into optimization problems, and demonstrate the applicability of modern optimization algorithms to these System Dynamics Optimization problems.}, language = {en} } @misc{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {SCIP-Jack—a solver for STP and variants with parallelization extensions: An update}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66416}, abstract = {The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. Although the different Steiner tree problem variants are usually strongly related, solution approaches employed so far have been prevalently problem-specific. Against this backdrop, the solver SCIP-Jack was created as a general-purpose framework that can be used to solve the classical Steiner tree problem and 11 of its variants. This versatility is achieved by transforming various problem variants into a general form and solving them by using a state-of-the-art MIP-framework. Furthermore, SCIP-Jack includes various newly developed algorithmic components such as preprocessing routines and heuristics. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances. After the introduction of SCIP-Jack at the 2014 DIMACS Challenge on Steiner problems, the overall performance of the solver has considerably improved. This article provides an overview on the current state.}, language = {en} } @misc{Eifler, type = {Master Thesis}, author = {Eifler, Leon}, title = {Mixed-Integer Programming for Clustering in Non-reversible Markov Processes}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66486}, pages = {74}, abstract = {The topic of this thesis is the examination of an optimization model which stems from the clustering process of non-reversible markov processes. We introduce the cycle clustering problem und formulate it as a mixed integer program (MIP). We prove that this problem is N P-hard and discuss polytopal aspects such as facets and dimension. The focus of this thesis is the development of solving methods for this clustering problem. We develop problem specific primal heuristics, as well as separation methods and an approximation algorithm. These techniques are implemented in practice as an application for the MIP solver SCIP. Our computational experiments show that these solving methods result in an average speedup of ×4 compared to generic solvers and that our application is able to solve more instances to optimality within the given time limit of one hour.}, language = {en} } @misc{BorndoerferGrimmReutheretal., author = {Bornd{\"o}rfer, Ralf and Grimm, Boris and Reuther, Markus and Schlechte, Thomas}, title = {Optimization of Handouts for Rolling Stock Rotations Visualization}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61430}, abstract = {A railway operator creates (rolling stock) rotations in order to have a precise master plan for the operation of a timetable by railway vehicles. A rotation is considered as a cycle that multiply traverses a set of operational days while covering trips of the timetable. As it is well known, the proper creation of rolling stock rotations by, e.g., optimization algorithms is challenging and still a topical research subject. Nevertheless, we study a completely different but strongly related question in this paper, i.e.: How to visualize a rotation? For this purpose, we introduce a basic handout concept, which directly leads to the visualization, i.e., handout of a rotation. In our industrial application at DB Fernverkehr AG, the handout is exactly as important as the rotation itself. Moreover, it turns out that also other European railway operators use exactly the same methodology (but not terminology). Since a rotation can have many handouts of different quality, we show how to compute optimal ones through an integer program (IP) by standard software. In addition, a construction as well as an improvement heuristic are presented. Our computational results show that the heuristics are a very reliable standalone approach to quickly find near-optimal and even optimal handouts. The efficiency of the heuristics is shown via a computational comparison to the IP approach.}, language = {en} } @misc{HennigSchwarz, author = {Hennig, Kai and Schwarz, Robert}, title = {Using Bilevel Optimization to find Severe Transport Situations in Gas Transmission Networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61519}, abstract = {In the context of gas transmission in decoupled entry-exit systems, many approaches to determine the network capacity are based on the evaluation of realistic and severe transport situations. In this paper, we review the Reference Point Method, which is an algorithm used in practice to generate a set of scenarios using the so-called transport moment as a measure for severity. We introduce a new algorithm for finding severe transport situations that considers an actual routing of the flow through the network and is designed to handle issues arising from cyclic structures in a more dynamical manner. Further, in order to better approximate the physics of gas, an alternative, potential based flow formulation is proposed. The report concludes with a case study based on data from the benchmark library GasLib.}, language = {en} } @misc{LenzSchwarz, author = {Lenz, Ralf and Schwarz, Robert}, title = {Optimal Looping of Pipelines in Gas Networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61564}, abstract = {In this paper, we compare several approaches for the problem of gas network expansions using loops, that is, to build new pipelines in parallel to existing ones. We present different model formulations for the problem of continuous loop expansions as well as discrete loop expansions. We then analyze problem properties, such as the structure and convexity of the underlying feasible regions. The paper concludes with a computational study comparing the continuous and the discrete formulations.}, language = {en} } @misc{FuegenschuhVierhaus, author = {F{\"u}genschuh, Armin and Vierhaus, Ingmar}, title = {System Dynamic Optimization in the Sustainability Assessment of a World-Model}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18148}, abstract = {The System Dynamics (SD) methodology is a framework for modeling and simulating the dynamic behavior of socioeconomic systems. Characteristic for the description of such systems is the occurrence of feedback loops together with stocks and flows. The mathematical equations that describe the system are usually nonlinear. Therefore seemingly simple systems can show a nonintuitive, nonpredictable behavior over time. Controlling a dynamical system means to define a desired final state in which the system should be, and to specify potential interventions from outside that should keep the system on the right track. The central question is how to compute such globally optimal control for a given SD model. We propose a branch-and-bound approach that is based on a bound propagation method, primal heuristics, and spatial branching. We apply our new SD-control method to a small System Dynamics model, that describes the evolution of a social-economic system over time. We examine the problem of steering this system on a sustainable consumption path.}, language = {en} } @misc{BroseFuegenschuhGausemeieretal., author = {Brose, Achim and F{\"u}genschuh, Armin and Gausemeier, Pia and Vierhaus, Ingmar and Seliger, G{\"u}nther}, title = {A System Dynamic Enhancement for the Scenario Technique}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18150}, abstract = {The Scenario Technique is a strategic planning method that aims to describe and analyze potential developments of a considered system in the future. Its application consists of several steps, from an initial problem analysis over an influence analysis to projections of key factors and a definition of the scenarios to a final interpretation of the results. The technique itself combines qualitative and quantitative methods and is an enhancement of the standard Scenario Technique. We use the numerical values gathered during the influence analysis, and embed them in a System Dynamics framework. This yields a mathematically rigorous way to achieve predictions of the system's future behavior from an initial impulse and the feedback structure of the factors. The outcome of our new method is a further way of projecting the present into the future, which enables the user of the Scenario Technique to obtain a validation of the results achieved by the standard method.}, language = {en} } @misc{FuegenschuhVierhaus, author = {F{\"u}genschuh, Armin and Vierhaus, Ingmar}, title = {A Global Approach to the Optimal Control of System Dynamics Models}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18600}, abstract = {The System Dynamics (SD) methodology is a framework for modeling and simulating the dynamic behavior of socioeconomic systems. Characteristic for the description of such systems is the occurrence of feedback loops together with stocks and flows. The mathematical equations that describe the system are usually ordinary differential equations and nonlinear algebraic constraints. Therefore seemingly simple systems can show a nonintuitive, unpredictable behavior over time. Controlling a dynamical system means to specify potential interventions from outside that should keep the system on the desired track, and to define an evaluation schema to compare different controls among each other, so that a "best" control can be defined in a meaningful way. The central question is how to compute such globally optimal control for a given SD model, that allows the transition of the system into a desired state with minimum effort. We propose a mixed-integer nonlinear programming (MINLP) reformulation of the System Dynamics Optimization (SDO) problem. MINLP problems can be solved by linear programming based branch-and-bound approach. We demonstrate that standard MINLP solvers are not able to solve SDO problem. To overcome this obstacle, we introduce a special-tailored bound propagation method. We apply our new method to a predator-prey model with additional hunting activity as control, and to a mini-world model with the consumption level as control. Numerical results for these test cases are presented.}, language = {en} } @misc{LeitnerLjubicSinnletal., author = {Leitner, Markus and Ljubic, Ivana and Sinnl, Markus and Werner, Axel}, title = {On the Two-Architecture Connected Facility Location Problem}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18610}, abstract = {We introduce a new variant of the connected facility location problem that allows for modeling mixed deployment strategies (FTTC/FTTB/FTTH) in the design of local access telecommunication networks. Several mixed integer programming models and valid inequalities are presented. Computational studies on realistic instances from three towns in Germany are provided.}, language = {en} } @misc{GroetschelRaackWerner, author = {Gr{\"o}tschel, Martin and Raack, Christian and Werner, Axel}, title = {Towards optimizing the deployment of optical access networks}, issn = {1438-0064}, doi = {10.1007/s13675-013-0016-x}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18627}, abstract = {In this paper we study the cost-optimal deployment of optical access networks considering variants of the problem such as fiber to the home (FTTH), fiber to the building (FTTB), fiber to the curb (FTTC), or fiber to the neighborhood (FTTN). We identify the combinatorial structures of the most important sub-problems arising in this area and model these, e.g., as capacitated facility location, concentrator location, or Steiner tree problems. We discuss modeling alternatives as well. We finally construct a "unified" integer programming model that combines all sub-models and provides a global view of all these FTTx problems. We also summarize computational studies of various special cases.}, language = {en} } @misc{LubkollSchielaWeiser, author = {Lubkoll, Lars and Schiela, Anton and Weiser, Martin}, title = {An affine covariant composite step method for optimization with PDEs as equality constraints}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53954}, abstract = {We propose a composite step method, designed for equality constrained optimization with partial differential equations. Focus is laid on the construction of a globalization scheme, which is based on cubic regularization of the objective and an affine covariant damped Newton method for feasibility. We show finite termination of the inner loop and fast local convergence of the algorithm. We discuss preconditioning strategies for the iterative solution of the arising linear systems with projected conjugate gradient. Numerical results are shown for optimal control problems subject to a nonlinear heat equation and subject to nonlinear elastic equations arising from an implant design problem in craniofacial surgery.}, language = {en} } @misc{FischerSchlechte, author = {Fischer, Frank and Schlechte, Thomas}, title = {Comparing two dual relaxations of large scale train timetabling problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56068}, abstract = {Railway transportation and in particular train timetabling is one of the basic and source application areas of combinatorial optimization and integer programming. We will discuss two well established modeling techniques for the train timetabling problem. In this paper we focus on one major ingredient - the bounding by dual relaxations. We compare two classical dual relaxations of large scale time expanded train timetabling problems - the Lagrangean Dual and Lagrangean Decomposition. We discuss the convergence behavior and show limitations of the Lagrangean Decomposition approach for a configuration based model. We introduce a third dualization approach to overcome those limitations. Finally, we present promising preliminary computational experiments that show that our new approach indeed has superior convergence properties.}, language = {en} } @misc{BorndoerferReutherSchlechteetal., author = {Bornd{\"o}rfer, Ralf and Reuther, Markus and Schlechte, Thomas and Schulz, Christof and Swarat, Elmar and Weider, Steffen}, title = {Duty Rostering in Public Transport - Facing Preferences, Fairness, and Fatigue}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56070}, abstract = {Duty rostering problems occur in different application contexts and come in different flavors. They give rise to very large scale integer programs which ypically have lots of solutions and extremely fractional LP relaxations. In such a situation, heuristics can be a viable algorithmic choice. We propose an mprovement method of the Lin-Kernighan type for the solution of duty rostering problems. We illustrate its versatility and solution quality on three different applications in public transit, vehicle routing, and airline rostering with a focus on the management of preferences, fairness, and fatigue, respectively.}, language = {en} } @misc{LeitnerLjubicSinnletal., author = {Leitner, Markus and Ljubic, Ivana and Sinnl, Markus and Werner, Axel}, title = {Two algorithms for solving 3-objective k-ArchConFL and IPs in general}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56259}, abstract = {We present two algorithms to solve a 3-objective optimization problem arising in telecommunications access network planning, the k-Architecture Connected Facility Location Problem. The methods can also be used to solve any 3-objective integer linear programming model and can be extended to the multiobjective case. We give some exemplary computations using small and medium-sized instances for our problem.}, language = {en} } @misc{AhmadiGritzbachLundNguyenetal.2015, author = {Ahmadi, Sepideh and Gritzbach, Sascha F. and Lund-Nguyen, Kathryn and McCullough-Amal, Devita}, title = {Rolling Stock Rotation Optimization in Days of Strike: An Automated Approach for Creating an Alternative Timetable}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56425}, year = {2015}, abstract = {The operation of a railway network as large as Deutsche Bahn's Intercity Express (ICE) hinges on a number of factors, such as the availability of personnel and the assignment of physical vehicles to a timetable schedule, a problem known as the rolling stock rotation problem (RSRP). In this paper, we consider the problem of creating an alternative timetable in the case that there is a long-term disruption, such as a strike, and the effects that this alternative timetable has on the resulting vehicle rotation plan. We define a priority measure via the Analytic Hierarchy Process (AHP) to determine the importance of each trip in the timetable and therefore which trips to cancel or retain. We then compare our results with those of a limited timetable manually designed by Deutsche Bahn (DB). We find that while our timetable results in a more expensive rotation plan, its flexibility lends itself to a number of simple improvements. Furthermore, our priority measure has the potential to be integrated into the rolling stock rotation optimization process, in particular, the Rotation Optimizer for Railways (ROTOR) software, via the cost function. Ultimately, our method provides the foundation for an automated way of creating a new timetable quickly, and potentially in conjunction with a new rotation plan, in the case of a limited scenario.}, language = {en} } @misc{Hendel, author = {Hendel, Gregor}, title = {Exploiting Solving Phases for Mixed-Integer Programs}, issn = {1438-0064}, doi = {10.1007/978-3-319-42902-1_1}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57098}, abstract = {Modern MIP solving software incorporates dozens of auxiliary algorithmic components for supporting the branch-and-bound search in finding and improving solutions and in strengthening the relaxation. Intuitively, a dynamic solving strategy with an appropriate emphasis on different solving components and strategies is desirable during the search process. We propose an adaptive solver behavior that dynamically reacts on transitions between the three typical phases of a MIP solving process: The first phase objective is to find a feasible solution. During the second phase, a sequence of incumbent solutions gets constructed until the incumbent is eventually optimal. Proving optimality is the central objective of the remaining third phase. Based on the MIP-solver SCIP, we demonstrate the usefulness of the phase concept both with an exact recognition of the optimality of a solution, and provide heuristic alternatives to make use of the concept in practice.}, language = {en} } @misc{D'AndreagiovanniKrolikowskiPulaj, author = {D'Andreagiovanni, Fabio and Krolikowski, Jonatan and Pulaj, Jonad}, title = {A hybrid primal heuristic for Robust Multiperiod Network Design}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-44081}, abstract = {We investigate the Robust Multiperiod Network Design Problem, a generalization of the classical Capacitated Network Design Problem that additionally considers multiple design periods and provides solutions protected against traffic uncertainty. Given the intrinsic difficulty of the problem, which proves challenging even for state-of-the art commercial solvers, we propose a hybrid primal heuristic based on the combination of ant colony optimization and an exact large neighborhood search. Computational experiments on a set of realistic instances from the SNDlib show that our heuristic can find solutions of extremely good quality with low optimality gap.}, language = {en} } @misc{BuesingD'AndreagiovanniRaymond, author = {B{\"u}sing, Christina and D'Andreagiovanni, Fabio and Raymond, Annie}, title = {0-1 Multiband Robust Optimization}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-44093}, abstract = {We provide an overview of new theoretical results that we obtained while further investigating multiband robust optimization, a new model for robust optimization that we recently proposed to tackle uncertainty in mixed-integer linear programming. This new model extends and refines the classical Gamma-robustness model of Bertsimas and Sim and is particularly useful in the common case of arbitrary asymmetric distributions of the uncertainty. Here, we focus on uncertain 0-1 programs and we analyze their robust counterparts when the uncertainty is represented through a multiband set. Our investigations were inspired by the needs of our industrial partners in the research project ROBUKOM.}, language = {en} } @misc{BorndoerferKarbsteinMehrgardtetal., author = {Bornd{\"o}rfer, Ralf and Karbstein, Marika and Mehrgardt, Julika and Reuther, Markus and Schlechte, Thomas}, title = {The Cycle Embedding Problem}, issn = {1438-0064}, doi = {10.1007/978-3-319-28697-6_65}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-52788}, abstract = {Given two hypergraphs, representing a fine and a coarse "layer", and a cycle cover of the nodes of the coarse layer, the cycle embedding problem (CEP) asks for an embedding of the coarse cycles into the fine layer. The CEP is NP-hard for general hypergraphs, but it can be solved in polynomial time for graphs. We propose an integer rogramming formulation for the CEP that provides a complete escription of the CEP polytope for the graphical case. The CEP comes up in railway vehicle rotation scheduling. We present computational results for problem instances of DB Fernverkehr AG that justify a sequential coarse-first-fine-second planning approach.}, language = {en} } @misc{Humpola, author = {Humpola, Jesco}, title = {Sufficient Pruning Conditions for MINLP in Gas Network Design}, doi = {10.1007/s13675-016-0077-8}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53489}, abstract = {One quarter of Europe's energy demand is provided by natural gas distributed through a vast pipeline network covering the whole of Europe. At a cost of 1 million Euros per kilometer the extension of the European pipeline network is already a multi billion Euro business. Therefore, automatic planning tools that support the decision process are desired. We model the topology extension problem in gas networks by a mixed-integer nonlinear program (MINLP). This gives rise to a so-called active transmission problem, a continuous nonlinear non-convex feasibility problem which emerges from the MINLP model by fixing all integral variables. In this article we offer novel sufficient conditions for proving the infeasibility of this active transmission problem. These conditions can be expressed in the form of a mixed-integer program (MILP), i.e., the infeasibility of a non-convex NLP can be certified by solving an MILP. These results provide an efficient bounding procedure in a branch-and-bound algorithm. Our computational results demonstrate a substantial speed-up for the necessary computations.}, language = {en} } @misc{DraegertEisenblaetterGamrathetal., author = {Draegert, Andreas and Eisenbl{\"a}tter, Andreas and Gamrath, Inken and Werner, Axel}, title = {Optimal Battery Controlling for Smart Grid Nodes}, issn = {1438-0064}, doi = {10.1007/978-4-431-55420-2_6}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53550}, abstract = {Energy storages can be of great value when added to power grids. They introduce the possibility to store and release energy whenever this is favorable. This is particularly relevant, for example, if power supply is volatile (as is the case with renewable energy) and the network is small (so that there are few other nodes that might balance fluctuations in consumption or production). We present models and methods from mathematical optimization for computing an optimized storage schedule for this purpose. We look at alternative optimization objectives, such as smallest possible peak load, low energy costs, or the close approximation of a prescribed load curve. The optimization needs to respect general operational and economic constraints as well as limitations in the use of storage, which are imposed by the chosen storage technology. We therefore introduce alternative approaches for modeling the non-linear properties of energy storages and study their impact on the efficiency of the optimization process. Finally, we present a computational study with batteries as storage devices. We use this to highlight the trade-off between solution quality and computational tractability. A version of the model for the purpose of leveling peaks and instabilities has been implemented into a control system for an office-building smart grid scenario.}, language = {en} } @misc{HarmanSagnol, author = {Harman, Radoslav and Sagnol, Guillaume}, title = {Computing D-optimal experimental designs for estimating treatment contrasts under the presence of a nuisance time trend}, issn = {1438-0064}, doi = {10.1007/978-3-319-13881-7_10}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53640}, abstract = {We prove a mathematical programming characterisation of approximate partial D-optimality under general linear constraints. We use this characterisation with a branch-and-bound method to compute a list of all exact D-optimal designs for estimating a pair of treatment contrasts in the presence of a nuisance time trend up to the size of 24 consecutive trials.}, language = {en} } @misc{BrettHobergPachecoetal.2015, author = {Brett, Charles and Hoberg, Rebecca and Pacheco, Meritxell and Smith, Kyle and Bornd{\"o}rfer, Ralf and Euler, Ricardo and Gamrath, Gerwin and Grimm, Boris and Heismann, Olga and Reuther, Markus and Schlechte, Thomas and Tesch, Alexander}, title = {G-RIPS 2014 RailLab - Towards robust rolling stock rotations}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53475}, year = {2015}, abstract = {The Graduate-Level Research in Industrial Projects (G-RIPS) Program provides an opportunity for high-achieving graduate-level students to work in teams on a real-world research project proposed by a sponsor from industry or the public sector. Each G-RIPS team consists of four international students (two from the US and two from European universities), an academic mentor, and an industrial sponsor. This is the report of the Rail-Lab project on the definition and integration of robustness aspects into optimizing rolling stock schedules. In general, there is a trade-off for complex systems between robustness and efficiency. The ambitious goal was to explore this trade-off by implementing numerical simulations and developing analytic models. In rolling stock planning a very large set of industrial railway requirements, such as vehicle composition, maintenance constraints, infrastructure capacity, and regularity aspects, have to be considered in an integrated model. General hypergraphs provide the modeling power to tackle those requirements. Furthermore, integer programming approaches are able to produce high quality solutions for the deterministic problem. When stochastic time delays are considered, the mathematical programming problem is much more complex and presents additional challenges. Thus, we started with a basic variant of the deterministic case, i.e., we are only considering hypergraphs representing vehicle composition and regularity. We transfered solution approaches for robust optimization from the airline industry to the setting of railways and attained a reasonable measure of robustness. Finally, we present and discuss different methods to optimize this robustness measure.}, language = {en} } @misc{HumpolaFuegenschuhLehmann, author = {Humpola, Jesco and F{\"u}genschuh, Armin and Lehmann, Thomas}, title = {A Primal Heuristic for MINLP based on Dual Information}, issn = {1438-0064}, doi = {10.1007/s13675-014-0029-0}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-43110}, abstract = {We present a novel heuristic algorithm to identify feasible solutions of a mixed-integer nonlinear programming problem arising in natural gas transportation: the selection of new pipelines to enhance the network's capacity to a desired level in a cost-efficient way. We solve this problem in a linear programming based branch-and-cut approach, where we deal with the nonlinearities by linear outer approximation and spatial branching. At certain nodes of the branching tree, we compute a KKT point for a nonlinear relaxation. Based on the information from the KKT point we alter some of the integer variables in a locally promising way. We describe this heuristic for general MINLPs and then show how to tailor the heuristic to exploit our problem-specific structure. On a test set of real-world instances, we are able to increase the chance of identifying feasible solutions by some order of magnitude compared to standard MINLP heuristics that are already built in the general-purpose MINLP solver SCIP.}, language = {en} } @misc{Hendel, author = {Hendel, Gregor}, title = {Enhancing MIP branching decisions by using the sample variance of pseudo-costs}, issn = {1438-0064}, doi = {10.1007/978-3-319-18008-3_14}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-54591}, abstract = {The selection of a good branching variable is crucial for small search trees in Mixed Integer Programming. Most modern solvers employ a strategy guided by history information, mainly the variable pseudo-costs, which are used to estimate the objective gain. At the beginning of the search, such information is usually collected via an expensive look-ahead strategy called strong-branching until variables are considered reliable. The reliability notion is thereby mostly based on fixed-number thresholds, which may lead to ineffective branching decisions on problems with highly varying objective gains. We suggest two new notions of reliability motivated by mathematical statistics that take into account the sample variance of the past observations on each variable individually. The first method prioritizes additional strong-branching look-aheads on variables whose pseudo-costs show a large variance by measuring the relative error of a pseudo-cost confidence interval. The second method performs a two-sample Student-t test for filtering branching candidates with a high probability to be better than the best history candidate. Both methods were implemented in the MIP-solver SCIP and computational results on standard MIP test sets are presented.}, language = {en} } @misc{PfeufferWerner, author = {Pfeuffer, Frank and Werner, Axel}, title = {Adaptive telecommunication network operation with a limited number of reconfigurations}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-55547}, abstract = {Rising traffic in telecommunication networks lead to rising energy costs for the network operators. Meanwhile, increased flexibility of the networking hardware may help to realize load-adaptive operation of the networks to cut operation costs. To meet network operators' concerns over stability, we propose to switch network configurations only a limited number of times per day. We present a method for the integrated computation of optimal switching times and network configurations that alternatingly solves mixed-integer programs and constrained shortest cycle problems in a certain graph. Similarly to the Branch \& Bound Algorithm, it uses lower and upper bounds on the optimum value and allows for pivoting strategies to guide the computation and avoid the solution of irrelevant subproblems. The algorithm can act as a framework to be adapted and applied to suitable problems of different origin.}, language = {en} } @misc{BorndoerferSagnolSchwartz, author = {Bornd{\"o}rfer, Ralf and Sagnol, Guillaume and Schwartz, Stephan}, title = {An Extended Network Interdiction Problem for Optimal Toll Control}, issn = {1438-0064}, doi = {10.1016/j.endm.2016.03.040}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-55405}, abstract = {We study an extension of the shortest path network interdiction problem and present a novel real-world application in this area. We consider the problem of determining optimal locations for toll control stations on the arcs of a transportation network. We handle the fact that drivers can avoid control stations on parallel secondary roads. The problem is formulated as a mixed integer program and solved using Benders decomposition. We present experimental results for the application of our models to German motorways.}, language = {en} } @misc{BorndoerferKlugLamorgeseetal., author = {Bornd{\"o}rfer, Ralf and Klug, Torsten and Lamorgese, Leonardo and Mannino, Carlo and Reuther, Markus and Schlechte, Thomas}, title = {Recent Success Stories on Optimization of Railway Systems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53726}, abstract = {Planning and operating railway transportation systems is an extremely hard task due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense size of the problem instances. Because of that, however, mathematical models and optimization techniques can result in large gains for both railway cus- tomers and operators, e.g., in terms of cost reductions or service quality improvements. In the last years a large and growing group of researchers in the OR community have devoted their attention to this domain devel- oping mathematical models and optimization approaches to tackle many of the relevant problems in the railway planning process. However, there is still a gap to bridge between theory and practice, with a few notable exceptions. In this paper we address three success stories, namely, long-term freight train routing (part I), mid-term rolling stock rotation planning (part II), and real-time train dispatching (part III). In each case, we describe real-life, successful implementations. We will dis- cuss the individual problem setting, survey the optimization literature, and focus on particular aspects addressed by the mathematical models. We demonstrate on concrete applications how mathematical optimization can support railway planning and operations. This gives proof that math- ematical optimization can support the planning of rolling stock resources. Thus, mathematical models and optimization can lead to a greater effi- ciency of railway operations and will serve as a powerful and innovative tool to meet recent challenges of the railway industry.}, language = {en} } @misc{UsluWerner, author = {Uslu, Svenja and Werner, Axel}, title = {A Two-Phase Method for the Biobjective k-Architecture Connected Facility Location Problem and Hypervolume Computation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-53753}, abstract = {We apply customized versions of the ε-constraint Method and the Two-Phase Method to a problem originating in access network planning. We introduce various notions of quality measures for approximated/partial sets of nondominated points, utilizing the concept of hypervolume for biobjective problems. We report on computations to assess the performance of the two methods in terms of these measures.}, language = {en} } @misc{Hendel, author = {Hendel, Gregor}, title = {Adaptive Large Neighborhood Search for Mixed Integer Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71167}, abstract = {Large Neighborhood Search (LNS) heuristics are among the most powerful but also most expensive heuristics for mixed integer programs (MIP). Ideally, a solver learns adaptively which LNS heuristics work best for the MIP problem at hand in order to concentrate its limited computational budget. To this end, this work introduces Adaptive Large Neighborhood Search (ALNS) for MIP, a primal heuristic that acts a framework for eight popular LNS heuristics such as Local Branching and Relaxation Induced Neighborhood Search (RINS). We distinguish the available LNS heuristics by their individual search domains, which we call neighborhoods. The decision which neighborhood should be executed is guided by selection strategies for the multi armed bandit problem, a related optimization problem during which suitable actions have to be chosen to maximize a reward function. In this paper, we propose an LNS-specific reward function to learn to distinguish between the available neighborhoods based on successful calls and failures. A second, algorithmic enhancement is a generic variable fixing priorization, which ALNS employs to adjust the subproblem complexity as needed. This is particularly useful for some neighborhoods which do not fix variables by themselves. The proposed primal heuristic has been implemented within the MIP solver SCIP. An extensive computational study is conducted to compare different LNS strategies within our ALNS framework on a large set of publicly available MIP instances from the MIPLIB and Coral benchmark sets. The results of this simulation are used to calibrate the parameters of the bandit selection strategies. A second computational experiment shows the computational benefits of the proposed ALNS framework within the MIP solver SCIP.}, language = {en} } @phdthesis{Reuther, author = {Reuther, Markus}, title = {Mathematical Optimization of Rolling Stock Rotations}, abstract = {We show how to optimize rolling stock rotations that are required for the operation of a passenger timetable. The underlying mathematical ptimization problem is called rolling stock rotation problem (RSRP) and the leitmotiv of the thesis is RotOR, i.e., a highly integrated optimization algorithm for the RSRP. RotOR is used by DB Fernverkehr AG (DBF) in order to optimize intercity express (ICE) rotations for the European high-speed network. In this application, RSRPs have to be solved which (A) require many different aspects to be simultaneously considered, (B) are typically of large scale, and (C) include constraints that have a difficult combinatorial structure. This thesis suggests answers to these issues via the following concepts. (A) The main model, which RotOR uses, relies on a hypergraph. The hypergraph provides an easy way to model manifold industrial railway requirements in great detail. This includes well known vehicle composition requirements as well as relatively unexplored regularity stipulations. At the same time, the hypergraph directly leads to a mixed-integer programming (MIP) model for the RSRP. (B) The main algorithmic ingredient to solve industrial instances of the RSRP is a coarse-to-fine (C2F) column generation procedure. In this approach, the hypergraph is layered into coarse and fine layers that distinguish different levels of detail of the RSRP. The coarse layers are algorithmically utilized while pricing fine columns until proven optimality. Initially, the C2F approach is presented in terms of pure linear programming in order to provide an interface for other applications. (C) Rolling stock rotations have to comply to resource constraints in order to ensure, e.g., enough maintenance inspections along the rotations. These constraints are computationally hard, but are well known in the literature on the vehicle routing problem (VRP). We define an interface problem in order to bridge between the RSRP and the VRP and derive a straightforward algorithmic concept, namely regional search (RS), from their common features and, moreover, differences. Our RS algorithms show promising results for classical VRPs and RSRPs. In the first part of the thesis we present these concepts, which encompass its main mathematical contribution. The second part explains all modeling and solving components of RotOR that turn out to be essential in its industrial application. The thesis concludes with a solution to a complex re-optimization RSRP that RotOR has computed successfully for DBF. In this application all ICE vehicles of the ICE-W fleets of DBF had to be redirected past a construction site on a high-speed line in the heart of Germany.}, language = {en} } @misc{GeorgesGleixnerGojicetal., author = {Georges, Alexander and Gleixner, Ambros and Gojic, Gorana and Gottwald, Robert Lion and Haley, David and Hendel, Gregor and Matejczyk, Bartlomiej}, title = {Feature-Based Algorithm Selection for Mixed Integer Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-68362}, abstract = {Mixed integer programming is a versatile and valuable optimization tool. However, solving specific problem instances can be computationally demanding even for cutting-edge solvers. Such long running times are often significantly reduced by an appropriate change of the solver's parameters. In this paper we investigate "algorithm selection", the task of choosing among a set of algorithms the ones that are likely to perform best for a particular instance. In our case, we treat different parameter settings of the MIP solver SCIP as different algorithms to choose from. Two peculiarities of the MIP solving process have our special attention. We address the well-known problem of performance variability by using multiple random seeds. Besides solving time, primal dual integrals are recorded as a second performance measure in order to distinguish solvers that timed out. We collected feature and performance data for a large set of publicly available MIP instances. The algorithm selection problem is addressed by several popular, feature-based methods, which have been partly extended for our purpose. Finally, an analysis of the feature space and performance results of the selected algorithms are presented.}, language = {en} } @misc{BreugemBorndoerferSchlechteetal., author = {Breugem, Thomas and Bornd{\"o}rfer, Ralf and Schlechte, Thomas and Schulz, Christof}, title = {A Three-Phase Heuristic for Cyclic Crew Rostering with Fairness Requirements}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74297}, abstract = {In this paper, we consider the Cyclic Crew Rostering Problem with Fairness Requirements (CCRP-FR). In this problem, attractive cyclic rosters have to be constructed for groups of employees, considering multiple, a priori determined, fairness levels. The attractiveness follows from the structure of the rosters (e.g., sufficient rest times and variation in work), whereas fairness is based on the work allocation among the different roster groups. We propose a three-phase heuristic for the CCRP-FR, which combines the strength of column generation techniques with a large-scale neighborhood search algorithm. The design of the heuristic assures that good solutions for all fairness levels are obtained quickly, and can still be further improved if additional running time is available. We evaluate the performance of the algorithm using real-world data from Netherlands Railways, and show that the heuristic finds close to optimal solutions for many of the considered instances. In particular, we show that the heuristic is able to quickly find major improvements upon the current sequential practice: For most instances, the heuristic is able to increase the attractiveness by at least 20\% in just a few minutes.}, language = {en} } @phdthesis{Beckenbach2019, author = {Beckenbach, Isabel}, title = {Matchings and Flows in Hypergraphs}, year = {2019}, abstract = {In this dissertation, we study matchings and flows in hypergraphs using combinatorial methods. These two problems are among the best studied in the field of combinatorial optimization. As hypergraphs are a very general concept, not many results on graphs can be generalized to arbitrary hypergraphs. Therefore, we consider special classes of hypergraphs, which admit more structure, to transfer results from graph theory to hypergraph theory. In Chapter 2, we investigate the perfect matching problem on different classes of hypergraphs generalizing bipartite graphs. First, we give a polynomial time approximation algorithm for the maximum weight matching problem on so-called partitioned hypergraphs, whose approximation factor is best possible up to a constant. Afterwards, we look at the theorems of K{\"o}nig and Hall and their relation. Our main result is a condition for the existence of perfect matchings in normal hypergraphs that generalizes Hall's condition for bipartite graphs. In Chapter 3, we consider perfect f-matchings, f-factors, and (g,f)-matchings. We prove conditions for the existence of (g,f)-matchings in unimodular hypergraphs, perfect f-matchings in uniform Mengerian hypergraphs, and f-factors in uniform balanced hypergraphs. In addition, we give an overview about the complexity of the (g,f)-matching problem on different classes of hypergraphs generalizing bipartite graphs. In Chapter 4, we study the structure of hypergraphs that admit a perfect matching. We show that these hypergraphs can be decomposed along special cuts. For graphs it is known that the resulting decomposition is unique, which does not hold for hypergraphs in general. However, we prove the uniqueness of this decomposition (up to parallel hyperedges) for uniform hypergraphs. In Chapter 5, we investigate flows on directed hypergraphs, where we focus on graph-based directed hypergraphs, which means that every hyperarc is the union of a set of pairwise disjoint ordinary arcs. We define a residual network, which can be used to decide whether a given flow is optimal or not. Our main result in this chapter is an algorithm that computes a minimum cost flow on a graph-based directed hypergraph. This algorithm is a generalization of the network simplex algorithm.}, language = {en} } @misc{Serrano, author = {Serrano, Felipe}, title = {Visible points, the separation problem, and applications to MINLP}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74016}, abstract = {In this paper we introduce a technique to produce tighter cutting planes for mixed-integer non-linear programs. Usually, a cutting plane is generated to cut off a specific infeasible point. The underlying idea is to use the infeasible point to restrict the feasible region in order to obtain a tighter domain. To ensure validity, we require that every valid cut separating the infeasible point from the restricted feasible region is still valid for the original feasible region. We translate this requirement in terms of the separation problem and the reverse polar. In particular, if the reverse polar of the restricted feasible region is the same as the reverse polar of the feasible region, then any cut valid for the restricted feasible region that \emph{separates} the infeasible point, is valid for the feasible region. We show that the reverse polar of the \emph{visible points} of the feasible region from the infeasible point coincides with the reverse polar of the feasible region. In the special where the feasible region is described by a single non-convex constraint intersected with a convex set we provide a characterization of the visible points. Furthermore, when the non-convex constraint is quadratic the characterization is particularly simple. We also provide an extended formulation for a relaxation of the visible points when the non-convex constraint is a general polynomial. Finally, we give some conditions under which for a given set there is an inclusion-wise smallest set, in some predefined family of sets, whose reverse polars coincide.}, language = {en} } @misc{SahinAhmadiBorndoerferetal., author = {Sahin, Guvenc and Ahmadi, Amin and Bornd{\"o}rfer, Ralf and Schlechte, Thomas}, title = {Multi-Period Line Planning with Resource Transfers}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-74662}, abstract = {Urban transportation systems are subject to a high level of variation and fluctuation in demand over the day. When this variation and fluctuation are observed in both time and space, it is crucial to develop line plans that are responsive to demand. A multi-period line planning approach that considers a changing demand during the planning horizon is proposed. If such systems are also subject to limitations of resources, a dynamic transfer of resources from one line to another throughout the planning horizon should also be considered. A mathematical modelling framework is developed to solve the line planning problem with transfer of resources during a finite length planning horizon of multiple periods. We analyze whether or not multi-period solutions outperform single period solutions in terms of feasibility and relevant costs. The importance of demand variation on multi-period solutions is investigated. We evaluate the impact of resource transfer constraints on the effectiveness of solutions. We also study the effect of line type designs and question the choice of period lengths along with the problem parameters that are significant for and sensitive to the optimality of solutions.}, language = {en} } @misc{HendelAndersonLeBodicetal., author = {Hendel, Gregor and Anderson, Daniel and Le Bodic, Pierre and Pfetsch, Marc}, title = {Estimating the Size of Branch-And-Bound Trees}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78144}, abstract = {This paper investigates the estimation of the size of Branch-and-Bound (B\&B) trees for solving mixed-integer programs. We first prove that the size of the B\&B tree cannot be approximated within a factor of~2 for general binary programs, unless P equals NP. Second, we review measures of the progress of the B\&B search, such as the gap, and propose a new measure, which we call leaf frequency. We study two simple ways to transform these progress measures into B\&B tree size estimates, either as a direct projection, or via double-exponential smoothing, a standard time-series forecasting technique. We then combine different progress measures and their trends into nontrivial estimates using Machine Learning techniques, which yields more precise estimates than any individual measure. The best method we have identified uses all individual measures as features of a random forest model. In a large computational study, we train and validate all methods on the publicly available MIPLIB and Coral general purpose benchmark sets. On average, the best method estimates B\&B tree sizes within a factor of 3 on the set of unseen test instances even during the early stage of the search, and improves in accuracy as the search progresses. It also achieves a factor 2 over the entire search on each out of six additional sets of homogeneous instances we have tested. All techniques are available in version 7 of the branch-and-cut framework SCIP.}, language = {en} } @misc{LenzSerrano, author = {Lenz, Ralf and Serrano, Felipe}, title = {Tight Convex Relaxations for the Expansion Planning Problem}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81459}, abstract = {Secure energy transport is considered as highly relevant for the basic infrastructure of nowadays society and economy. To satisfy increasing demands and to handle more diverse transport situations, operators of energy networks regularly expand the capacity of their network by building new network elements, known as the expansion planning problem. A key constraint function in expansion planning problems is a nonlinear and nonconvex potential loss function. In order to improve the algorithmic performance of state-of-the-art MINLP solvers, this paper presents an algebraic description for the convex envelope of this function. Through a thorough computational study, we show that this tighter relaxation tremendously improve the performance of the MINLP solver SCIP on a large test set of practically relevant instances for the expansion planning problem. In particular, the results show that our achievements lead to an improvement of the solver performance for a development version by up to 58\%.}, language = {en} } @misc{Lenz, author = {Lenz, Ralf}, title = {Pipe Merging for Transient Gas Network Problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82116}, abstract = {In practice, transient gas transport problems frequently have to be solved for large-scale gas networks. Gas network optimization problems typically belong to the class of Mixed-Integer Nonlinear Programming Problems (MINLP). However current state-of-the-art MINLP solvers are not yet mature enough to solve large-scale real-world instances. Therefore, an established approach in practice is to solve the problems with respect to a coarser representation of the network and thereby reducing the size of the underlying model. Two well-known aggregation methods that effectively reduce the network size are parallel and serial pipe merges. However, these methods have only been studied in stationary gas transport problems so far. This paper closes this gap and presents parallel and serial pipe merging methods in the context of transient gas transport. To this end, we introduce the concept of equivalent and heuristic subnetwork replacements. For the heuristic methods, we conduct a huge empirical evaluation based on real-world data taken from one of the largest gas networks in Europe. It turns out that both, parallel and serial pipe merging can be considered as appropriate aggregation methods for real-world transient gas flow problems.}, language = {en} } @misc{AndersonHendelLeBodicetal., author = {Anderson, Daniel and Hendel, Gregor and Le Bodic, Pierre and Viernickel, Jan Merlin}, title = {Clairvoyant Restarts in Branch-and-Bound Search Using Online Tree-Size Estimation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-72653}, abstract = {We propose a simple and general online method to measure the search progress within the Branch-and-Bound algorithm, from which we estimate the size of the remaining search tree. We then show how this information can help solvers algorithmically at runtime by designing a restart strategy for Mixed-Integer Programming (MIP) solvers that decides whether to restart the search based on the current estimate of the number of remaining nodes in the tree. We refer to this type of algorithm as clairvoyant. Our clairvoyant restart strategy outperforms a state-of-the-art solver on a large set of publicly available MIP benchmark instances. It is implemented in the MIP solver SCIP and will be available in future releases.}, language = {en} } @misc{Wyczik, type = {Master Thesis}, author = {Wyczik, Christopher}, title = {Optimierung von Deployment- und Umgebungs-Integrit{\"a}t durch ein dezentrales Konfigurationsrepository auf Basis einer Blockchain}, pages = {44}, abstract = {Viele Firmen nutzen f{\"u}r ihre eigenen Softwareentwicklungen verschiedene Server mit unterschiedlichen Konfigurationen. Manche Server werden dazu eingestzt das Verhalten einer Software in einer bestimmten Umgebung zu testen und andere dienen zur Bereitstellung der Software f{\"u}r den Endnutzer. Hierbei ist es wichtig, dass die Konfiguration der Server regelm{\"a}ßig {\"u}berpr{\"u}ft wird. Eine solche Sicherstellung der Deployment- und Umgebungs-Integrit{\"a}t wird meistens durch eine Mitarbeiter der Firma oder durch einen externen Dienstleister erbracht. D.h. die Firma muss sich auf die Zuverl{\"a}ssigkeit eines Mitarbeiters oder einer externen Dienstleistung verlassen, bie zunehmender Komplexit{\"a}t ist sie sogar abh{\"a}ngig. Das Ziel dieser Masterarbeit ist es, zu untersuchen, ob die Sicherstellung der Deployment- und Umgebungs-Integrit{\"a}t durch automatisierte kryptografische Beweise, anstelle externer Dienstleistungen oder anderer Mitarbeiter, gew{\"a}hrleistet werden kann. Als Anwendungsfall dient die Toll Collect GmbH. Im ersten Teil dieser Arbeit wird das Matheamtische Modell einer Blockchain erl{\"a}utert. die Blockchain wurde erstmals in einem Dokument, welches unter dem Pseudonym Satoshi Nakamoto ver{\"o}ffentlicht wurde, beschrieben. Die erste große Anwendungen der Blockchain ist das dezentrale Zahlungssystem Bitcoin. Im zweiten Teil dieser Arbeit wird die Softwareimplementierung vorgestellt, welche im Rahmen dieser Arbeit entstanden ist. Mithilfe dieses Programms kann die Deployment- und Umgebungs-Integrit{\"a}t durch eine heirf{\"u}hr entwickelte Blockchainl{\"o}sung dezentralisiert werden. Es wird außerdem der {\"U}bergang vom Mathematischen Modell zur Implementierung gezeigt.}, language = {de} } @masterthesis{Akil, type = {Bachelor Thesis}, author = {Akil, Fatima}, title = {Lineare Gleichungssysteme modulo T}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71560}, pages = {52}, abstract = {Mit dem Voranschreiten der Technologie erhalten die {\"o}ffentlichen Verkehrsmittel eine gr{\"o}ßere Bedeutung. Die Bef{\"o}rderung mehrerer Personen er{\"o}ffnet der Gesellschaft viele M{\"o}glichkeiten, unter Anderem den Vorteil der Zeitersparnis. Die Dauer des Verkehrswegs mit {\"o}ffentlichen Verkehrsmitteln ist h{\"a}ufig geringer, als die mit individuellen Verkehrsmitteln. Jedes {\"o}ffentliche Transportmittel ist mit einem Fahrplan versehen. Dieser bietet Passagieren, die {\"o}ffentliche Verkehrsmittel {\"o}fter nutzen, eine Strukturierung und Planung ihrer Zeit. Dabei lassen sich Taktfahrpl{\"a}ne aufgrund ihres periodischen Verhaltens leicht einpr{\"a}gen. Dieses periodische Verhalten ist durch mathematische Modellierungen darstellbar. Das pers{\"o}nliche Nutzverhalten vieler B{\"u}rger im Personenverkehr ist auf die {\"o}ffentlichen Verkehrsmittel beschr{\"a}nkt. Diese beinhalten im Gegensatz zum individuellen Verkehrsmittel eine Wartezeit. Dabei stellt sich die Frage, ob man anhand mathematischer Modelle diese Wartezeit minimieren kann. Eine bekannte mathematische Modellierung dieses Problems ist das Periodic Event Scheduling Problem (PESP). Die optimale Planung eines periodischen Taktfahrplanes steht im Vordergrund. W{\"a}hrend ich dieses Problem betrachtet habe, wurde ich auf das Rechnen mit linearen Gleichungssystemen modulo T aufmerksam. Bei periodischen Taktfahrpl{\"a}nen wird ein einheitliches zeitliches Muster, welches sich nach T Minuten wiederholt, betrachtet. Das dabei zu betrachtende L{\"o}sungsproblem er{\"o}ffnet ein Teilgebiet der Mathematik, welches bislang nicht im Vordergrund stand: Das L{\"o}sen linearer Gleichungen modulo T, wobei T f{\"u}r die Zeit in Minuten steht und somit 60 ist. Da 60 keine Primzahl ist, kann - wie im Laufe der Arbeit pr{\"a}sentiert - das lineare Gleichungssystem nicht mehr {\"u}ber einen K{\"o}rper gel{\"o}st werden. Lineare Gleichungssysteme werden nun {\"u}ber Nicht-K{\"o}rpern betrachtet. Die Literatur weist sowohl im deutschsprachigem als auch im englischsprachigen Raum wenig Umfang bez{\"u}glich linearer Gleichungssysteme {\"u}ber Nicht-K{\"o}rper auf. Der Bestand an Fachliteratur bez{\"u}glich den Themen lineare diophantische Gleichungssysteme, Hermite- Normalform und Smith-Normalform ist zurzeit gering, dennoch erreichbar, beispielsweise in [1], welches in dieser Bachelorarbeit genutzt wurde. Insbesondere wurde ich bei der Suche nach geeigneter Literatur zu linearen Gleichungssystemen {\"u}ber Restklassenringe, die keinen K{\"o}rper bilden, nicht f{\"u}ndig. Dabei recherchierte ich sowohl in den Universit{\"a}tsbibliotheken als auch in webbasierenden Suchmaschinen. Aufgrund dem geringen Bestand an Fachliteratur in diesem Kontext, war ich gezwungen, an vielen Stellen eigene logische Verkn{\"u}pfungen zu konzipieren und zu beweisen. Dies brachte viele Schwierigkeiten mit sich, die mit bestm{\"o}glichem Verst{\"a}ndnis bearbeitet wurden. Abseits der Zug{\"a}nglichkeit der Literatur, finde ich es sehr {\"u}berraschend, dass sich viele Professoren der Mathematik mit diesem Themenbereich nicht besch{\"a}ftigten. Insbesondere gingen von den Dozenten, die ich um Literaturempfehlung bat, kein Werk aus. Damit wurde das Thema "Lineare Gleichungssysteme Modulo T" einerseits eine große Herausforderung, andererseits eine große Motivation, da ich mit dieser Bachelorarbeit vielen Interessenten der Mathematik als Sekund{\"a}rliteratur dienen kann.}, language = {de} } @masterthesis{Vornberger, type = {Bachelor Thesis}, author = {Vornberger, Leo}, title = {Approximation von Windkomponenten in der Luftfahrt durch lineare Interpolation}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71570}, pages = {49}, abstract = {Das Wind-Interpolation-Problem (WIP) ist ein bisher selten diskutiertes Problem der Flugplanungsoptimierung, bei dem es darum geht, Wind-Komponenten auf einer Luftstraße zu approximieren. Anhand von Winddaten, die vektoriell an den Gitterpunkten eines den Globus umspannenden Gitters vorliegen, soll bestimmt werden, wie viel Wind entlang der Luftstraße und quer zu ihr weht. Thema dieser Arbeit ist ein Spezialfall des WIP, n{\"a}mlich das statische WIP auf einer Planfl{\"a}che (SWIPP). Dazu wird zuerst ein Algorithmus besprochen, der das SWIPP zwar l{\"o}st, aber einem Ansatz zugrunde liegt, der bei genauerem Hinsehen nicht sinnvoll erscheint: hier wird Wind zwischen vier Punkten interpoliert, wozu es keine triviale Methode gibt. {\"A}hnlich zu diesem Algorithmus, der heute als State-of-the-Art gilt, wird als Ergebnis dieser Arbeit ein neuer Algorithmus vorgestellt, der das SWIPP akkurater und schneller l{\"o}st. Hier wird deutlich seltener auf die Interpolation zwischen vier Punkten zur{\"u}ckgegriffen - stattdessen wird fast immer linear zwischen zwei Punkten interpoliert. Die Algorithmen zum L{\"o}sen des SWIPP werden auf ihre Genauigkeit, asymptotische Laufzeit und Geschwindigkeit untersucht und verglichen. Als Testareal dienen zum einen echte Wetterdaten sowie das Luftstraßennetz, das die Erde umspannt, und zum anderen ein eigens generiertes Windfeld und fiktive Luftstraßen. Es wird gezeigt, dass der hier vorgestellte Algorithmus die State-of-the-Art-Variante in allen genannten Aspekten {\"u}bertrifft.}, language = {de} } @masterthesis{Husemann, type = {Bachelor Thesis}, author = {Husemann, Christoph}, title = {Multimodales Routing mit Leihfahrradsystemen am Beispiel Berlins}, pages = {45}, abstract = {The aim of multimodal routing is to extract the best integrated journey of multiple transportation networks. The integration of bike rental networks is challenging particularly with respect to recognizing a valid path dependent on real-time availability of bike boarding and alighting places. In this work a common model for station-based bike rental networks extended with boarding possibilities for free floating bikes is presented. Moreover a new model for alighting inside a free floating area is introduced. In addition, a prototype of multimodal routing with a bike rental network in Berlin is developed by extending the OpenTripPlanner software. Due to recent public dispute about bike rental networks in Berlin, an examination about speed-up potential of an integrated bike rental network in the public transit of Berlin is provided.}, language = {de} } @masterthesis{Krug, type = {Bachelor Thesis}, author = {Krug, Matthias}, title = {Analysis of the Shortest Path Problem with Piecewise Constant Crossing Costs}, pages = {37}, language = {en} } @misc{Mett, type = {Master Thesis}, author = {Mett, Fabian}, title = {{\"U}ber die optimale Platzierung von Ladestationen f{\"u}r Elektrobusse}, pages = {76}, abstract = {In dieser Arbeit wird die Platzierung von Ladestationen f{\"u}r Elektrobusse untersucht. Dabei soll f{\"u}r eine Menge an gegebenen Linien eine Menge an Ladestationen gefunden werden, sodass jede Linie mit Nutzung der Ladestationen befahren werden kann und gleichzeitig die Kosten minimal sind. Zun{\"a}chst wird der Fall betrachtet, dass die Batterie an jeder Station komplett vollgeladen werden k{\"o}nnte. Dieses Problem stellt sich als NP-schwer heraus. F{\"u}r einige einfachere F{\"a}llewerden zudem Algorithmen entwickelt und untersucht. Anschließend wird der Fall einer unbegrenzt großen Batterie betrachtet, wobei an jeder Station derselbe Wert geladen werden kann. Auch dieses Problem ist NP-schwer. Erneut werden Algorithmen zur L{\"o}sung vereinfachter Problemstellungen gegeben und analysiert. Wird zudem angenommen, an jeder Station w{\"u}rde ein individueller Wert geladen, so ist das Problem schon f{\"u}r nur eine einzige Linie NP-schwer. Dennoch werden zwei exakte und ein approximierender Algorithmus entwickelt. Schließlich wird eine Batteriekapazit{\"a}t hinzugef{\"u}gt und die zuvor entwickelten Algorithmen werden entsprechend angepasst. F{\"u}r die abschließende Problemdefinition werden verschiedene Batteriegr{\"o}ßen betrachtet und es werden zwei gemischt-ganzzahlige Programme aufgestellt. Anhand von existierenden Buslinien aus Berlin werden diese untersucht. Dabei stellt sich heraus, dass die Batteriekosten einen deutlich gr{\"o}ßeren Teil der Kosten ausmachen als die Ladestationen. Zudem sollten kleinere Batterien statt gr{\"o}ßerer und mehr Ladestationen genutzt werden.}, language = {de} } @masterthesis{Noeckel, type = {Bachelor Thesis}, author = {N{\"o}ckel, Celine}, title = {Bidirectional A* Search on Time-Dependent Airway Networks}, pages = {51}, abstract = {This thesis deals with a new algorithm for finding Shortest Paths on Airway Networks. It is about a Bidirectional A* Search, a Greedy algorithm exploring a network from two sides instead of one. We will use it to solve the so-called 'Horizontal Flight Trajectory Problem', where one searches for an aircraft trajectory between two airports of minimal costs on an Airway Network. The given network will be modeled as a directed graph and in order to reflect reality we concentrate on the dynamic version. Here a timedependent cost function for all arcs is integrated, that shall represent the winds blowing. This way we model the Horizontal Flight Trajectory Problem mathematically as a Time-Dependent Shortest Path Problem. The basic algorithm idea derives from the algorithm presented in 'Bidirectional A* Search on Time-Dependent Road Networks' [1], where a similar setting is elaborated for road networks. The algorithm procedure bears on a modified generalization of Dijkstra's algorithm, made bidirectional and improved in several aspects. As for the backwards search the arrival times are not known in advance, the reversed graph it occurs on has to be weighted by a lower bound. Contrary to the static case the forwards search still has to go on, when they 'meet' in one node. In the static case, the shortest path would have been found at this point. For road networks the TDSPP is well-studied, for airway networks cannot be found as much in literature. In order to test efficiency, we implement Dijkstra's algorithm, unidirectional A* Search and Bidirectional A* Search. We draw up how potential functions for the static case could look like and that with a suitable potential A* Search with works approx. 7 times faster than Dijkstra in the dynamic case. Our computations lead also to the result, that the unidirectional A* Search works even better on the network than our new bidirectional approach does. On average it labels fewer nodes and also yields 1,7 times faster to the solutions. For assessing the efficiency of the different algorithms we compare the running times and to exclude processor characteristics we consider also the set labels relative to the labels on the resulting optimal path. In addition, we present examples of routes visually and explain shortly why there appear local differences regarding performance of A* Search and Bidirectional A* Search.}, language = {en} } @misc{RehfeldtKoch, author = {Rehfeldt, Daniel and Koch, Thorsten}, title = {Reduction-based exact solution of prize-collecting Steiner tree problems}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-70958}, language = {en} } @misc{Serrano, author = {Serrano, Felipe}, title = {Intersection cuts for factorable MINLP}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71105}, abstract = {Given a factorable function f, we propose a procedure that constructs a concave underestimor of f that is tight at a given point. These underestimators can be used to generate intersection cuts. A peculiarity of these underestimators is that they do not rely on a bounded domain. We propose a strengthening procedure for the intersection cuts that exploits the bounds of the domain. Finally, we propose an extension of monoidal strengthening to take advantage of the integrality of the non-basic variables.}, language = {en} } @misc{Euler, type = {Master Thesis}, author = {Euler, Ricardo}, title = {The Bienstock Zuckerberg Algorithm for the Rolling Stock Rotation Problem}, pages = {73}, abstract = {The design of rolling stock rotations is an important task in large-scale railway planning. This so-called rolling stock rotation problem (RSRP) is usually tackled using an integer programming approach. Markus Reuther did so in his dissertation [15] for the ICE railway network of DB ("Deutsche Bahn"). Due to the size of the network and the complexity of further technical requirements, the resulting integer problems tend to become very large and computationally involved. In this thesis, we tackle the linear programming relaxation of the RSRP integer program. We will do so by applying a modified version of an algorithm recently proposed by Dan Bienstock and Mark Zuckerberg [2] for the precedence constrained production scheduling problem that arises in open pit mine scheduling. This problem contains a large number of "easy" constraints and a relatively small number of "hard" constraints. We will see that a similar problem structure can also be found in the RSRP. The Bienstock-Zuckerberg algorithm relies on applying Lagrangian relaxation to the hard constraints as well as on partitioning the variable set. We propose three different partition schemes which try to exploit the specific problem structure of the RSRP. Furthermore, we will discuss the influence of primal degeneracy on the algorithm's performance, as well as possible merits of perturbating the right-hand side of the constraint matrix. We provide computational results to assess the performance of those approaches.}, language = {en} } @masterthesis{Wirsching, type = {Bachelor Thesis}, author = {Wirsching, Marie}, title = {Der Einfluss von Langzahlarithmetik auf das Gewichtsraumpolyeder in mehrkriterieller Optimierung}, pages = {59}, abstract = {Die Arbeit befasst sich mit einem gewichtsraumbasierten Algorithmus, der ganzzahlige und lineare Optimierungsprobleme mit mehreren Zielfunktionen l{\"o}st und die Menge der unterst{\"u}tzt nicht dominierten Punkte ermittelt. Die dabei erzeugten Gewichtsraumpolyeder sind das entscheidende Mittel, um die gesuchte L{\"o}sungsmenge zu bestimmen. Aus softwaretechnischer Sicht sind numerische Ungenauigkeiten potentielle Fehlerquellen, die sich negativ auf das Endergebnis auswirken. Aus diesem Grund untersuchen wir anhand von Zuweisungs- und Rucksackinstanzen mit 3 Zielfunktionen, inwieweit der Gebrauch von Langzahlarithmetik die Gewichtsraumpolyeder und die damit verbundene Menge der unterst{\"u}tzt nicht dominierten Punkte beeinflusst.}, language = {de} } @misc{Jeschke, type = {Master Thesis}, author = {Jeschke, Bj{\"o}rn-Marcel}, title = {Alternativen zum Dijkstra Algorithmus in der (Nah-) Verkehrsoptimierung}, pages = {74}, abstract = {In dieser Arbeit betrachten wir das Problem, f{\"u}r den Fahrplan eines (Nah-) Verkehrsnetzes schnellste Wege zu berechnen. Da die Verkehrsmittel zu unterschiedlichen Zeiten von den einzelnen Haltestellen/Bahnh{\"o}fen abfahren, kann das Problem nicht ohne Weiteres mit einem „statischen" Graphen modelliert werden. Es gibt zwei unterschiedliche Ans{\"a}tze f{\"u}r dieses zeitabh{\"a}ngige Problem: Erstens k{\"o}nnen die verschiedenen An-/Abfahrtereignisse an einem Halt durch „Kopien" dargestellt werden, das ist das zeit-expandierte Modell. Zweitens k{\"o}nnen die Gewichte der Kanten zeitabh{\"a}ngig sein, das ist das zeitabh{\"a}ngige Modell. Wir untersuchen in dieser Arbeit, wie der „klassische" Dijkstra-Algorithmus und der A* Algorithmus mit einer geeigneten Heuristik im Vergleich abschneiden. Die gew{\"a}hlte Heuristik ist der Abstand zum Zielknoten, wenn die Abfahrtszeiten ignoriert werden. Nach unseren Untersuchungen zeigt sich, dass der A* Algorithmus dem Dijkstra-Algorithmus weit {\"u}berlegen ist f{\"u}r gen{\"u}gend große Nahverkehrsnetze. Wir testen anhand der echten Verkehrsnetze von Berlin und Aachen. Unsere Berechnungen zeigen, dass die gew{\"a}hlte Heuristik besonders gut ist f{\"u}r Start- und Zielknoten, welche unabh{\"a}ngig von ihrer Distanz nur 1-2 verschiedene m{\"o}gliche k{\"u}rzeste Pfade f{\"u}r alle Zeitschritte haben. Dort ist der A* Algorithmus bis zu 20-mal schneller. Dies kommt aber nicht h{\"a}ufig in unseren Testinstanzen vor. Die einzelnen Laufzeitvergleich zeigen, dass der A* Algorithmus durchschnittlich 7-mal so schnell ist wie der Dikstra-Algorithmus.}, language = {de} } @misc{Oleynikova, type = {Master Thesis}, author = {Oleynikova, Ekaterina}, title = {Mathematical optimization of joint order batching and picker routing problems}, pages = {60}, abstract = {In this thesis we study order picking optimization problems for a two-blocks rectangle warehouse layout. We present combinatorial formulations and linear programming models based on the Steiner graph representation for order batching, picker routing, and joint order batching and picker routing problems. A special case of the latter is considered. This case assumes that each order contains exactly one item and each item can be picked from different possible locations in a warehouse. The underlying optimization problem is called joint multi-location order batching and picker routing problem (JMLOBPRP). Since having only one-item orders turns the JMLOBPRP into a special case of a capacitated vehicle routing problem, we suggest to implement algorithmic approaches for those to solve the JMLOBPRP. In particular, we define the JMLOBPRP as a generalization of the resource constrained assignment problem, for which a regional search method exists. The intention of the thesis is to investigate how a relaxation of the JMLOBPRP, a so-called group assignment problem (GrAP), can be solved following the ideas of regional search. We present a mathematical model of the GrAP and prove that it is NP-hard. Furthermore, we propose a novel heuristic algorithm for the GrAP. We call this method a network search algorithm, as it is based on a Lagrangian relaxation of the GrAP, which is solved by the network simplex method. On each its iteration network search examines a solution region suggested by the network simplex algorithm and improves the incumbent solution. Numerical experiments are conducted to assess a performance of the network search method. We create more realistic problem instances. The proposed algorithm is compared to the integer optimal solution of the GrAP and optimal fractional solution of its linear relaxation. Both computed using the commercial linear solver Gurobi. Our experiments show that the developed network search algorithm leads to the hight-quality solution within a short computing time. The results obtained testing large problem instances which cannot be solved by Gurobi within a reasonable computing time, show that the network search method provides a solution approach which can be used in practice.}, language = {en} } @misc{BeckerHiller, author = {Becker, Kai-Helge and Hiller, Benjamin}, title = {ASTS Orientations on Undirected Graphs: Structural analysis and enumeration}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69632}, abstract = {All feasible flows in potential-driven networks induce an orientation on the undirected graph underlying the network. Clearly, these orientations must satisfy two conditions: they are acyclic and there are no "dead ends" in the network, i.e. each source requires outgoing flows, each sink requires incoming flows, and each transhipment vertex requires both an incoming and an outgoing flow. In this paper we will call orientations that satisfy these conditions acyclic source-transhipment-sink orientations (ASTS-orientation) and study their structure. In particular, we characterize graphs that allow for such an orientation, describe a way to enumerate all possible ASTS-orientations of a given graph, present an algorithm to simplify and decompose a graph before such an enumeration and shed light on the role of zero flows in the context of ASTS-orientations.}, language = {en} } @misc{LenzBecker, author = {Lenz, Ralf and Becker, Kai-Helge}, title = {Optimization of Capacity Expansion in Potential-driven Networks including Multiple Looping - A comparison of modelling approaches}, issn = {1438-0064}, doi = {10.1007/s00291-021-00648-7}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69726}, abstract = {In commodity transport networks such as natural gas, hydrogen and water networks, flows arise from nonlinear potential differences between the nodes, which can be represented by so-called "potential-driven" network models. When operators of these networks face increasing demand or the need to handle more diverse transport situations, they regularly seek to expand the capacity of their network by building new pipelines parallel to existing ones ("looping"). The paper introduces a new mixed-integer non-linear programming (MINLP) model and a new non-linear programming (NLP) model and compares these with existing models for the looping problem and related problems in the literature, both theoretically and experimentally. On this basis, we give recommendations about the circumstances under which a certain model should be used. In particular, it turns out that one of our novel models outperforms the existing models. Moreover, the paper is the first to include the practically relevant option that a particular pipeline may be looped several times.}, language = {en} } @misc{SerranoMunoz, author = {Serrano, Felipe and Mu{\~n}oz, Gonzalo}, title = {Maximal Quadratic-Free Sets}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-76922}, abstract = {The intersection cut paradigm is a powerful framework that facilitates the generation of valid linear inequalities, or cutting planes, for a potentially complex set S. The key ingredients in this construction are a simplicial conic relaxation of S and an S-free set: a convex zone whose interior does not intersect S. Ideally, such S-free set would be maximal inclusion-wise, as it would generate a deeper cutting plane. However, maximality can be a challenging goal in general. In this work, we show how to construct maximal S-free sets when S is defined as a general quadratic inequality. Our maximal S-free sets are such that efficient separation of a vertex in LP-based approaches to quadratically constrained problems is guaranteed. To the best of our knowledge, this work is the first to provide maximal quadratic-free sets.}, language = {en} } @misc{EiflerGleixnerPulaj, author = {Eifler, Leon and Gleixner, Ambros and Pulaj, Jonad}, title = {Chv{\´a}tal's Conjecture Holds for Ground Sets of Seven Elements}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-70240}, abstract = {We establish a general computational framework for Chv{\´a}tal's conjecture based on exact rational integer programming. As a result we prove Chv{\´a}tal's conjecture holds for all downsets whose union of sets contains seven elements or less. The computational proof relies on an exact branch-and-bound certificate that allows for elementary verification and is independent of the integer programming solver used.}, language = {en} } @phdthesis{Pulaj, author = {Pulaj, Jonad}, title = {Cutting Planes for Union-Closed Families}, abstract = {Frankl's (union-closed sets) conjecture states that for any nonempty finite union-closed (UC) family of distinct sets there exists an element in at least half of the sets. Poonen's Theorem characterizes the existence of weights which determine whether a given UC family ensures Frankl's conjecture holds for all UC families which contain it. The weight systems are nontrivial to identify for a given UC family, and methods to determine such weight systems have led to several other open questions and conjectures regarding structures in UC families. We design a cutting-plane method that computes the explicit weights which imply the existence conditions of Poonen's Theorem using computational integer programming coupled with redundant verification routines that ensure correctness. We find over one hundred previously unknown families of sets which ensure Frankl's conjecture holds for all families that contain any of them. This improves significantly on all previous results of the kind. Our framework allows us to answer several open questions and conjectures regarding structural properties of UC families, including proving the 3-sets conjecture of Morris from 2006 which characterizes the minimum number of 3-sets that ensure Frankl's conjecture holds for all families that contain them. Furthermore, our method provides a general algorithmic road-map for improving other known results and uncovering structures in UC families.}, language = {en} } @misc{TurnerKochSerranoetal., author = {Turner, Mark and Koch, Thorsten and Serrano, Felipe and Winkler, Michael}, title = {Adaptive Cut Selection in Mixed-Integer Linear Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-86055}, abstract = {Cut selection is a subroutine used in all modern mixed-integer linear programming solvers with the goal of selecting a subset of generated cuts that induce optimal solver performance. These solvers have millions of parameter combinations, and so are excellent candidates for parameter tuning. Cut selection scoring rules are usually weighted sums of different measurements, where the weights are parameters. We present a parametric family of mixed-integer linear programs together with infinitely many family-wide valid cuts. Some of these cuts can induce integer optimal solutions directly after being applied, while others fail to do so even if an infinite amount are applied. We show for a specific cut selection rule, that any finite grid search of the parameter space will always miss all parameter values, which select integer optimal inducing cuts in an infinite amount of our problems. We propose a variation on the design of existing graph convolutional neural networks, adapting them to learn cut selection rule parameters. We present a reinforcement learning framework for selecting cuts, and train our design using said framework over MIPLIB 2017. Our framework and design show that adaptive cut selection does substantially improve performance over a diverse set of instances, but that finding a single function describing such a rule is difficult. Code for reproducing all experiments is available at https://github.com/Opt-Mucca/Adaptive-Cutsel-MILP.}, language = {en} } @misc{HillerBecker, author = {Hiller, Benjamin and Becker, Kai-Helge}, title = {Improving relaxations for potential-driven network flow problems via acyclic flow orientations}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69622}, abstract = {The class of potential-driven network flow problems provides important models for a range of infrastructure networks. For real-world applications, they need to be combined with integer models for switching certain network elements, giving rise to hard-to-solve MINLPs. We observe that on large-scale real-world meshed networks the usually employed relaxations are rather weak due to cycles in the network. We propose acyclic flow orientations as a combinatorial relaxation of feasible solutions of potential-driven flow problems and show how they can be used to strengthen existing relaxations. First computational results indicate that the strengthend model is much tighter than the original relaxation, thus promising a computational advantage.}, language = {en} } @misc{HillerWalther, author = {Hiller, Benjamin and Walther, Tom}, title = {Improving branching for disjunctive polyhedral models using approximate convex decompositions}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-67462}, abstract = {Disjunctive sets arise in a variety of optimization models and much esearch has been devoted to obtain strong relaxations for them. This paper focuses on the evaluation of the relaxation during the branch-and-bound search process. We argue that the branching possibilities (\ie binary variables) of the usual formulations are unsuitable to obtain strong bounds early in the search process as they do not capture the overall shape of the the entire disjunctive set. To analyze and exploit the shape of the disjunctive set we propose to compute a hierarchy of approximate convex decompositions and show how to extend the known formulations to obtain improved branching behavior.}, language = {en} } @misc{HillerSaitenmacherWalther, author = {Hiller, Benjamin and Saitenmacher, Ren{\´e} and Walther, Tom}, title = {Analysis of operating modes of complex compressor stations}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-68179}, abstract = {We consider the modeling of operation modes for complex compressor stations (i.e., ones with several in- or outlets) in gas networks. In particular, we propose a refined model that allows to precompute tighter relaxations for each operation mode. These relaxations may be used to strengthen the compressor station submodels in gas network optimization problems. We provide a procedure to obtain the refined model from the input data for the original model. This procedure is based on a nontrivial reduction of the graph representing the gas flow through the compressor station in an operation mode.}, language = {en} } @misc{BeckerHiller, author = {Becker, Kai-Helge and Hiller, Benjamin}, title = {Efficient Enumeration of Acyclic Graph Orientations with Sources or Sinks Revisited}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-77684}, abstract = {In a recent paper, Conte et al. [CGMR2017] presented an algorithm for enumerating all acyclic orientations of a graph G=(V,E) with a single source (and related orientations) with delay O(|V||E|). In this paper we revisit the problem by going back to an early paper by de Fraysseix et al. [FMR1995], who proposed an algorithm for enumerating all bipolar orientations of a graph based on a recursion formula. We first formalize de Fraysseix et al.'s algorithm for bipolar orientations and determine that its delay is also O(|V||E|). We then apply their recursion formula to the case of Conte et al.'s enumeration problem and show that this yields a more efficient enumeration algorithm with delay O(\sqrt(|V|)|E|). Finally, a way to further streamline the algorithm that leads to a particularly simple implementation is suggested.}, language = {en} } @misc{Schwartz, author = {Schwartz, Stephan}, title = {An Overview of Graph Covering and Partitioning}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-79431}, abstract = {While graph covering is a fundamental and well-studied problem, this field lacks a broad and unified literature review. The holistic overview of graph covering given in this article attempts to close this gap. The focus lies on a characterization and classification of the different problems discussed in the literature. In addition, notable results and common approaches are also included. Whenever appropriate, our review extends to the corresponding partioning problems.}, language = {en} } @misc{BorndoerferSchwartzSurau, author = {Bornd{\"o}rfer, Ralf and Schwartz, Stephan and Surau, William}, title = {Vertex Covering with Capacitated Trees}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82616}, abstract = {The covering of a graph with (possibly disjoint) connected subgraphs is a fundamental problem in graph theory. In this paper, we study a version to cover a graph's vertices by connected subgraphs subject to lower and upper weight bounds, and propose a column generation approach to dynamically generate feasible and promising subgraphs. Our focus is on the solution of the pricing problem which turns out to be a variant of the NP-hard Maximum Weight Connected Subgraph Problem. We compare different formulations to handle connectivity, and find that a single-commodity flow formulation performs best. This is notable since the respective literature seems to have dismissed this formulation. We improve it to a new coarse-to-fine flow formulation that is theoretically and computationally superior, especially for large instances with many vertices of degree 2 like highway networks, where it provides a speed-up factor of 10 over the non-flow-based formulations. We also propose a preprocessing method that exploits a median property of weight constrained subgraphs, a primal heuristic, and a local search heuristic. In an extensive computational study we evaluate the presented connectivity formulations on different classes of instances, and demonstrate the effectiveness of the proposed enhancements. Their speed-ups essentially multiply to an overall factor of 20. Overall, our approach allows the reliabe solution of instances with several hundreds of nodes in a few minutes. These findings are further corroborated in a comparison to existing districting models on a set of test instances from the literature.}, language = {en} } @misc{Mattrisch, type = {Master Thesis}, author = {Mattrisch, Lisa}, title = {Optimization of a Master Surgery Schedule}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69996}, abstract = {During the past years hospitals saw themselves confronted with increasing economical pressure (WB06, p. V). Therefore, optimizing the general operational procedures has gained in importance. The revenue of a hospital depends on the kinds and quantity of treatments performed and on the effcient use and utilization of the corresponding resources. About 25 - 50\% of the treatment costs of a patient needing surgery incurs in the operating rooms (WB06, p. 58). Hence skillful management of the operating rooms can have a large impact on the overall revenue of a hospital. Belien and Demeulemeester (BD07) describe the planning of operating room (OR) schedules as a multi-stage process. In the first stage OR time is allocated to the hospitals specialties and capacities and resources are adjusted. In the second stage a master surgery schedule (MSS) is developed, that is a timetable for D days that specifies the amount of OR time assigned to the specialties on every individual day. After D days this schedule will be repeated without any changes. Hence, developing an MSS is a long-term problem. Finally, specialties will schedule specific surgeries within their assigned OR time. In this work we will focus on the development of the MSS that maximizes the revenue of the hospital. Our main focus will be to ensure that the capacities of the downstream resources, i.e. the bed capacities in the ICU and ward, will not be exceeded. Additionally, we hope that our formulation of the problem will lead to a leveled bed demand without significant peaks. We will incorporate the uncertainty of patient demand and case mix in our model. There have been several approaches on this subject, for example in (F{\"u}15) and (BD07) and this work is in part in� uenced by these advances.}, language = {en} } @inproceedings{BorndoerferSchwartzSurau, author = {Bornd{\"o}rfer, Ralf and Schwartz, Stephan and Surau, William}, title = {Finding Minimum Balanced Separators - an Exact Approach}, series = {Operations Research Proceedings 2021}, booktitle = {Operations Research Proceedings 2021}, issn = {1438-0064}, doi = {https://doi.org/10.1007/978-3-031-08623-6_24}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-83138}, pages = {154 -- 159}, abstract = {Balanced separators are node sets that split the graph into size bounded components. They find applications in different theoretical and practical problems. In this paper we discuss how to find a minimum set of balanced separators in node weighted graphs. Our contribution is a new and exact algorithm that solves Minimum Balanced Separators by a sequence of Hitting Set problems. The only other exact method appears to be a mixed-integer program (MIP) for the edge weighted case. We adapt this model to node weighted graphs and compare it to our approach on a set of instances, resembling transit networks. It shows that our algorithm is far superior on almost all test instances.}, language = {en} } @misc{LindnerLiebchen, author = {Lindner, Niels and Liebchen, Christian}, title = {Determining all integer vertices of the PESP polytope by flipping arcs}, issn = {1438-0064}, doi = {10.4230/OASIcs.ATMOS.2020.5}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78793}, abstract = {We investigate polyhedral aspects of the Periodic Event Scheduling Problem (PESP), the mathematical basis for periodic timetabling problems in public transport. Flipping the orientation of arcs, we obtain a new class of valid inequalities, the flip inequalities, comprising both the known cycle and change-cycle inequalities. For a point of the LP relaxation, a violated flip inequality can be found in pseudo-polynomial time, and even in linear time for a spanning tree solution. Our main result is that the integer vertices of the polytope described by the flip inequalities are exactly the vertices of the PESP polytope, i.e., the convex hull of all feasible periodic slacks with corresponding modulo parameters. Moreover, we show that this flip polytope equals the PESP polytope in some special cases. On the computational side, we devise several heuristic approaches concerning the separation of cutting planes from flip inequalities. These produce better dual bounds for the smallest and largest instance of the benchmarking library PESPlib.}, language = {en} } @misc{BorndoerferEgererKarbsteinetal., author = {Bornd{\"o}rfer, Ralf and Egerer, Ascan and Karbstein, Marika and Messerschmidt, Ralf and Perez, Marc and Pfisterer, Steven and Strauß, Petra}, title = {Kombil{\"o}sung: Optimierung des Liniennetzes in Karlsruhe}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69677}, abstract = {Wir beschreiben die Optimierung des Nahverkehrsnetzes der Stadt Karlsruhe im Zusammmenhang mit den Baumaßnahmen der sogenannten Kombil{\"o}sung.}, language = {de} } @misc{LindnerLiebchen, author = {Lindner, Niels and Liebchen, Christian}, title = {New Perspectives on PESP: T-Partitions and Separators}, issn = {1438-0064}, doi = {10.4230/OASIcs.ATMOS.2019.2}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-73853}, abstract = {In the planning process of public transportation companies, designing the timetable is among the core planning steps. In particular in the case of periodic (or cyclic) services, the Periodic Event Scheduling Problem (PESP) is well-established to compute high-quality periodic timetables. We are considering algorithms for computing good solutions for the very basic PESP with no additional extra features as add-ons. The first of these algorithms generalizes several primal heuristics that had been proposed in the past, such as single-node cuts and the modulo network simplex algorithm. We consider partitions of the graph, and identify so-called delay cuts as a structure that allows to generalize several previous heuristics. In particular, when no more improving delay cut can be found, we already know that the other heuristics could not improve either. The second of these algorithms turns a strategy, that had been discussed in the past, upside-down: Instead of gluing together the network line-by-line in a bottom-up way, we develop a divide-and-conquer-like top-down approach to separate the initial problem into two easier subproblems such that the information loss along their cutset edges is as small as possible. We are aware that there may be PESP instances that do not fit well the separator setting. Yet, on the RxLy-instances of PESPlib in our experimental computations, we come up with good primal solutions and dual bounds. In particular, on the largest instance (R4L4), this new separator approach, which applies a state-of-the-art solver as subroutine, is able to come up with better dual bounds than purely applying this state-of-the-art solver in the very same time.}, language = {en} } @misc{BorndoerferDenissenHelleretal., author = {Bornd{\"o}rfer, Ralf and Denißen, Jonas and Heller, Simon and Klug, Torsten and K{\"u}pper, Michael and Lindner, Niels and Reuther, Markus and Schlechte, Thomas and S{\"o}hlke, Andreas and Steadman, William}, title = {Microscopic Timetable Optimization for a Moving Block System}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82547}, abstract = {We present an optimization model which is capable of routing and ordering trains on a microscopic level under a moving block regime. Based on a general timetabling definition (GTTP) that allows the plug in of arbitrarily detailed methods to compute running and headway times, we describe a layered graph approach using velocity expansion, and develop a mixed integer linear programming formulation. Finally, we present promising results for a German corridor scenario with mixed traffic, indicating that applying branch-and-cut to our model is able to solve reasonably sized instances with up to hundred trains to optimality.}, language = {en} } @misc{LindnerLiebchenMasing, author = {Lindner, Niels and Liebchen, Christian and Masing, Berenike}, title = {Forward Cycle Bases and Periodic Timetabling}, issn = {1438-0064}, doi = {10.4230/OASIcs.ATMOS.2021.2}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82756}, abstract = {Periodic timetable optimization problems in public transport can be modeled as mixed-integer linear programs by means of the Periodic Event Scheduling Problem (PESP). In order to keep the branch-and-bound tree small, minimum integral cycle bases have been proven successful. We examine forward cycle bases, where no cycle is allowed to contain a backward arc. After reviewing the theory of these bases, we describe the construction of an integral forward cycle basis on a line-based event-activity network. Adding turnarounds to the instance \texttt{R1L1} of the benchmark library PESPlib, we computationally evaluate three types of forward cycle bases in the Pareto sense, and come up with significant improvements concerning dual bounds.}, language = {en} } @misc{LindnerMaristanydelasCasasSchiewe, author = {Lindner, Niels and Maristany de las Casas, Pedro and Schiewe, Philine}, title = {Optimal Forks: Preprocessing Single-Source Shortest Path Instances with Interval Data}, issn = {1438-0064}, doi = {10.4230/OASIcs.ATMOS.2021.7}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-82716}, abstract = {We investigate preprocessing for single-source shortest path queries in digraphs, where arc costs are only known to lie in an interval. More precisely, we want to decide for each arc whether it is part of some shortest path tree for some realization of costs. We show that this problem is solvable in polynomial time by giving a combinatorial algorithm, using optimal structures that we call forks. Our algorithm turns out to be very efficient in practice, and is sometimes even superior in quality to a heuristic developed for the one-to-one shortest path problem in the context of passenger routing in public transport.}, language = {en} } @misc{BorndoerferKarbsteinLiebchenetal., author = {Bornd{\"o}rfer, Ralf and Karbstein, Marika and Liebchen, Christian and Lindner, Niels}, title = {A Simple Way to Compute the Number of Vehicles That Are Required to Operate a Periodic Timetable}, issn = {1438-0064}, doi = {10.4230/OASIcs.ATMOS.2018.16}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69688}, abstract = {We consider the following planning problem in public transportation: Given a periodic timetable, how many vehicles are required to operate it? In [9], for this sequential approach, it is proposed to first expand the periodic timetable over time, and then answer the above question by solving a flow-based aperiodic optimization problem. In this contribution we propose to keep the compact periodic representation of the timetable and simply solve a particular perfect matching problem. For practical networks, it is very much likely that the matching problem decomposes into several connected components. Our key observation is that there is no need to change any turnaround decision for the vehicles of a line during the day, as long as the timetable stays exactly the same.}, language = {en} } @misc{LoebelLindnerBorndoerfer, author = {L{\"o}bel, Fabian and Lindner, Niels and Bornd{\"o}rfer, Ralf}, title = {The Restricted Modulo Network Simplex Method for Integrated Periodic Timetabling and Passenger Routing}, issn = {1438-0064}, doi = {https://doi.org/https://doi.org/10.1007/978-3-030-48439-2_92}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-73868}, abstract = {The Periodic Event Scheduling Problem is a well-studied NP-hard problem with applications in public transportation to find good periodic timetables. Among the most powerful heuristics to solve the periodic timetabling problem is the modulo network simplex method. In this paper, we consider the more difficult version with integrated passenger routing and propose a refined integrated variant to solve this problem on real-world-based instances.}, language = {en} } @misc{LindnervanLieshout, author = {Lindner, Niels and van Lieshout, Rolf}, title = {Benders Decomposition for the Periodic Event Scheduling Problem}, issn = {1438-0064}, doi = {10.1007/978-3-031-08623-6_43}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-83338}, abstract = {The Periodic Event Scheduling Problem (PESP) is the central mathematical model behind the optimization of periodic timetables in public transport. We apply Benders decomposition to the incidence-based MIP formulation of PESP. The resulting formulation exhibits particularly nice features: The subproblem is a minimum cost network flow problem, and feasibility cuts are equivalent to the well-known cycle inequalities by Odijk. We integrate the Benders approach into a branch-and-cut framework, and assess the performance of this method on instances derived from the benchmarking library PESPlib.}, language = {en} } @misc{MuellerMuñozGasseetal., author = {M{\"u}ller, Benjamin and Muñoz, Gonzalo and Gasse, Maxime and Gleixner, Ambros and Lodi, Andrea and Serrano, Felipe}, title = {On Generalized Surrogate Duality in Mixed-Integer Nonlinear Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-75179}, abstract = {The most important ingredient for solving mixed-integer nonlinear programs (MINLPs) to global epsilon-optimality with spatial branch and bound is a tight, computationally tractable relaxation. Due to both theoretical and practical considerations, relaxations of MINLPs are usually required to be convex. Nonetheless, current optimization solver can often successfully handle a moderate presence of nonconvexities, which opens the door for the use of potentially tighter nonconvex relaxations. In this work, we exploit this fact and make use of a nonconvex relaxation obtained via aggregation of constraints: a surrogate relaxation. These relaxations were actively studied for linear integer programs in the 70s and 80s, but they have been scarcely considered since. We revisit these relaxations in an MINLP setting and show the computational benefits and challenges they can have. Additionally, we study a generalization of such relaxation that allows for multiple aggregations simultaneously and present the first algorithm that is capable of computing the best set of aggregations. We propose a multitude of computational enhancements for improving its practical performance and evaluate the algorithm's ability to generate strong dual bounds through extensive computational experiments.}, language = {en} } @misc{MuellerSerranoGleixner, author = {M{\"u}ller, Benjamin and Serrano, Felipe and Gleixner, Ambros}, title = {Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-72759}, abstract = {One of the most fundamental ingredients in mixed-integer nonlinear programming solvers is the well- known McCormick relaxation for a product of two variables x and y over a box-constrained domain. The starting point of this paper is the fact that the convex hull of the graph of xy can be much tighter when computed over a strict, non-rectangular subset of the box. In order to exploit this in practice, we propose to compute valid linear inequalities for the projection of the feasible region onto the x-y-space by solving a sequence of linear programs akin to optimization-based bound tightening. These valid inequalities allow us to employ results from the literature to strengthen the classical McCormick relaxation. As a consequence, we obtain a stronger convexification procedure that exploits problem structure and can benefit from supplementary information obtained during the branch-and bound algorithm such as an objective cutoff. We complement this by a new bound tightening procedure that efficiently computes the best possible bounds for x, y, and xy over the available projections. Our computational evaluation using the academic solver SCIP exhibit that the proposed methods are applicable to a large portion of the public test library MINLPLib and help to improve performance significantly.}, language = {en} } @misc{BorndoerferReutherSchlechte, author = {Bornd{\"o}rfer, Ralf and Reuther, Markus and Schlechte, Thomas}, title = {A Coarse-To-Fine Approach to the Railway Rolling Stock Rotation Problem}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-51009}, abstract = {We propose a new coarse-to-fine approach to solve certain linear programs by column generation. The problems that we address contain layers corresponding to different levels of detail, i.e., coarse layers as well as fine layers. These layers are utilized to design efficient pricing rules. In a nutshell, the method shifts the pricing of a fine linear program to a coarse counterpart. In this way, major decisions are taken in the coarse layer, while minor details are tackled within the fine layer. We elucidate our methodology by an application to a complex railway rolling stock rotation problem. We provide comprehensive computational results that demonstrate the benefit of this new technique for the solution of large scale problems.}, language = {en} } @misc{ItoShinano, author = {Ito, Satoshi and Shinano, Yuji}, title = {Calculation of clinch and elimination numbers for sports leagues with multiple tiebreaking criteria}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-70591}, abstract = {The clinch (elimination) number is a minimal number of future wins (losses) needed to clinch (to be eliminated from) a specified place in a sports league. Several optimization models and computational results are shown in this paper for calculating clinch and elimination numbers in the presence of predefined multiple tiebreaking criteria. The main subject of this paper is to provide a general algorithmic framework based on integer programming with utilizing possibly multilayered upper and lower bounds.}, language = {en} } @misc{ReutherBorndoerferSchlechteetal., author = {Reuther, Markus and Bornd{\"o}rfer, Ralf and Schlechte, Thomas and Weider, Steffen}, title = {Integrated Optimization of Rolling Stock Rotations for Intercity Railways}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-16424}, abstract = {This paper provides a highly integrated solution approach for rolling stock planning problems in the context of intercity passenger traffic. The main contributions are a generic hypergraph based mixed integer programming model and an integrated algorithm for the considered rolling stock rotation planning problem. The new developed approach is able to handle a very large set of industrial railway requirements, such as vehicle composition, maintenance constraints, infrastructure capacity, and regularity aspects. By the integration of this large bundle of technical railway aspects, we show that our approach has the power to produce implementable rolling stock rotations for our industrial cooperation partner DB Fernverkehr. This is the first time that the rolling stock rotations at DB Fernverkehr could be optimized by an automated system utilizing advanced mathematical programming techniques.}, language = {en} } @misc{Szabo, author = {Szab{\´o}, J{\´a}cint}, title = {The set of solutions to nomination validation in passive gas transportation networks with a generalized flow formula}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15151}, abstract = {In this paper we give an analytical description on the structure of solutions to the gas nomination validation problem in gas transportation networks. These networks are assumed to contain no active devices, only certain hypothetical pipelines, where the flow of gas is modeled by a generalized version of the quadratic Weymouth's equation. The purpose of considering generalized flow formulas is to be able to adapt our results to various gas network optimization problems involving gas flow formulas beyond Weymouth's equation. Such formulas can appear in leaves of branch and bound trees, or they can stem from discretization and linearization carried out at active devices. We call a balanced supply-demand vector a nomination, and the passive nomination validation problem is to decide whether there exist pressures at the nodes generating a given nomination. We prove that in our setup the pressure square vectors generating a given nomination form a one-dimensional connected and continuous curve in the pressure square space, and this curve is a line for the classical Weymouth's equation. We also present a visual approach for the easy comprehension of how this solution curve arises; we give a short investigation of the set of feasible nominations; and finally we give a proof that the nomination validation problem in gas networks with active devices is NP-complete.}, language = {en} } @misc{WaltherHillerSaitenmacher, author = {Walther, Tom and Hiller, Benjamin and Saitenmacher, Ren{\´e}}, title = {Polyhedral 3D Models for compressors in gas networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-65864}, abstract = {Compressor machines are crucial elements in a gas transmission network, required to compensate for the pressure loss caused by friction in the pipes. Modelling all physical and technical details of a compressor machine involves a large amount of nonlinearity, which makes it hard to use such models in the optimization of large-scale gas networks. In this paper, we are going to describe a modelling approach for the operating range of a compressor machine, starting from a physical reference model and resulting in a polyhedral representation in the 3D space of mass flow throughput as well as in- and outlet pressure.}, language = {en} } @phdthesis{Schlechte, author = {Schlechte, Thomas}, title = {Railway Track Allocation: Models and Algorithms}, publisher = {S{\"u}dwestdeutscher Verlag f{\"u}r Hochschulschriften}, address = {Saarbr{\"u}cken, Germany}, isbn = {978-3-8381-3222-8}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:83-opus-34272}, school = {Technische Universit{\"a}t Berlin}, pages = {239}, abstract = {This thesis is about mathematical optimization for the efficient use of railway infrastructure. We address the optimal allocation of the available railway track capacity - the track allocation problem. This track allocation problem is a major challenge for a railway company, independent of whether a free market, a private monopoly, or a public monopoly is given. Planning and operating railway transportation systems is extremely hard due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense sizes of the problem instances. Mathematical models and optimization techniques can result in huge gains for both railway customers and operators, e.g., in terms of cost reductions or service quality improvements. We tackle this challenge by developing novel mathematical models and associated innovative algorithmic solution methods for large scale instances. This allows us to produce for the first time reliable solutions for a real world instance, i.e., the Simplon corridor in Switzerland. The opening chapter gives a comprehensive overview on railway planning problems. This provides insights into the regulatory and technical framework, it discusses the interaction of several planning steps, and identifies optimization potentials in railway transportation. The remainder of the thesis is comprised of two major parts. The first part is concerned with modeling railway systems to allow for resource and capacity analysis. Railway capacity has basically two dimensions, a space dimension which are the physical infrastructure elements as well as a time dimension that refers to the train movements, i.e., occupation or blocking times, on the physical infrastructure. Railway safety systems operate on the same principle all over the world. A train has to reserve infrastructure blocks for some time to pass through. Two trains reserving the same block of the infrastructure within the same point in time is called block conflict. Therefore, models for railway capacity involve the definition and calculation of reasonable running and associated reservation and blocking times to allow for a conflict free allocation. In the second and main part of the thesis, the optimal track allocation problem for macroscopic models of the railway system is considered. The literature for related problems is surveyed. A graph-theoretic model for the track allocation problem is developed. In that model optimal track allocations correspond to conflict-free paths in special time-expanded graphs. Furthermore, we made considerable progress on solving track allocation problems by two main features - a novel modeling approach for the macroscopic track allocation problem and algorithmic improvements based on the utilization of the bundle method. Finally, we go back to practice and present in the last chapter several case studies using the tools netcast and tsopt. We provide a computational comparison of our new models and standard packing models used in the literature. Our computational experience indicates that our approach, i.e., ``configuration models'', outperforms other models. Moreover, the rapid branching heuristic and the bundle method enable us to produce high quality solutions for very large scale instances, which has not been possible before. In addition, we present results for a theoretical and rather visionary auction framework for track allocation. We discuss several auction design questions and analyze experiments of various auction simulations. The highlights are results for the Simplon corridor in Switzerland. We optimized the train traffic through this tunnel using our models and software tools. To the best knowledge of the author and confirmed by several railway practitioners this was the first time that fully automatically produced track allocations on a macroscopic scale fulfill the requirements of the originating microscopic model, withstand the evaluation in the microscopic simulation tool OpenTrack, and exploit the infrastructure capacity. This documents the success of our approach in practice and the usefulness and applicability of mathematical optimization to railway track allocation.}, language = {en} } @misc{GroetschelStephan, author = {Gr{\"o}tschel, Martin and Stephan, R{\"u}diger}, title = {Characterization of Facets of the Hop Constrained Chain Polytope via Dynamic Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14914}, abstract = {In this paper, we study the hop constrained chain polytope, that is, the convex hull of the incidence vectors of (s,t)-chains using at most k arcs of a given digraph, and its dominant. We use extended formulations (implied by the inherent structure of the Moore-Bellman-Ford algorithm) to derive facet defining inequalities for these polyhedra via projection. Our findings result into characterizations of all facet defining {0,+1,-1}-inequalities for the hop constrained chain polytope and all facet defining {0,1}-inequalities for its dominant. Although the derived inequalities are already known, such classifications were not previously given to the best of our knowledge. Moreover, we use this approach to generalize so called jump inequalities, which have been introduced in a paper of Dahl and Gouveia in 2004.}, language = {en} } @misc{Schlechte, author = {Schlechte, Thomas}, title = {Railway Track Allocation - Simulation and Optimization}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-13632}, number = {11-32}, abstract = {Today the railway timetabling process and the track allocation is one of the most challenging problems to solve by a railway infrastructure provider. Especially due to the deregulation of the transport market in the recent years several suppliers of railway traffic have entered the market. This leads to an increase of slot requests and then it is natural that conflicts occur among them. Furthermore, railway infrastructure networks consist of very expensive assets, even more they are rigid due to the long-term upgrade process. In order to make best use of these valuable infrastructure and to ensure economic operation, efficient planning of the railway operation is indispensable. Mathematical optimization models and algorithmic methodology can help to automatize and tackle these challenges. Our contribution in this paper is to present a renewed planning process due to the liberalization in Europe and a general framework to support the integration of simulation and optimization for railway capacity allocation.}, language = {en} } @misc{ShinanoHeinzVigerskeetal., author = {Shinano, Yuji and Heinz, Stefan and Vigerske, Stefan and Winkler, Michael}, title = {FiberSCIP - A shared memory parallelization of SCIP}, issn = {1438-0064}, doi = {10.1287/ijoc.2017.0762}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42595}, abstract = {Recently, parallel computing environments have become significantly popular. In order to obtain the benefit of using parallel computing environments, we have to deploy our programs for these effectively. This paper focuses on a parallelization of SCIP (Solving Constraint Integer Programs), which is a MIP solver and constraint integer programming framework available in source code. There is a parallel extension of SCIP named ParaSCIP, which parallelizes SCIP on massively parallel distributed memory computing environments. This paper describes FiberSCIP, which is yet another parallel extension of SCIP to utilize multi-threaded parallel computation on shared memory computing environments, and has the following contributions: First, the basic concept of having two parallel extensions and the relationship between them and the parallelization framework provided by UG (Ubiquity Generator) is presented, including an implementation of deterministic parallelization. Second, the difficulties to achieve a good performance that utilizes all resources on an actual computing environment and the difficulties of performance evaluation of the parallel solvers are discussed. Third, a way to evaluate the performance of new algorithms and parameter settings of the parallel extensions is presented. Finally, current performance of FiberSCIP for solving mixed-integer linear programs (MIPs) and mixed-integer non-linear programs (MINLPs) in parallel is demonstrated.}, language = {en} } @misc{HillerKochScheweetal., author = {Hiller, Benjamin and Koch, Thorsten and Schewe, Lars and Schwarz, Robert and Schweiger, Jonas}, title = {A System to Evaluate Gas Network Capacities: Concepts and Implementation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61931}, abstract = {Since 2005, the gas market in the European Union is liberalized and the trading of natural gas is decoupled from its transport. The transport is done by so-called transmissions system operators or TSOs. The market model established by the European Union views the gas transmission network as a black box, providing shippers (gas traders and consumers) the opportunity to transport gas from any entry to any exit. TSOs are required to offer maximum independent capacities at each entry and exit such that the resulting gas flows can be realized by the network without compromising security of supply. Therefore, evaluating the available transport capacities is extremely important to the TSOs. This paper gives an overview of the toolset for evaluating gas network capacities that has been developed within the ForNe project, a joint research project of seven research partners initiated by Open Grid Europe, Germany's biggest TSO. While most of the relevant mathematics is described in the book "Evaluating Gas Network Capacities", this article sketches the system as a whole, describes some developments that have taken place recently, and gives some details about the current implementation.}, language = {en} } @misc{MartinGeisslerHaynetal., author = {Martin, Alexander and Geißler, Bj{\"o}rn and Hayn, Christine and Hiller, Benjamin and Humpola, Jesco and Koch, Thorsten and Lehmann, Thomas and Morsi, Antonio and Pfetsch, Marc and Schewe, Lars and Schmidt, Martin and Schultz, R{\"u}diger and Schwarz, Robert and Schweiger, Jonas and Steinbach, Marc and Willert, Bernhard}, title = {Optimierung Technischer Kapazit{\"a}ten in Gasnetzen}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15121}, abstract = {Die mittel- und l{\"a}ngerfristige Planung f{\"u}r den Gastransport hat sich durch {\"A}nderungen in den regulatorischen Rahmenbedingungen stark verkompliziert. Kernpunkt ist die Trennung von Gashandel und -transport. Dieser Artikel diskutiert die hieraus resultierenden mathematischen Planungsprobleme, welche als Validierung von Nominierungen und Buchungen, Bestimmung der technischen Kapazit{\"a}t und Topologieplanung bezeichnet werden. Diese mathematischen Optimierungsprobleme werden vorgestellt und L{\"o}sungsans{\"a}tze skizziert.}, language = {de} } @misc{HillerVredeveld, author = {Hiller, Benjamin and Vredeveld, Tjark}, title = {Probabilistic alternatives for competitive analysis}, issn = {1438-0064}, doi = {10.1007/s00450-011-0149-1}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-15131}, abstract = {In the last 20 years competitive analysis has become the main tool for analyzing the quality of online algorithms. Despite of this, competitive analysis has also been criticized: It sometimes cannot discriminate between algorithms that exhibit significantly different empirical behavior, or it even favors an algorithm that is worse from an empirical point of view. Therefore, there have been several approaches to circumvent these drawbacks. In this survey, we discuss probabilistic alternatives for competitive analysis.}, language = {en} } @misc{Tesch, author = {Tesch, Alexander}, title = {A Polyhedral Study of Event-Based Models for the Resource-Constrained Project Scheduling Problem}, issn = {1438-0064waoa}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-68485}, abstract = {We consider event-based Mixed-Integer Programming (MIP) models for the Resource-Constrained Project Scheduling Problem (RCPSP) that represent an alternative to the common time-indexed model (DDT) of Pritsker et al. (1969) for the case where the underlying time horizon is large or job processing times are subject to huge variations. In contrast to the time-indexed model, the size of event-based models does not depend on the time horizon. For two event-based formulations OOE and SEE of Kon{\´e} et al. (2011) we present new valid inequalities that dominate the original formulation. Additionally, we introduce a new event-based model: the Interval Event-Based Model (IEE). We deduce linear transformations between all three models that yield the strict domination order IEE > SEE > OOE for their linear programming (LP) relaxations, meaning that IEE has the strongest linear relaxation among the event-based models. We further show that the popular DDT formulation can be retrieved from IEE by certain polyhedral operations, thus giving a unifying view on a complete branch of MIP formulations for the RCPSP. In addition, we analyze the computational performance of all presented models on test instances of the PSPLIB (Kolisch and Sprecher 1997).}, language = {en} } @misc{Tesch, author = {Tesch, Alexander}, title = {Improving Energetic Propagations for Cumulative Scheduling}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69331}, abstract = {We consider the Cumulative Scheduling Problem (CuSP) in which a set of \$n\$ jobs must be scheduled according to release dates, due dates and cumulative resource constraints. In constraint programming, the CuSP is modeled as the cumulative constraint. Among the most common propagation algorithms for the CuSP there is energetic reasoning (Baptiste et al., 1999) with a complexity of O(n^3) and edge-finding (Vilim, 2009) with O(kn log n) where k <= n is the number of different resource demands. We consider the complete versions of the propagators that perform all deductions in one call of the algorithm. In this paper, we introduce the energetic edge-finding rule that is a generalization of both energetic reasoning and edge-finding. Our main result is a complete energetic edge-finding algorithm with a complexity of O(n^2 log n) which improves upon the complexity of energetic reasoning. Moreover, we show that a relaxation of energetic edge-finding with a complexity of O(n^2) subsumes edge-finding while performing stronger propagations from energetic reasoning. A further result shows that energetic edge-finding reaches its fixpoint in strongly polynomial time. Our main insight is that energetic schedules can be interpreted as a single machine scheduling problem from which we deduce a monotonicity property that is exploited in the algorithms. Hence, our algorithms improve upon the strength and the complexity of energetic reasoning and edge-finding whose complexity status seemed widely untouchable for the last decades.}, language = {en} } @misc{FuegenschuhHaynMichaels, author = {F{\"u}genschuh, Armin and Hayn, Christine and Michaels, Dennis}, title = {Mixed-Integer Linear Methods for Layout-Optimization of Screening Systems in Recovered Paper Production}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-16862}, abstract = {The industrial treatment of waste paper in order to regain valuable fibers from which recovered paper can be produced, involves several steps of preparation. One important step is the separation of stickies that are normally attached to the paper. If not properly separated, remaining stickies reduce the quality of the recovered paper or even disrupt the production process. For the mechanical separation process of fibers from stickies a separator screen is used. This machine has one input feed and two output streams, called the accept and the reject. In the accept the fibers are concentrated, whereas the reject has a higher concentration of stickies. The machine can be controlled by setting its reject rate. But even when the reject rate is set properly, after just a single screening step, the accept still has too many stickies, or the reject too many fibers. To get a proper separation, several separators have to be assembled into a network. From a mathematical point of view this problem can be seen as a multi-commodity network flow design problem with a nonlinear, controllable distribution function at each node. We present a nonlinear mixed-integer programming model for the simultaneous selection of a subset of separators, the network's topology, and the optimal setting of each separator. Numerical results are obtained via different types of linearization of the nonlinearities and the use of mixed-integer linear solvers, and compared with state-of-the-art global optimization software.}, language = {en} } @misc{Sagnol, author = {Sagnol, Guillaume}, title = {On the semidefinite representations of real functions applied to symmetric matrices}, volume = {439}, issn = {1438-0064}, doi = {10.1016/j.laa.2013.08.021}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17511}, pages = {2829 -- 2843}, abstract = {We present a new semidefinite representation for the trace of a real function f applied to symmetric matrices, when a semidefinite representation of the convex function f is known. Our construction is intuitive, and yields a representation that is more compact than the previously known one. We also show with the help of matrix geometric means and the Riemannian metric of the set of positive definite matrices that for a rational number p in the interval (0,1], the matrix X raised to the exponent p is the largest element of a set represented by linear matrix inequalities. We give numerical results for a problem inspired from the theory of experimental designs, which show that the new semidefinite programming formulation yields a speed-up factor in the order of 10.}, language = {en} } @misc{Sagnol, author = {Sagnol, Guillaume}, title = {A Class of Semidefinite Programs with rank-one solutions}, issn = {1438-0064}, doi = {10.1016/j.laa.2011.03.027}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-14933}, abstract = {We show that a class of semidefinite programs (SDP) admits a solution that is a positive semidefinite matrix of rank at most \$r\$, where \$r\$ is the rank of the matrix involved in the objective function of the SDP. The optimization problems of this class are semidefinite packing problems, which are the SDP analogs to vector packing problems. Of particular interest is the case in which our result guarantees the existence of a solution of rank one: we show that the computation of this solution actually reduces to a Second Order Cone Program (SOCP). We point out an application in statistics, in the optimal design of experiments.}, language = {en} } @misc{Schlechte, author = {Schlechte, Thomas}, title = {Railway Track Allocation}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-16402}, abstract = {This article gives an overview of the results of the author's PhD thesis. The thesis deals with the mathematical optimization for the efficient use of railway infrastructure. We address the optimal allocation of the available railway track capacity - the track allocation problem. This track allocation problem is a major challenge for a railway company, independent of whether a free market, a private monopoly, or a public monopoly is given. Planning and operating railway transportation systems is extremely hard due to the combinatorial complexity of the underlying discrete optimization problems, the technical intricacies, and the immense sizes of the problem instances. Mathematical models and optimization techniques can result in huge gains for both railway customers and operators, e.g., in terms of cost reductions or service quality improvements. We tackle this challenge by developing novel mathematical models and associated innovative algorithmic solution methods for large scale instances. We made considerable progress on solving track allocation problems by two main features - a novel modeling approach for the macroscopic track allocation problem and algorithmic improvements based on the utilization of the bundle method. This allows us to produce for the first time reliable solutions for a real world instance, i.e., the Simplon corridor in Switzerland.}, language = {en} } @misc{BertholdHendelKoch, author = {Berthold, Timo and Hendel, Gregor and Koch, Thorsten}, title = {The Three Phases of MIP Solving}, issn = {1438-0064}, doi = {10.1080/10556788.2017.1392519}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61607}, abstract = {Modern MIP solvers employ dozens of auxiliary algorithmic components to support the branch-and-bound search in finding and improving primal solutions and in strengthening the dual bound. Typically, all components are tuned to minimize the average running time to prove optimality. In this article, we take a different look at the run of a MIP solver. We argue that the solution process consists of three different phases, namely achieving feasibility, improving the incumbent solution, and proving optimality. We first show that the entire solving process can be improved by adapting the search strategy with respect to the phase-specific aims using different control tunings. Afterwards, we provide criteria to predict the transition between the individual phases and evaluate the performance impact of altering the algorithmic behavior of the MIP solver SCIP at the predicted phase transition points.}, language = {en} } @misc{ShinanoAchterbergBertholdetal., author = {Shinano, Yuji and Achterberg, Tobias and Berthold, Timo and Heinz, Stefan and Koch, Thorsten and Winkler, Michael}, title = {Solving Open MIP Instances with ParaSCIP on Supercomputers using up to 80,000 Cores}, issn = {1438-0064}, doi = {10.1109/IPDPS.2016.56}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-56404}, abstract = {This paper describes how we solved 12 previously unsolved mixed-integer program- ming (MIP) instances from the MIPLIB benchmark sets. To achieve these results we used an enhanced version of ParaSCIP, setting a new record for the largest scale MIP computation: up to 80,000 cores in parallel on the Titan supercomputer. In this paper we describe the basic parallelization mechanism of ParaSCIP, improvements of the dynamic load balancing and novel techniques to exploit the power of parallelization for MIP solving. We give a detailed overview of computing times and statistics for solving open MIPLIB instances.}, language = {en} } @misc{FujiiItoKimetal., author = {Fujii, Koichi and Ito, Naoki and Kim, Sunyoung and Kojima, Masakazu and Shinano, Yuji and Toh, Kim-Chuan}, title = {Solving Challenging Large Scale QAPs}, issn = {1438-0064}, doi = {10.12752/8130}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81303}, abstract = {We report our progress on the project for solving larger scale quadratic assignment problems (QAPs). Our main approach to solve large scale NP-hard combinatorial optimization problems such as QAPs is a parallel branch-and-bound method efficiently implemented on a powerful computer system using the Ubiquity Generator(UG) framework that can utilize more than 100,000 cores. Lower bounding procedures incorporated in the branch-and-bound method play a crucial role in solving the problems. For a strong lower bounding procedure, we employ the Lagrangian doubly nonnegative (DNN) relaxation and the Newton-bracketing method developed by the authors' group. In this report, we describe some basic tools used in the project including the lower bounding procedure and branching rules, and present some preliminary numerical results. Our next target problem is QAPs with dimension at least 50, as we have succeeded to solve tai30a and sko42 from QAPLIB for the first time.}, language = {en} } @misc{HillerWalther, author = {Hiller, Benjamin and Walther, Tom}, title = {Modelling compressor stations in gas networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-67443}, abstract = {Gas networks are an important application area for optimization. When considering long-range transmission, compressor stations play a crucial role in these applications. The purpose of this report is to collect and systematize the models used for compressor stations in the literature. The emphasis is on recent work on simple yet accurate polyhedral models that may replace more simplified traditional models without increasing model complexity. The report also describes an extension of the compressor station data available in GasLib (http://gaslib.zib.de/) with the parameters of these models.}, language = {en} } @misc{Shinano, author = {Shinano, Yuji}, title = {The Ubiquity Generator Framework: 7 Years of Progress in Parallelizing Branch-and-Bound}, issn = {1438-0064}, doi = {10.1007/978-3-319-89920-6_20}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-65545}, abstract = {Mixed integer linear programming (MIP) is a general form to model combinatorial optimization problems and has many industrial applications. The performance of MIP solvers has improved tremendously in the last two decades and these solvers have been used to solve many real-word problems. However, against the backdrop of modern computer technology, parallelization is of pivotal importance. In this way, ParaSCIP is the most successful parallel MIP solver in terms of solving previously unsolvable instances from the well-known benchmark instance set MIPLIB by using supercomputers. It solved two instances from MIPLIB2003 and 12 from MIPLIB2010 for the first time to optimality by using up to 80,000 cores on supercomputers. ParaSCIP has been developed by using the Ubiquity Generator (UG) framework, which is a general software package to parallelize any state-of-the-art branch-and-bound based solver. This paper discusses 7 years of progress in parallelizing branch-and-bound solvers with UG.}, language = {en} } @misc{ShinanoRehfeldtKoch, author = {Shinano, Yuji and Rehfeldt, Daniel and Koch, Thorsten}, title = {Building Optimal Steiner Trees on Supercomputers by using up to 43,000 Cores}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71118}, abstract = {SCIP-JACK is a customized, branch-and-cut based solver for Steiner tree and related problems. ug [SCIP-JACK, MPI] extends SCIP-JACK to a massively par- allel solver by using the Ubiquity Generator (UG) framework. ug [SCIP-JACK, MPI] was the only solver that could run on a distributed environment at the (latest) 11th DIMACS Challenge in 2014. Furthermore, it could solve three well-known open instances and updated 14 best known solutions to instances from the bench- mark libary STEINLIB. After the DIMACS Challenge, SCIP-JACK has been con- siderably improved. However, the improvements were not reflected on ug [SCIP- JACK, MPI]. This paper describes an updated version of ug [SCIP-JACK, MPI], especially branching on constrains and a customized racing ramp-up. Furthermore, the different stages of the solution process on a supercomputer are described in detail. We also show the latest results on open instances from the STEINLIB.}, language = {en} } @misc{BreuerBussieckCaoetal., author = {Breuer, Thomas and Bussieck, Michael and Cao, Karl-Kien and Cebulla, Felix and Fiand, Frederik and Gils, Hans Christian and Gleixner, Ambros and Khabi, Dmitry and Koch, Thorsten and Rehfeldt, Daniel and Wetzel, Manuel}, title = {Optimizing Large-Scale Linear Energy System Problems with Block Diagonal Structure by Using Parallel Interior-Point Methods}, issn = {1438-0064}, doi = {10.1007/978-3-319-89920-6_85}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66183}, abstract = {Current linear energy system models (ESM) acquiring to provide sufficient detail and reliability frequently bring along problems of both high intricacy and increasing scale. Unfortunately, the size and complexity of these problems often prove to be intractable even for commercial state-of-the-art linear programming solvers. This article describes an interdisciplinary approach to exploit the intrinsic structure of these large-scale linear problems to be able to solve them on massively parallel high-performance computers. A key aspect are extensions to the parallel interior-point solver PIPS-IPM originally developed for stochastic optimization problems. Furthermore, a newly developed GAMS interface to the solver as well as some GAMS language extensions to model block-structured problems will be described.}, language = {en} } @misc{BeckerHiller, author = {Becker, Kai-Helge and Hiller, Benjamin}, title = {Improved optimization models for potential-driven network flow problems via ASTS orientations}, issn = {1438-0064}, doi = {10.12752/7534}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-75347}, abstract = {The class of potential-driven network flow problems provides important models for a range of infrastructure networks that lead to hard-to-solve MINLPs in real-world applications. On large-scale meshed networks the relaxations usually employed are rather weak due to cycles in the network. To address this situation, we introduce the concept of ASTS orientations, a generalization of bipolar orientations, as a combinatorial relaxation of feasible solutions of potential-driven flow problems, study their structure, and show how they can be used to strengthen existing relaxations and thus provide improved optimization models. Our computational results indicate that ASTS orientations can be used to derive much stronger bounds on the flow variables than existing bound tightening methods and to yield significant performance improvements for an existing state-of-the-art MILP model for large-scale gas networks.}, language = {en} } @misc{Bushe, type = {Master Thesis}, author = {Bushe, Julian}, title = {Rolling Stock Rotation Optimization with Maintenance Paths}, abstract = {Die Planung vom Zuguml{\"a}ufen ist eine der wichtigsten Aufgaben f{\"u}r Eisenbahnun- ternehmen. Dabei spielt auch die Einhaltung von vorgegebenen Wartungsintervallen eine zentrale Rolle f{\"u}r die Sicherheit und Zuverl{\"a}ssigkeit der Schienenfahrzeuge. Wir zeigen, wie man dieses Umlaufplanungsproblem unter Beachtung von Wartungsbe- dingungen mathematisch formuliert, modelliert und l{\"o}st — sowohl in der Theorie als auch im Anwendungsfall mit Szenarien der DB Fernverkehr AG, einer Konzern- tochter der Deutschen Bahn f{\"u}r den Schienenpersonenfernverkehr. Markus Reuther hat sich in seiner Dissertation [11] mit diesem Problem besch{\"a}ftigt und es mit Hilfe eines passenden Hypergraphen als gemischt-ganzzahliges Programm modelliert. Neben der Modellierung pr{\"a}sentiert Reuther in seiner Arbeit neuartige algorithmische Ideen, darunter den sogenannten Coarse-to-Fine -Ansatz, bei dem zun{\"a}chst Teile des Problems auf einer weniger detaillierten ( coarse ) Ebene gel{\"o}st werden und diese L{\"o}sung dann verwendet wird, um auf effiziente Art und Weise eine L{\"o}sung f{\"u}r das urspr{\"u}ngliche Problem zu finden. Zur Wartungsplanung nutzt Reuther einen Fluss im Hypergraphen, der den Ressourcenverbrauch der Fahrzeuge modelliert. In der linearen Relaxierung des Modells f{\"u}hrt dies dazu, dass die Zahl der notwendigen Wartungen systematisch untersch{\"a}tzt wird. Dadurch bleibt in vielen F{\"a}llen eine große L{\"u}cke zwischen dem Zielfunktionswert einer optimalen L{\"o}sung des ganzzahligen Problems und der untere Schranke, die uns die lineare Relaxierung liefert. Wir nehmen uns in dieser Arbeit dieses Problems an. Wir entwickeln ein auf Pfaden basierendes ganzzahliges Modell f{\"u}r das Umlaufplanungsproblem und zeigen, dass die untere Schranke mindestens so scharf oder sch{\"a}rfer ist als die untere Schranke, die das Modell von Reuther liefert. Um das Modell zu l{\"o}sen, entwickeln wir einen Algorithmus, der Spaltengenerierung mit dem Coarse-to-Fine-Ansatz von Reuther verbindet. Weiterhin entwickeln wir eine Spaltenauswahlregel zur Beschleunigung des Algorithmus. Das Modell und alle in der Arbeit vorgestellten Algorithmen wur- den im Rahmen der Arbeit implementiert und mit Anwendungsszenarien der DB Fernverkehr AG getestet. Unsere Tests zeigen, dass unser Modell f{\"u}r fast alle Szena- rien deutlich sch{\"a}rfere untere Schranken liefert als das Modell von Reuther. In den getesteten Instanzen konnten wir durch die Verbesserung der unteren Schranke bis zu 99\% der Optimalit{\"a}tsl{\"u}cke schließen. In einem Drittel der F{\"a}lle konnten wir durch unseren Ansatz auch f{\"u}r das ganzzahlige Programm verbesserte Zielfunktionswerte erreichen}, language = {en} } @misc{Henning, type = {Master Thesis}, author = {Henning, Erin}, title = {Tropical Geometry Approach to Shortest Paths with Parameterized Arc Weights - A Case Study in Public Transportation Networks}, abstract = {In graphical representations of public transportation networks, there is often some degree of uncertainty in the arc values, due to delays or transfer times. This uncertainty can be expressed as a parameterized weight on the transfer arcs. Classical shortest path algorithms often have difficulty handling parameterized arc weights and a tropical geometry approach has been shown as a possible solution. The connection between the classical shortest path problem and tropical geometry is well establish: Tropically multiplying the n × n adjacency matrix of a graph with itself n - 1 times results in the so-called Kleene star, and is a matrix-form solution to the all-pairs shortest path problem. Michael Joswig and Benjamin Schr{\"o}ter showed in their paper The Tropical Geometry of Shortest Paths that the same method can be used to find the solution to the all-pairs shortest path problem even in the case of variable arc weights and they proposed an algorithm to solve the single-target shortest path problem in such a case. The solution takes the form of a polyhedral subdivision of the parameter space. As the number of variable arc weights grows, the time needed to execute an implementation of this algorithm grows exponentially. As the size of a public transportation network grows, the number of variable arc weights grows exponentially as well. However, it has been observed that in public transportation networks, there are usually only a few possible shortest routes. Geometrically, this means that there should be few polyhedra in the polyhedral subdivision. This algorithm is used on an example of a real-world public transportation network and an analysis of the polyhedral subdivision is made. Then a geometrical approach is used to analyze the impact of limiting the number of transfers, and thereby limiting the number of parameterized arcs used, as an estimation of the solution to the all-pairs shortest path problem}, language = {en} } @misc{Masing, type = {Master Thesis}, author = {Masing, Berenike}, title = {Optimal Line Planning in the Parametric City}, abstract = {One of the fundamental steps in the optimization of public transport is line planning. It involves determining lines and assigning frequencies of service such that costs are minimized while also maximizing passenger comfort and satisfying travel demands. We formulate the problem as a mixed integer linear program that considers all circuit-like lines in a graph and allows free passenger routing. Traveler and operator costs are included in a linear scalarization in the objective. We apply said programming problem to the Parametric City, which is a graph model introduced by Fielbaum, Jara-D{\´i}az and Gschwender that exibly represents different cities. In his dissertation, Fielbaum solved the line planning problem for various parameter choices in the Parametric City. In a first step, we therefore review his results and make comparative computations. Unlike Fielbaum we arrive at the conclusion that the optimal line plan for this model indeed depends on the demand. Consequently, we analyze the line planning problem in-depth: We find equivalent, but easier to compute formulations and provide a lower bound by LP-relaxation, which we show to be equivalent to a multi-commodity flow problem. Further, we examine what impact symmetry has on the solutions. Supported both by computational results as well as by theoretical analysis, we reach the conclusion that symmetric line plans are optimal or near-optimal in the Parametric City. Restricting the model to symmetric line plans allows for a \kappa-factor approximation algorithm for the line planning problem in the Parametric City.}, language = {en} } @masterthesis{Lange, type = {Bachelor Thesis}, author = {Lange, Johanna}, title = {A Decomposition and Dualization Approach to the Periodic Event Scheduling Problem}, abstract = {Scheduling ist ein wichtiger Forschungsgegenstand im Bereich der diskreten Optimierung. Es geht darum, einen Schedule, d.h. einen Ablaufplan, f{\"u}r gegebene Ereignisse zu finden. Dieser soll optimal hinsichtlich einer Zielfunktion wie zum Beispiel minimaler Dauer oder Kosten sein. Dabei gibt es in der Regel Nebenbedingungen wie Vorrangbeziehungen zwischen den Ereignissen oder zeitliche Einschr{\"a}nkungen, die zu erf{\"u}llen sind. Falls die Ereignisse periodisch wiederkehren, spricht man von periodischem Scheduling. Beispiele sind das Erstellen von Zugfahrpl{\"a}nen, die Schaltungvon Ampelsignalen oder die Planung von Produktionsabl{\"a}ufen. Mathematisch k{\"o}nnen diese Probleme mit dem Periodic Event Scheduling Problem (PESP) modelliert werden, das als gemischt-ganzzahliges Programm formuliert werden kann. In dieser Bachelorarbeit wird ein Ansatz zur L{\"o}sung des PESP mittels Zerlegung und Dualisierung entwickelt. In den Kapiteln 2 und 3 werden zun{\"a}chst die notwendigen graphentheoretischen Grundlagen und das PESP eingef{\"u}hrt. In Kapitel 4 wird das PESP durch Fixierung der ganzzahligen Variablen in lineare Programme zerlegt. Dieses Unterproblem wird dualisiert und wieder in das PESP eingesetzt. Daf{\"u}r ist eine weitere Nebenbedingung n{\"o}tig. Im f{\"u}nften Kapitel behandeln wir die L{\"o}sung des teildualisierten PESP. Eine M{\"o}glichkeit ist es, sich auf eine Teilmenge der Nebenbedingungen zu beschr{\"a}nken. Eine weitere M{\"o}glichkeit ist ein Algorithmus, der{\"a}hnlich wie BendersZerlegung die Nebenbedingungen dynamisch erzeugt. Dieser Algorithmus wird in Kapitel 6 implementiert und an vier Beispielen getestet.}, language = {en} } @misc{Kuehner, type = {Master Thesis}, author = {K{\"u}hner, Arno}, title = {Shortest Paths with Boolean Constraints}, abstract = {For this thesis we study the Constrained Horizontal Flightplanning Problem (CHFPP) for which one has to find the path of minimum cost between airports s and t in a directed graph that respects a set of boolean constraints. To this end we give a survey of three different multilabel algorithms that all use a domination subroutine. We summarize an approach by Knudsen, Chiarandini and Larsen to define this domination and afterwards present our own method which builds on that approach. We suggest different implementation techniques to speed up the computation time, most notably a Reoptimization for an iterative method to solve the problem. Furthermore we implemented the different versions of the algorithm and present statistics on their computation as well as an overview of statistics on the set of real-world constraints that we were given. Finally we present two alternative approaches that tackle the problem, a heuristic with similarities to a Lagrangian relaxation and an approach that makes use of an algorithm which finds the k shortest path of a graph such as the ones of Epstein or Yen.}, language = {en} } @misc{Bortoletto, type = {Master Thesis}, author = {Bortoletto, Enrico}, title = {The tropical tiling of periodic timetable space and a dual modulo network simplex algorithm}, abstract = {We propose a tropical interpretation of the solution space of the Periodic Event Scheduling Problem as a collection of polytropes, making use of the characterization of tropical cones as weighted digraph polyhedra. General and geometric properties of the polytropal collection are inspected and understood in connection with the combinatorial properties of the underlying periodic event scheduling instance. Novel algorithmic ideas are presented and tested, making use of the aforementioned theoretical results to solve and optimize the problem.}, language = {en} } @masterthesis{Kraus, type = {Bachelor Thesis}, author = {Kraus, Luitgard}, title = {A Label Setting Multiobjective Shortest Path FPTAS}, abstract = {Algorithms that solve the shortest path problem can largely be split into the two categories of label setting and label correcting. The Multiobjective Shortest Path (MOSP) problem is a generalization of the classical shortest path problem in terms of the dimension of the cost function. We explore the differences of two similar MOSP label setting algorithms. Furthermore, we present and prove a general method of how to derive Fully Polynomial Time Approximation Schemes (FPTAS) for MOSP label setting algorithms. Finally, we explore two pruning techniques for the one to one variants of exact label setting MOSP algorithms and adapt them to their FPTAS variants.}, language = {en} } @misc{Rahmati, type = {Master Thesis}, author = {Rahmati, Niloofar}, title = {Resource Constrained APSP-Algorithm with Possible Reloading Stops}, language = {en} } @misc{BorndoerferSchwartzSurau, author = {Bornd{\"o}rfer, Ralf and Schwartz, Stephan and Surau, William}, title = {Rooted Maximum Weight Connected Subgraphs with Balancing and Capacity Constraints}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-84427}, language = {en} } @misc{Buwaya, type = {Master Thesis}, author = {Buwaya, Julia}, title = {Optimizing control in a transportation network when users may choose their OD-path}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42330}, school = {Zuse Institute Berlin (ZIB)}, pages = {81}, abstract = {This thesis represents a game-theoretic investigation of the allocation of inspectors in a transportation network, comparing Nash and Stackelberg equilibrium strategies to a strategy in which inspections are conducted proportionally to the traffic volume. It contains specifications for the integration of space and time dependencies and extensive experimental tests for the application on the transportation network of German motorways using real data. Main results are that - although the formulated spot-checking game is not zero-sum - we are able to compute a Nash equilibrium using linear programming and secondly, that experimental results yield that a Nash equilibrium strategy represents a good trade-off for the Stackelberg equilibrium strategy between efficiency of controls and computation time.}, language = {en} } @misc{HarrodSchlechte, author = {Harrod, Steven and Schlechte, Thomas}, title = {A Direct Comparison of Physical Block Occupancy Versus Timed Block Occupancy in Train Timetabling Formulations}, issn = {1438-0064}, doi = {10.1016/j.tre.2013.04.003}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17946}, abstract = {Two fundamental mathematical formulations for railway timetabling are compared on a common set of sample problems, representing both multiple track high density services in Europe and single track bidirectional operations in North America. One formulation, ACP, enforces against conflicts by constraining time intervals between trains, while the other formulation, HGF, monitors physical occupation of controlled track segments. The results demonstrate that both ACP and HGF return comparable solutions in the aggregate, with some significant differences in select instances, and a pattern of significant differences in performance and constraint enforcement overall.}, language = {en} } @misc{FuegenschuhGroesserVierhaus, author = {F{\"u}genschuh, Armin and Gr{\"o}sser, Stefan N. and Vierhaus, Ingmar}, title = {A Global Approach to the Control of an Industry Structure System Dynamics Model}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-42932}, abstract = {We consider a system dynamics model that describes the effect of human activity on natural resources. The central stocks are the accumulated profit, the industry structures, and the water resources. The model can be controlled through two time-dependent parameters. The goal in this paper is to find a parameter setting that leads to a maximization of a performance index, which reflects both environmental and economic aspects. Thus, the goal is to identify the most sustainable stock of industry structures within the model's constraints and assumptions. In order to find a proven global optimal parameter set, we formulate the System Dynamics Optimization model as a mixed-integer nonlinear problem that is accessible for numerical solvers. Due to the dynamic structure of the model, certain steps of the solution process must be handled with greater care, compared to standard non-dynamic problems. We describe our approach of solving the industry structure model and present computational results. In addition, we discuss the limitations of the approach and next steps.}, language = {en} } @misc{RaackRaymondWerneretal., author = {Raack, Christian and Raymond, Annie and Werner, Axel and Schlechte, Thomas}, title = {Integer Programming and Sports Rankings}, issn = {1438-0064}, doi = {10.1515/jqas-2013-0111}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-18068}, abstract = {Sports rankings are obtained by applying a system of rules to evaluate the performance of the participants in a competition. We consider rankings that result from assigning an ordinal rank to each competitor according to their performance. We develop an integer programming model for rankings that allows us to calculate the number of points needed to guarantee a team the ith position, as well as the minimum number of points that could yield the ith place. The model is very general and can thus be applied to many types of sports. We discuss examples coming from football (soccer), ice hockey, and Formula~1. We answer various questions and debunk a few myths along the way. Are 40 points enough to avoid relegation in the Bundesliga? Do 95 points guarantee the participation of a team in the NHL playoffs? Moreover, in the season restructuration currently under consideration in the NHL, will it be easier or harder to access the playoffs? Is it possible to win the Formula~1 World Championship without winning at least one race or without even climbing once on the podium? Finally, we observe that the optimal solutions of the aforementioned model are associated to extreme situations which are unlikely to happen. Thus, to get closer to realistic scenarios, we enhance the model by adding some constraints inferred from the results of the previous years.}, language = {en} } @misc{HosodaMaherShinanoetal., author = {Hosoda, Junko and Maher, Stephen J. and Shinano, Yuji and Villumsen, Jonas Christoffer}, title = {A parallel branch-and-bound heuristic for the integrated long-haul and local vehicle routing problem on an adaptive transportation network}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-89700}, abstract = {Consolidation of commodities and coordination of vehicle routes are fundamental features of supply chain management problems. While locations for consolidation and coordination are typically known a priori, in adaptive transportation networks this is not the case. The identification of such consolidation locations forms part of the decision making process. Supply chain management problems integrating the designation of consolidation locations with the coordination of long haul and local vehicle routing is not only challenging to solve, but also very difficult to formulate mathematically. In this paper, the first mathematical model integrating location clustering with long haul and local vehicle routing is proposed. This mathematical formulation is used to develop algorithms to find high quality solutions. A novel parallel framework is developed that combines exact and heuristic methods to improve the search for high quality solutions and provide valid bounds. The results demonstrate that using exact methods to guide heuristic search is an effective approach to find high quality solutions for difficult supply chain management problems.}, language = {en} } @misc{GleixnerBertholdMuelleretal., author = {Gleixner, Ambros and Berthold, Timo and M{\"u}ller, Benjamin and Weltge, Stefan}, title = {Three Enhancements for Optimization-Based Bound Tightening}, issn = {1438-0064}, doi = {10.1007/s10898-016-0450-4}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-57803}, abstract = {Optimization-based bound tightening (OBBT) is one of the most effective procedures to reduce variable domains of nonconvex mixed-integer nonlinear programs (MINLPs). At the same time it is one of the most expensive bound tightening procedures, since it solves auxiliary linear programs (LPs)—up to twice the number of variables many. The main goal of this paper is to discuss algorithmic techniques for an efficient implementation of OBBT. Most state-of-the-art MINLP solvers apply some restricted version of OBBT and it seems to be common belief that OBBT is beneficial if only one is able to keep its computational cost under control. To this end, we introduce three techniques to increase the efficiency of OBBT: filtering strategies to reduce the number of solved LPs, ordering heuristics to exploit simplex warm starts, and the generation of Lagrangian variable bounds (LVBs). The propagation of LVBs during tree search is a fast approximation to OBBT without the need to solve auxiliary LPs. We conduct extensive computational experiments on MINLPLib2. Our results indicate that OBBT is most beneficial on hard instances, for which we observe a speedup of 17\% to 19\% on average. Most importantly, more instances can be solved when using OBBT.}, language = {en} } @misc{Sagnol, author = {Sagnol, Guillaume}, title = {Picos Documentation. Release 0.1.1.}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17396}, abstract = {PICOS is a user friendly interface to several conic and integer programming solvers, very much like YALMIP under MATLAB. The main motivation for PICOS is to have the possibility to enter an optimization problem as a high level model, and to be able to solve it with several different solvers. Multidimensional and matrix variables are handled in a natural fashion, which makes it painless to formulate a SDP or a SOCP. This is very useful for educational purposes, and to quickly implement some models and test their validity on simple examples. Furthermore, with PICOS you can take advantage of the python programming language to read and write data, construct a list of constraints by using python list comprehensions, take slices of multidimensional variables, etc.}, language = {en} } @misc{MunguiaOxberryRajanetal., author = {Munguia, Lluis-Miquel and Oxberry, Geoffrey and Rajan, Deepak and Shinano, Yuji}, title = {Parallel PIPS-SBB: Multi-Level Parallelism For Stochastic Mixed-Integer Programs}, number = {ZIB-Report 17-58}, issn = {1438-0064}, doi = {10.1007/s10589-019-00074-0}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-65517}, abstract = {PIPS-SBB is a distributed-memory parallel solver with a scalable data distribution paradigm. It is designed to solve MIPs with a dual-block angular structure, which is characteristic of deterministic-equivalent Stochastic Mixed-Integer Programs (SMIPs). In this paper, we present two different parallelizations of Branch \& Bound (B\&B), implementing both as extensions of PIPS-SBB, thus adding an additional layer of parallelism. In the first of the proposed frameworks, PIPS-PSBB, the coordination and load-balancing of the different optimization workers is done in a decentralized fashion. This new framework is designed to ensure all available cores are processing the most promising parts of the B\&B tree. The second, ug[PIPS-SBB,MPI], is a parallel implementation using the Ubiquity Generator (UG), a universal framework for parallelizing B\&B tree search that has been successfully applied to other MIP solvers. We show the effects of leveraging multiple levels of parallelism in potentially improving scaling performance beyond thousands of cores.}, language = {en} } @misc{FujiiKimKojimaetal., author = {Fujii, Koichi and Kim, Sunyoung and Kojima, Masakazu and Mittelmann, Hans D. and Shinano, Yuji}, title = {The Largest Unsolved QAP Instance Tai256c Can Be Converted into A 256-dimensional Simple BQOP with A Single Cardinality Constraint}, issn = {1438-0064}, doi = {10.12752/8808}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-88086}, abstract = {Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB; a 1.48\% gap remains between the best known feasible objective value and lower bound of the unknown optimal value. This paper shows that the instance can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92.The converted BQOP is much simpler than the original QAP tai256c and it also inherits some of the symmetry properties. However, it is still very difficult to solve. We present an efficient branch and bound method for improving the lower bound effectively. A new lower bound with 1.36\% gap is also provided.}, language = {en} } @misc{GamrathKochMaheretal., author = {Gamrath, Gerald and Koch, Thorsten and Maher, Stephen J. and Rehfeldt, Daniel and Shinano, Yuji}, title = {SCIP-Jack - A solver for STP and variants with parallelization extensions}, issn = {1438-0064}, doi = {10.1007/s12532-016-0114-x}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60170}, abstract = {The Steiner tree problem in graphs is a classical problem that commonly arises in practical applications as one of many variants. While often a strong relationship between different Steiner tree problem variants can be observed, solution approaches employed so far have been prevalently problem-specific. In contrast, this paper introduces a general-purpose solver that can be used to solve both the classical Steiner tree problem and many of its variants without modification. This versatility is achieved by transforming various problem variants into a general form and solving them by using a state-of-the-art MIP-framework. The result is a high-performance solver that can be employed in massively parallel environments and is capable of solving previously unsolved instances.}, language = {en} } @misc{RehfeldtKochMaher, author = {Rehfeldt, Daniel and Koch, Thorsten and Maher, Stephen J.}, title = {Reduction Techniques for the Prize-Collecting Steiner Tree Problem and the Maximum-Weight Connected Subgraph Problem}, issn = {1438-0064}, doi = {10.1002/net.21857}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60420}, abstract = {The concept of reduction has frequently distinguished itself as a pivotal ingredient of exact solving approaches for the Steiner tree problem in graphs. In this paper we broaden the focus and consider reduction techniques for three Steiner problem variants that have been extensively discussed in the literature and entail various practical applications: The prize-collecting Steiner tree problem, the rooted prize-collecting Steiner tree problem and the maximum-weight connected subgraph problem. By introducing and subsequently deploying numerous new reduction methods, we are able to drastically decrease the size of a large number of benchmark instances, already solving more than 90 percent of them to optimality. Furthermore, we demonstrate the impact of these techniques on exact solving, using the example of the state-of-the-art Steiner problem solver SCIP-Jack.}, language = {en} } @misc{GottwaldMaherShinano, author = {Gottwald, Robert Lion and Maher, Stephen J. and Shinano, Yuji}, title = {Distributed domain propagation}, issn = {1438-0064}, doi = {10.4230/LIPIcs.SEA.2017.6}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61380}, abstract = {Portfolio parallelization is an approach that runs several solver instances in parallel and terminates when one of them succeeds in solving the problem. Despite it's simplicity portfolio parallelization has been shown to perform well for modern mixed-integer programming (MIP) and boolean satisfiability problem (SAT) solvers. Domain propagation has also been shown to be a simple technique in modern MIP and SAT solvers that effectively finds additional domain reductions after a variables domain has been reduced. This paper investigates the impact of distributed domain propagation in modern MIP solvers that employ portfolio parallelization. Computational experiments were conducted for two implementations of this parallelization approach. While both share global variable bounds and solutions they communicate differently. In one implementation the communication is performed only at designated points in the solving process and in the other it is performed completely asynchronously. Computational experiments show a positive performance impact of communicating global variable bounds and provide valuable insights in communication strategies for parallel solvers.}, language = {en} } @misc{MaherMiltenbergerPedrosoetal., author = {Maher, Stephen J. and Miltenberger, Matthias and Pedroso, Jo{\~a}o Pedro and Rehfeldt, Daniel and Schwarz, Robert and Serrano, Felipe}, title = {PySCIPOpt: Mathematical Programming in Python with the SCIP Optimization Suite}, issn = {1438-0064}, doi = {10.1007/978-3-319-42432-3_37}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61348}, abstract = {SCIP is a solver for a wide variety of mathematical optimization problems. It is written in C and extendable due to its plug-in based design. However, dealing with all C specifics when extending SCIP can be detrimental to development and testing of new ideas. This paper attempts to provide a remedy by introducing PySCIPOpt, a Python interface to SCIP that enables users to write new SCIP code entirely in Python. We demonstrate how to intuitively model mixed-integer linear and quadratic optimization problems and moreover provide examples on how new Python plug-ins can be added to SCIP.}, language = {en} } @misc{LindnerReisch, author = {Lindner, Niels and Reisch, Julian}, title = {Parameterized Complexity of Periodic Timetabling}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78314}, abstract = {Public transportation networks are typically operated with a periodic timetable. The Periodic Event Scheduling Problem (PESP) is the standard mathematical modelling tool for periodic timetabling. Since PESP can be solved in linear time on trees, it is a natural question to ask whether there are polynomial-time algorithms for input networks of bounded treewidth. We show that deciding the feasibility of a PESP instance is NP-hard even when the treewidth is 2, the branchwidth is 2, or the carvingwidth is 3. Analogous results hold for the optimization of reduced PESP instances, where the feasibility problem is trivial. To complete the picture, we present two pseudo-polynomial-time dynamic programming algorithms solving PESP on input networks with bounded tree- or branchwidth. We further analyze the parameterized complexity of PESP with bounded cyclomatic number, diameter, or vertex cover number. For event-activity networks with a special -- but standard -- structure, we give explicit and sharp bounds on the branchwidth in terms of the maximum degree and the carvingwidth of an underlying line network. Finally, we investigate several parameters on the smallest instance of the benchmarking library PESPlib.}, language = {en} } @misc{LindnerLiebchen, author = {Lindner, Niels and Liebchen, Christian}, title = {Timetable Merging for the Periodic Event Scheduling Problem}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81587}, abstract = {We propose a new mixed integer programming based heuristic for computing new benchmark primal solutions for instances of the PESPlib. The PESPlib is a collection of instances for the Periodic Event Scheduling Problem (PESP), comprising periodic timetabling problems inspired by real-world railway timetabling settings, and attracting several international research teams during the last years. We describe two strategies to merge a set of good periodic timetables. These make use of the instance structure and minimum weight cycle bases, finally leading to restricted mixed integer programming formulations with tighter variable bounds. Implementing this timetable merging approach in a concurrent solver, we improve the objective values of the best known solutions for the smallest and largest PESPlib instances by 1.7 and 4.3 percent, respectively.}, language = {en} } @misc{WitzigBertholdHeinz, author = {Witzig, Jakob and Berthold, Timo and Heinz, Stefan}, title = {Experiments with Conflict Analysis in Mixed Integer Programming}, issn = {1438-0064}, doi = {10.1007/978-3-319-59776-8_17}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-61087}, abstract = {The analysis of infeasible subproblems plays an import role in solving mixed integer programs (MIPs) and is implemented in most major MIP solvers. There are two fundamentally different concepts to generate valid global constraints from infeasible subproblems. The first is to analyze the sequence of implications obtained by domain propagation that led to infeasibility. The result of the analysis is one or more sets of contradicting variable bounds from which so-called conflict constraints can be generated. This concept has its origin in solving satisfiability problems and is similarly used in constraint programming. The second concept is to analyze infeasible linear programming (LP) relaxations. The dual LP solution provides a set of multipliers that can be used to generate a single new globally valid linear constraint. The main contribution of this short paper is an empirical evaluation of two ways to combine both approaches. Experiments are carried out on general MIP instances from standard public test sets such as Miplib2010; the presented algorithms have been implemented within the non-commercial MIP solver SCIP. Moreover, we present a pool-based approach to manage conflicts which addresses the way a MIP solver traverses the search tree better than aging strategies known from SAT solving.}, language = {en} } @misc{Witzig, author = {Witzig, Jakob}, title = {Conflict Driven Diving for Mixed Integer Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66116}, abstract = {The analysis of infeasibility plays an important role in solving satisfiability problems (SAT) and mixed integer programs (MIPs). In mixed integer programming, this procedure is called conflict analysis. So far, modern MIP solvers use conflict analysis only for propagation and improving the dual bound, i.e., fathoming nodes that cannot contain feasible solutions. In this short paper, we present a new approach which uses conflict information to improve the primal bound during a MIP solve. To derive new improving primal solutions we use a conflict driven diving heuristic called conflict diving that uses the information obtained by conflict analysis. Conflict diving pursues a twofold strategy. By using conflict information the new diving approach is guided into parts of the search space that are usually not explored by other diving heuristics. At the same time, conflict diving has a fail-fast-strategy to reduce the time spent if it cannot find a new primal solution. As a byproduct, additional valid conflict constraints can be derived, from which a MIP solver can gain benefit to improve the dual bound as well. To show the added-value of conflict diving within a MIP solver, conflict diving has been implemented within the non-commercial MIP solver SCIP. Experiments are carried out on general MIP instances from standard public test sets, like MIPLIB2010 or Cor@l.}, language = {en} } @misc{WitzigBeckenbachEifleretal., author = {Witzig, Jakob and Beckenbach, Isabel and Eifler, Leon and Fackeldey, Konstantin and Gleixner, Ambros and Grever, Andreas and Weber, Marcus}, title = {Mixed-Integer Programming for Cycle Detection in Non-reversible Markov Processes}, issn = {1438-0064}, doi = {10.1137/16M1091162}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-60353}, abstract = {In this paper, we present a new, optimization-based method to exhibit cyclic behavior in non-reversible stochastic processes. While our method is general, it is strongly motivated by discrete simulations of ordinary differential equations representing non-reversible biological processes, in particular molecular simulations. Here, the discrete time steps of the simulation are often very small compared to the time scale of interest, i.e., of the whole process. In this setting, the detection of a global cyclic behavior of the process becomes difficult because transitions between individual states may appear almost reversible on the small time scale of the simulation. We address this difficulty using a mixed-integer programming model that allows us to compute a cycle of clusters with maximum net flow, i.e., large forward and small backward probability. For a synthetic genetic regulatory network consisting of a ring-oscillator with three genes, we show that this approach can detect the most productive overall cycle, outperforming classical spectral analysis methods. Our method applies to general non-equilibrium steady state systems such as catalytic reactions, for which the objective value computes the effectiveness of the catalyst.}, language = {en} } @misc{WitzigGamrathHiller, author = {Witzig, Jakob and Gamrath, Gerald and Hiller, Benjamin}, title = {Reoptimization Techniques in MIP Solvers}, issn = {1438-0064}, doi = {10.1007/978-3-319-20086-6_14}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-54375}, abstract = {Recently, there have been many successful applications of optimization algorithms that solve a sequence of quite similar mixed-integer programs (MIPs) as subproblems. Traditionally, each problem in the sequence is solved from scratch. In this paper we consider reoptimization techniques that try to benefit from information obtained by solving previous problems of the sequence. We focus on the case that subsequent MIPs differ only in the objective function or that the feasible region is reduced. We propose extensions of the very complex branch-and-bound algorithms employed by general MIP solvers based on the idea to ``warmstart'' using the final search frontier of the preceding solver run. We extend the academic MIP solver SCIP by these techniques to obtain a reoptimizing branch-and-bound solver and report computational results which show the effectiveness of the approach.}, language = {en} } @article{WitzigBeckenbachEifleretal., author = {Witzig, Jakob and Beckenbach, Isabel and Eifler, Leon and Fackeldey, Konstantin and Gleixner, Ambros and Grever, Andreas and Weber, Marcus}, title = {Mixed-Integer Programming for Cycle Detection in Non-reversible Markov Processes}, series = {Multiscale Modeling and Simulation}, volume = {16}, journal = {Multiscale Modeling and Simulation}, number = {1}, issn = {1438-0064}, doi = {10.1137/16M1091162}, pages = {248 -- 265}, abstract = {In this paper, we present a new, optimization-based method to exhibit cyclic behavior in non-reversible stochastic processes. While our method is general, it is strongly motivated by discrete simulations of ordinary differential equations representing non-reversible biological processes, in particular molecular simulations. Here, the discrete time steps of the simulation are often very small compared to the time scale of interest, i.e., of the whole process. In this setting, the detection of a global cyclic behavior of the process becomes difficult because transitions between individual states may appear almost reversible on the small time scale of the simulation. We address this difficulty using a mixed-integer programming model that allows us to compute a cycle of clusters with maximum net flow, i.e., large forward and small backward probability. For a synthetic genetic regulatory network consisting of a ring-oscillator with three genes, we show that this approach can detect the most productive overall cycle, outperforming classical spectral analysis methods. Our method applies to general non-equilibrium steady state systems such as catalytic reactions, for which the objective value computes the effectiveness of the catalyst.}, language = {en} } @misc{HillerKlugWitzig, author = {Hiller, Benjamin and Klug, Torsten and Witzig, Jakob}, title = {Reoptimization in branch-and-bound algorithms with an application to elevator control}, issn = {1438-0064}, doi = {10.1007/978-3-642-38527-8_33}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-17876}, abstract = {We consider reoptimization (i.e. the solution of a problem based on information available from solving a similar problem) for branch-and-bound algorithms and propose a generic framework to construct a reoptimizing branch-and-bound algorithm. We apply this to an elevator scheduling algorithm solving similar subproblems to generate columns using branch-and-bound. Our results indicate that reoptimization techniques can substantially reduce the running times of the overall algorithm.}, language = {en} } @misc{EiflerGleixner, author = {Eifler, Leon and Gleixner, Ambros}, title = {Safe and Verified Gomory Mixed Integer Cuts in a Rational MIP Framework}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-90159}, abstract = {This paper is concerned with the exact solution of mixed-integer programs (MIPs) over the rational numbers, i.e., without any roundoff errors and error tolerances. Here, one computational bottleneck that should be avoided whenever possible is to employ large-scale symbolic computations. Instead it is often possible to use safe directed rounding methods, e.g., to generate provably correct dual bounds. In this work, we continue to leverage this paradigm and extend an exact branch-and-bound framework by separation routines for safe cutting planes, based on the approach first introduced by Cook, Dash, Fukasawa, and Goycoolea in 2009. Constraints are aggregated safely using approximate dual multipliers from an LP solve, followed by mixed-integer rounding to generate provably valid, although slightly weaker inequalities. We generalize this approach to problem data that is not representable in floating-point arithmetic, add routines for controlling the encoding length of the resulting cutting planes, and show how these cutting planes can be verified according to the VIPR certificate standard. Furthermore, we analyze the performance impact of these cutting planes in the context of an exact MIP framework, showing that we can solve 21.5\% more instances and reduce solving times by 26.8\% on the MIPLIB 2017 benchmark test set.}, language = {en} } @misc{EiflerGleixnerPulaj, author = {Eifler, Leon and Gleixner, Ambros and Pulaj, Jonad}, title = {A Safe Computational Framework for Integer Programming applied to Chv{\´a}tal's Conjecture}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-84444}, abstract = {We describe a general and safe computational framework that provides integer programming results with the degree of certainty that is required for machine-assisted proofs of mathematical theorems. At its core, the framework relies on a rational branch-and-bound certificate produced by an exact integer programming solver, SCIP, in order to circumvent floating-point roundoff errors present in most state-of-the-art solvers for mixed-integer programs. The resulting certificates are self-contained and checker software exists that can verify their correctness independently of the integer programming solver used to produce the certificate. This acts as a safeguard against programming errors that may be present in complex solver software. The viability of this approach is tested by applying it to finite cases of Chv{\´a}tal's conjecture, a long-standing open question in extremal combinatorics. We take particular care to verify also the correctness of the input for this specific problem, using the Coq formal proof assistant. As a result we are able to provide a first machine-assisted proof that Chv{\´a}tal's conjecture holds for all downsets whose union of sets contains seven elements or less.}, language = {en} } @misc{EulerBorndoerferStrunketal., author = {Euler, Ricardo and Bornd{\"o}rfer, Ralf and Strunk, Timo and Takkula, Tuomo}, title = {ULD Build-Up Scheduling with Dynamic Batching in an Air Freight Hub}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-83482}, abstract = {Air freight is usually shipped in standardized unit load devices (ULDs). The planning process for the consolidation of transit cargo from inbound flights or locally emerging shipments into ULDs for outbound flights is called build-up scheduling. More specifically, outbound ULDs must be assigned a time and a workstation subject to both workstation capacity constraints and the availability of shipments which in turn depends on break-down decisions for incoming ULDs. ULDs scheduled for the same outbound flight should be built up in temporal and spatial proximity. This serves both to minimize overhead in transportation times and to allow workers to move freight between ULDs. We propose to address this requirement by processing ULDs for the same outbound flight in batches. For the above build-up scheduling problem, we introduce a multi-commodity network design model. Outbound flights are modeled as commodities; transit cargo is represented by cargo flow volume and unpack and batch decisions are represented as design variables. The model is solved with standard MIP solvers on a set of benchmark data. For instances with a limited number of resource conflicts, near-optimal solutions are found in under two hours for a whole week of operations.}, language = {en} } @misc{LindnerLiebchen, author = {Lindner, Niels and Liebchen, Christian}, title = {Incremental Heuristics for Periodic Timetabling}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-92309}, abstract = {We present incremental heuristics for the Periodic Event Scheduling Problem (PESP), the standard mathematical tool to optimize periodic timetables in public transport. The core of our method is to solve successively larger subinstances making use of previously found solutions. Introducing the technical notion of free stratifications, we formulate a general scheme for incremental heuristics for PESP. More practically, we use line and station information to create heuristics that add lines or stations one by one, and we evaluate these heuristics on instances of the benchmarking library PESPlib. This approach is indeed viable, and leads to new incumbent solutions for six PESPlib instances.}, language = {en} } @misc{BortolettoLindner, author = {Bortoletto, Enrico and Lindner, Niels}, title = {Scaling and Rounding Periodic Event Scheduling Instances to Different Period Times}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-92315}, abstract = {The Periodic Event Scheduling Problem (PESP) is a notoriously hard combinatorial optimization problem, essential for the design of periodic timetables in public transportation. The coefficients of the integer variables in the standard mixed integer linear programming formulations of PESP are the period time, e.g., 60 for a horizon of one hour with a resolution of one minute. In many application scenarios, lines with different frequencies have to be scheduled, leading to period times with many divisors. It then seems natural to consider derived instances, where the period time is a divisor of the original one, thereby smaller, and bounds are scaled and rounded accordingly. To this end, we identify two rounding schemes: wide and tight. We then discuss the approximation performance of both strategies, in theory and practice.}, language = {en} } @misc{HendelMiltenbergerWitzig, author = {Hendel, Gregor and Miltenberger, Matthias and Witzig, Jakob}, title = {Adaptive Algorithmic Behavior for Solving Mixed Integer Programs Using Bandit Algorithms}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69563}, abstract = {State-of-the-art solvers for mixed integer programs (MIP) govern a variety of algorithmic components. Ideally, the solver adaptively learns to concentrate its computational budget on those components that perform well on a particular problem, especially if they are time consuming. We focus on three such algorithms, namely the classes of large neighborhood search and diving heuristics as well as Simplex pricing strategies. For each class we propose a selection strategy that is updated based on the observed runtime behavior, aiming to ultimately select only the best algorithms for a given instance. We review several common strategies for such a selection scenario under uncertainty, also known as Multi Armed Bandit Problem. In order to apply those bandit strategies, we carefully design reward functions to rank and compare each individual heuristic or pricing algorithm within its respective class. Finally, we discuss the computational benefits of using the proposed adaptive selection within the \scip Optimization Suite on publicly available MIP instances.}, language = {en} } @misc{AndersonTurnerKoch, author = {Anderson, Lovis and Turner, Mark and Koch, Thorsten}, title = {Generative deep learning for decision making in gas networks}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81103}, abstract = {A decision support system relies on frequent re-solving of similar problem instances. While the general structure remains the same in corresponding applications, the input parameters are updated on a regular basis. We propose a generative neural network design for learning integer decision variables of mixed-integer linear programming (MILP) formulations of these problems. We utilise a deep neural network discriminator and a MILP solver as our oracle to train our generative neural network. In this article, we present the results of our design applied to the transient gas optimisation problem. With the trained network we produce a feasible solution in 2.5s, use it as a warm-start solution, and thereby decrease global optimal solution solve time by 60.5\%.}, language = {en} } @misc{LindnerMasing, author = {Lindner, Niels and Masing, Berenike}, title = {On the Split Closure of the Periodic Timetabling Polytope}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-91156}, abstract = {The Periodic Event Scheduling Problem (PESP) is the central mathematical tool for periodic timetable optimization in public transport. PESP can be formulated in several ways as a mixed-integer linear program with typically general integer variables. We investigate the split closure of these formulations and show that split inequalities are identical with the recently introduced flip inequalities. While split inequalities are a general mixed-integer programming technique, flip inequalities are defined in purely combinatorial terms, namely cycles and arc sets of the digraph underlying the PESP instance. It is known that flip inequalities can be separated in pseudo-polynomial time. We prove that this is best possible unless P \$=\$ NP, but also observe that the complexity becomes linear-time if the cycle defining the flip inequality is fixed. Moreover, introducing mixed-integer-compatible maps, we compare the split closures of different formulations, and show that reformulation or binarization by subdivision do not lead to stronger split closures. Finally, we estimate computationally how much of the optimality gap of the instances of the benchmark library PESPlib can be closed exclusively by split cuts, and provide better dual bounds for five instances.}, language = {en} } @misc{Francobaldi, type = {Master Thesis}, author = {Francobaldi, Matteo}, title = {Learning to Use Local Cuts}, abstract = {We propose a machine learning approach to address a specific algorithmic question that arises during the solving process of a mixed-integer linear programming problem, namely, whether to use cutting planes only at the root node or also at internal nodes of the branch-and-bound search tree, or equivalently, whether to run a cut-and-branch or rather a branch-and-cut algorithm. Within a supervised regression framework, we develop three machine learning models, Linear Model, Random Forest and Neural Network, for predicting the relative performance between the two methods, local-cut and no-local-cut. Hence, through an extensive computational study conducted with FICO Xpress over a large test bed of problems, we evaluate the produced strategies, and we show that they are able to provide, upon the existing policies, a significant improvement to the performance of the solver. In fact, a variant of the random forest suggested in the present work has already been implemented by the development team of Xpress, and released with version 8.13 of the software.}, language = {en} } @misc{SchieweGoerigkLindner, author = {Schiewe, Philine and Goerigk, Marc and Lindner, Niels}, title = {Introducing TimPassLib - A library for integrated periodic timetabling and passenger routing}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-89741}, abstract = {Classic models to derive a timetable for public transport often face a chicken-and-egg situation: A good timetable should offer passengers routes with small travel times, but the route choice of passengers depends on the timetable. While models that fix passenger routes were frequently considered in the literature, integrated models that simultaneously optimize timetables and passenger routes have seen increasing attention lately. This creates a growing need for a set of instances that allows to test and compare new algorithmic developments for the integrated problem. Our paper addresses this requirement by presenting TimPassLib, a new benchmark library of instances for integrated periodic timetabling and passenger routing.}, language = {en} } @misc{MasingLindnerEbert, author = {Masing, Berenike and Lindner, Niels and Ebert, Patricia}, title = {Forward and Line-Based Cycle Bases for Periodic Timetabling}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-89731}, abstract = {The optimization of periodic timetables is an indispensable planning task in public transport. Although the periodic event scheduling problem (PESP) provides an elegant mathematical formulation of the periodic timetabling problem that led to many insights for primal heuristics, it is notoriously hard to solve to optimality. One reason is that for the standard mixed-integer linear programming formulations, linear programming relaxations are weak and the integer variables are of pure technical nature and in general do not correlate with the objective value. While the first problem has been addressed by developing several families of cutting planes, we focus on the second aspect. We discuss integral forward cycle bases as a concept to compute improved dual bounds for PESP instances. To this end, we develop the theory of forward cycle bases on general digraphs. Specifically for the application of timetabling, we devise a generic procedure to construct line-based event-activity networks, and give a simple recipe for an integral forward cycle basis on such networks. Finally, we analyze the 16 railway instances of the benchmark library PESPlib, match them to the line-based structure and use forward cycle bases to compute better dual bounds for 14 out of the 16 instances.}, language = {en} } @phdthesis{Miltenberger, author = {Miltenberger, Matthias}, title = {Linear Programming in MILP Solving - A Computational Perspective}, publisher = {Verlag Dr. Hut GmbH}, isbn = {9783843953238}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-91873}, pages = {237}, abstract = {Mixed-integer linear programming (MILP) plays a crucial role in the field of mathematical optimization and is especially relevant for practical applications due to the broad range of problems that can be modeled in that fashion. The vast majority of MILP solvers employ the LP-based branch-and-cut approach. As the name suggests, the linear programming (LP) subproblems that need to be solved therein influence their behavior and performance significantly. This thesis explores the impact of various LP solvers as well as LP solving techniques on the constraint integer programming framework SCIP Optimization Suite. SCIP allows for comparisons between academic and open-source LP solvers like Clp and SoPlex, as well as commercially developed, high-end codes like CPLEX, Gurobi, and Xpress. We investigate how the overall performance and stability of an MILP solver can be improved by new algorithmic enhancements like LP solution polishing and persistent scaling that we have implemented in the LP solver SoPlex. The former decreases the fractionality of LP solutions by selecting another vertex on the optimal hyperplane of the LP relaxation, exploiting degeneracy. The latter provides better numerical properties for the LP solver throughout the MILP solving process by preserving and extending the initial scaling factors, effectively also improving the overall performance of SCIP. Both enhancement techniques are activated by default in the SCIP Optimization Suite. Additionally, we provide an analysis of numerical conditions in SCIP through the lens of the LP solver by comparing different measures and how these evolve during the different stages of the solving process. A side effect of our work on this topic was the development of TreeD: a new and convenient way of presenting the search tree interactively and animated in the three-dimensional space. This visualization technique facilitates a better understanding of the MILP solving process of SCIP. Furthermore, this thesis presents the various algorithmic techniques like the row representation and iterative refinement that are implemented in SoPlex and that distinguish the solver from other simplex-based codes. Although it is often not as performant as its competitors, SoPlex demonstrates the ongoing research efforts in the field of linear programming with the simplex method. Aside from that, we demonstrate the rapid prototyping of algorithmic ideas and modeling approaches via PySCIPOpt, the Python interface to the SCIP Optimization Suite. This tool allows for convenient access to SCIP's internal data structures from the user-friendly Python programming language to implement custom algorithms and extensions without any prior knowledge of SCIP's programming language C. TreeD is one such example, demonstrating the use of several Python libraries on top of SCIP. PySCIPOpt also provides an intuitive modeling layer to formulate problems directly in the code without having to utilize another modeling language or framework. All contributions presented in this thesis are readily accessible in source code in SCIP Optimization Suite or as separate projects on the public code-sharing platform GitHub.}, language = {en} } @misc{EiflerGleixner, author = {Eifler, Leon and Gleixner, Ambros}, title = {A Computational Status Update for Exact Rational Mixed Integer Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-81298}, abstract = {The last milestone achievement for the roundoff-error-free solution of general mixed integer programs over the rational numbers was a hybrid-precision branch-and-bound algorithm published by Cook, Koch, Steffy, and Wolter in 2013. We describe a substantial revision and extension of this framework that integrates symbolic presolving, features an exact repair step for solutions from primal heuristics, employs a faster rational LP solver based on LP iterative refinement, and is able to produce independently verifiable certificates of optimality. We study the significantly improved performance and give insights into the computational behavior of the new algorithmic components. On the MIPLIB 2017 benchmark set, we observe an average speedup of 6.6x over the original framework and 2.8 times as many instances solved within a time limit of two hours.}, language = {en} } @misc{PetkovicChenGamrathetal., author = {Petkovic, Milena and Chen, Ying and Gamrath, Inken and Gotzes, Uwe and Hadjidimitriou, Natalia Selini and Zittel, Janina and Xu, Xiaofei and Koch, Thorsten}, title = {A Hybrid Approach for High Precision Prediction of Gas Flows}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-73525}, abstract = {About 20\% of the German energy demand is supplied by natural gas. Ad- ditionally, for about twice the amount Germany serves as a transit country. Thereby, the German network represents a central hub in the European natural gas transport network. The transport infrastructure is operated by so-called transmissions system operators or TSOs. The number one priority of the TSOs is to ensure security of supply. However, the TSOs have no knowledge of the intentions and planned actions of the shippers (traders). Open Grid Europe (OGE), one of Germany's largest TSO, operates a high- pressure transport network of about 12.000 km length. Since flexibility and security of supply is of utmost importance to the German Energy Transition ("Energiewende") especially with the introduction of peak-load gas power stations, being able to predict in- and out-flow of the network is of great importance. In this paper we introduce a new hybrid forecast method applied to gas flows at the boundary nodes of a transport network. The new method employs optimized feature minimization and selection. We use a combination of an FAR, LSTM DNN and mathematical programming to achieve robust high quality forecasts on real world data for different types of network nodes. Keywords: Gas Forecast, Time series, Hybrid Method, FAR, LSTM, Mathematical Optimisation}, language = {en} } @misc{TurnerChmielaKochetal., author = {Turner, Mark and Chmiela, Antonia and Koch, Thorsten and Winkler, Michael}, title = {PySCIPOpt-ML: Embedding Trained Machine Learning Models into Mixed-Integer Programs}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-93095}, abstract = {A standard tool for modelling real-world optimisation problems is mixed-integer programming (MIP). However, for many of these problems there is either incomplete information describing variable relations, or the relations between variables are highly complex. To overcome both these hurdles, machine learning (ML) models are often used and embedded in the MIP as surrogate models to represent these relations. Due to the large amount of available ML frameworks, formulating ML models into MIPs is highly non-trivial. In this paper we propose a tool for the automatic MIP formulation of trained ML models, allowing easy integration of ML constraints into MIPs. In addition, we introduce a library of MIP instances with embedded ML constraints. The project is available at https://github.com/Opt-Mucca/PySCIPOpt-ML.}, language = {en} } @misc{TurnerBertholdBesancon, author = {Turner, Mark and Berthold, Timo and Besan{\c{c}}on, Mathieu}, title = {A Context-Aware Cutting Plane Selection Algorithm for Mixed-Integer Programming}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-91691}, abstract = {The current cut selection algorithm used in mixed-integer programming solvers has remained largely unchanged since its creation. In this paper, we propose a set of new cut scoring measures, cut filtering techniques, and stopping criteria, extending the current state-of-the-art algorithm and obtaining a 5\\% performance improvement for SCIP over the MIPLIB 2017 benchmark set.}, language = {en} } @misc{BorndoerferDaneckerWeiser, author = {Bornd{\"o}rfer, Ralf and Danecker, Fabian and Weiser, Martin}, title = {Convergence Properties of Newton's Method for Globally Optimal Free Flight Trajectory Optimization}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-91309}, abstract = {The algorithmic efficiency of Newton-based methods for Free Flight Trajectory Optimization is heavily influenced by the size of the domain of convergence. We provide numerical evidence that the convergence radius is much larger in practice than what the theoretical worst case bounds suggest. The algorithm can be further improved by a convergence-enhancing domain decomposition.}, language = {en} } @phdthesis{Turner, author = {Turner, Mark}, title = {Cutting Plane Selection for Mixed-Integer Linear Programming}, abstract = {Mixed-Integer Linear Programming (MILP) is a ubiquitous and practical modelling paradigm that is essential for optimising a broad range of real-world systems. The backbone of all modern MILP solvers is the branch-and-cut algorithm, which is a hybrid of the branch-and-bound and cutting planes algorithms. Cutting planes (cuts) are linear inequalities that tighten the relaxation of a MILP. While a lot of research has gone into deriving valid cuts for MILPs, less emphasis has been put on determining which cuts to select. Cuts in general are generated in rounds, and a subset of the generated cuts must be added to the relaxation. The decision on which subset of cuts to add is called cut selection. This is a crucial task since adding too many cuts makes the relaxation large and slow to optimise over. Conversely, adding too few cuts results in an insufficiently tightened relaxation, and more relaxations need to be enumerated. To further emphasise the difficulty, the effectiveness of an applied cut is both dependent on the other applied cuts, and the state of the MILP solver. In this thesis, we present theoretical results on the importance and difficulty of cut selection, as well as practical results that use cut selection to improve general MILP solver performance. Improving general MILP solver performance is of great importance for practitioners and has many runoff effects. Reducing the solve time of currently solved systems can directly improve efficiency within the application area. In addition, improved performance enables larger systems to be modelled and optimised, and MILP to be used in areas where it was previously impractical due to time restrictions. Each chapter of this thesis corresponds to a publication on cut selection, where the contributions of this thesis can naturally be divided into four components. The first two components are motivated by instance-dependent performance. In practice, for each subroutine, including cut selection, MILP solvers have adjustable parameters with hard-coded default values. It is ultimately unrealistic to expect these default values to perform well for every instance. Rather, it would be ideal if the parameters were dependent on the given instance. To show this motivation is well founded, we first introduce a family of parametric MILP instances and cuts to showcase worst-case performance of cut selection for any fixed parameter value. We then introduce a graph neural network architecture and reinforcement learning framework for learning instance-dependent cut scoring parameters. In the following component, we formalise language for determining if a cut has theoretical usefulness from a polyhedral point of view in relation to other cuts. In addition, to overcome issues of infeasible projections and dual degeneracy, we introduce analytic center based distance measures. We then construct a lightweight multi-output regression model that predicts relative solver performance of an instance for a set of distance measures. The final two components are motivated by general MILP solver improvement via cut selection. Such improvement was shown to be possible, albeit difficult to achieve, by the first half of this thesis. We relate branch-and-bound and cuts through their underlying disjunctions. Using a history of previously computed Gomory mixed-integer cuts, we reduce the solve time of SCIP over the 67\% of affected MIPLIB 2017 instances by 4\%. In the final component, we introduce new cut scoring measures and filtering methods based on information from other MILP solving processes. The new cut selection techniques reduce the solve time of SCIP over the 97\% of affected MIPLIB 2017 instances by 5\%.}, language = {en} } @misc{TurnerBertholdBesanconetal., author = {Turner, Mark and Berthold, Timo and Besan{\c{c}}on, Mathieu and Koch, Thorsten}, title = {Cutting Plane Selection with Analytic Centers and Multiregression}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-89065}, abstract = {Cutting planes are a crucial component of state-of-the-art mixed-integer programming solvers, with the choice of which subset of cuts to add being vital for solver performance. We propose new distance-based measures to qualify the value of a cut by quantifying the extent to which it separates relevant parts of the relaxed feasible set. For this purpose, we use the analytic centers of the relaxation polytope or of its optimal face, as well as alternative optimal solutions of the linear programming relaxation. We assess the impact of the choice of distance measure on root node performance and throughout the whole branch-and-bound tree, comparing our measures against those prevalent in the literature. Finally, by a multi-output regression, we predict the relative performance of each measure, using static features readily available before the separation process. Our results indicate that analytic center-based methods help to significantly reduce the number of branch-and-bound nodes needed to explore the search space and that our multiregression approach can further improve on any individual method.}, language = {en} } @misc{TurnerBertholdBesanconetal., author = {Turner, Mark and Berthold, Timo and Besan{\c{c}}on, Mathieu and Koch, Thorsten}, title = {Branching via Cutting Plane Selection: Improving Hybrid Branching}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-91120}, abstract = {Cutting planes and branching are two of the most important algorithms for solving mixed-integer linear programs. For both algorithms, disjunctions play an important role, being used both as branching candidates and as the foundation for some cutting planes. We relate branching decisions and cutting planes to each other through the underlying disjunctions that they are based on, with a focus on Gomory mixed-integer cuts and their corresponding split disjunctions. We show that selecting branching decisions based on quality measures of Gomory mixed-integer cuts leads to relatively small branch-and-bound trees, and that the result improves when using cuts that more accurately represent the branching decisions. Finally, we show how the history of previously computed Gomory mixed-integer cuts can be used to improve the performance of the state-of-the-art hybrid branching rule of SCIP. Our results show a 4\% decrease in solve time, and an 8\% decrease in number of nodes over affected instances of MIPLIB 2017.}, language = {en} } @misc{GamrathAndersonBestuzhevaetal., author = {Gamrath, Gerald and Anderson, Daniel and Bestuzheva, Ksenia and Chen, Wei-Kun and Eifler, Leon and Gasse, Maxime and Gemander, Patrick and Gleixner, Ambros and Gottwald, Leona and Halbig, Katrin and Hendel, Gregor and Hojny, Christopher and Koch, Thorsten and Le Bodic, Pierre and Maher, Stephen J. and Matter, Frederic and Miltenberger, Matthias and M{\"u}hmer, Erik and M{\"u}ller, Benjamin and Pfetsch, Marc and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Tawfik, Christine and Vigerske, Stefan and Wegscheider, Fabian and Weninger, Dieter and Witzig, Jakob}, title = {The SCIP Optimization Suite 7.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-78023}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming frame- work SCIP. This paper discusses enhancements and extensions contained in version 7.0 of the SCIP Optimization Suite. The new version features the parallel presolving library PaPILO as a new addition to the suite. PaPILO 1.0 simplifies mixed-integer linear op- timization problems and can be used stand-alone or integrated into SCIP via a presolver plugin. SCIP 7.0 provides additional support for decomposition algorithms. Besides im- provements in the Benders' decomposition solver of SCIP, user-defined decomposition structures can be read, which are used by the automated Benders' decomposition solver and two primal heuristics. Additionally, SCIP 7.0 comes with a tree size estimation that is used to predict the completion of the overall solving process and potentially trigger restarts. Moreover, substantial performance improvements of the MIP core were achieved by new developments in presolving, primal heuristics, branching rules, conflict analysis, and symmetry handling. Last, not least, the report presents updates to other components and extensions of the SCIP Optimization Suite, in particular, the LP solver SoPlex and the mixed-integer semidefinite programming solver SCIP-SDP.}, language = {en} } @misc{GleixnerEiflerGallyetal., author = {Gleixner, Ambros and Eifler, Leon and Gally, Tristan and Gamrath, Gerald and Gemander, Patrick and Gottwald, Robert Lion and Hendel, Gregor and Hojny, Christopher and Koch, Thorsten and Miltenberger, Matthias and M{\"u}ller, Benjamin and Pfetsch, Marc and Puchert, Christian and Rehfeldt, Daniel and Schl{\"o}sser, Franziska and Serrano, Felipe and Shinano, Yuji and Viernickel, Jan Merlin and Vigerske, Stefan and Weninger, Dieter and Witt, Jonas T. and Witzig, Jakob}, title = {The SCIP Optimization Suite 5.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-66297}, abstract = {This article describes new features and enhanced algorithms made available in version 5.0 of the SCIP Optimization Suite. In its central component, the constraint integer programming solver SCIP, remarkable performance improvements have been achieved for solving mixed-integer linear and nonlinear programs. On MIPs, SCIP 5.0 is about 41 \% faster than SCIP 4.0 and over twice as fast on instances that take at least 100 seconds to solve. For MINLP, SCIP 5.0 is about 17 \% faster overall and 23 \% faster on instances that take at least 100 seconds to solve. This boost is due to algorithmic advances in several parts of the solver such as cutting plane generation and management, a new adaptive coordination of large neighborhood search heuristics, symmetry handling, and strengthened McCormick relaxations for bilinear terms in MINLPs. Besides discussing the theoretical background and the implementational aspects of these developments, the report describes recent additions for the other software packages connected to SCIP, in particular for the LP solver SoPlex, the Steiner tree solver SCIP-Jack, the MISDP solver SCIP-SDP, and the parallelization framework UG.}, language = {en} } @misc{GleixnerBastubbeEifleretal., author = {Gleixner, Ambros and Bastubbe, Michael and Eifler, Leon and Gally, Tristan and Gamrath, Gerald and Gottwald, Robert Lion and Hendel, Gregor and Hojny, Christopher and Koch, Thorsten and L{\"u}bbecke, Marco and Maher, Stephen J. and Miltenberger, Matthias and M{\"u}ller, Benjamin and Pfetsch, Marc and Puchert, Christian and Rehfeldt, Daniel and Schl{\"o}sser, Franziska and Schubert, Christoph and Serrano, Felipe and Shinano, Yuji and Viernickel, Jan Merlin and Walter, Matthias and Wegscheider, Fabian and Witt, Jonas T. and Witzig, Jakob}, title = {The SCIP Optimization Suite 6.0}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69361}, abstract = {The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 6.0 of the SCIP Optimization Suite. Besides performance improvements of the MIP and MINLP core achieved by new primal heuristics and a new selection criterion for cutting planes, one focus of this release are decomposition algorithms. Both SCIP and the automatic decomposition solver GCG now include advanced functionality for performing Benders' decomposition in a generic framework. GCG's detection loop for structured matrices and the coordination of pricing routines for Dantzig-Wolfe decomposition has been significantly revised for greater flexibility. Two SCIP extensions have been added to solve the recursive circle packing problem by a problem-specific column generation scheme and to demonstrate the use of the new Benders' framework for stochastic capacitated facility location. Last, not least, the report presents updates and additions to the other components and extensions of the SCIP Optimization Suite: the LP solver SoPlex, the modeling language Zimpl, the parallelization framework UG, the Steiner tree solver SCIP-Jack, and the mixed-integer semidefinite programming solver SCIP-SDP.}, language = {en} } @misc{LindnerMasing, author = {Lindner, Niels and Masing, Berenike}, title = {SAT-Generated Initial Solutions for Integrated Line Planning and Turn-Sensitive Periodic Timetabling with Track Choice}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-94644}, abstract = {Periodic timetabling is a challenging planning task in public transport. As safety requirements are crucial, track allocation is indispensable for validating the practical feasibility of a railway timetable. For busy stations with limited capacities, this requires a detailed planning of turnarounds. It is therefore desirable to integrate timetabling not only with track allocation, but also with vehicle scheduling and line planning. This is captured by the Integrated Line Planning and Turn-Sensitive Periodic Timetabling Problem with Track Choice, whose MIP formulation has been demonstrated to be effective for construction site railway rescheduling, as long as a good quality initial solution is available. In this paper, we discuss how to generate such a solution by extending the SAT formulation of the Periodic Event Scheduling Problem with track choice, track occupation, and minimum service frequency components. The SAT approach is superior to pure MIP on real-world instances of the S-Bahn Berlin network.}, language = {en} } @misc{BorndoerferLindnerRoth, author = {Bornd{\"o}rfer, Ralf and Lindner, Niels and Roth, Sarah}, title = {A Concurrent Approach to the Periodic Event Scheduling Problem}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-71907}, abstract = {We introduce a concurrent solver for the periodic event scheduling problem (PESP). It combines mixed integer programming techniques, the modulo network simplex method, satisfiability approaches, and a new heuristic based on maximum cuts. Running these components in parallel speeds up the overall solution process. This enables us to significantly improve the current upper and lower bounds for all benchmark instances of the library PESPlib.}, language = {en} } @misc{BorndoerferHoppmannKarbsteinetal., author = {Bornd{\"o}rfer, Ralf and Hoppmann, Heide and Karbstein, Marika and Lindner, Niels}, title = {Separation of Cycle Inequalities in Periodic Timetabling}, issn = {1438-0064}, doi = {https://doi.org/10.1016/j.disopt.2019.100552}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-69746}, abstract = {Cycle inequalities play an important role in the polyhedral study of the periodic timetabling problem. We give the first pseudo-polynomial time separation algo- rithm for cycle inequalities, and we give a rigorous proof for the pseudo-polynomial time separability of the change-cycle inequalities. Moreover, we provide several NP-completeness results, indicating that pseudo-polynomial time is best possible. The efficiency of these cutting planes is demonstrated on real-world instances of the periodic timetabling problem.}, language = {en} } @misc{Prause, author = {Prause, Felix}, title = {A Multi-Swap Heuristic for Rolling Stock Rotation Planning with Predictive Maintenance}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-93133}, abstract = {We present a heuristic solution approach for the rolling stock rotation problem with predictive maintenance (RSRP-PdM). The task of this problem is to assign a sequence of trips to each of the vehicles and to schedule their maintenance such that all trips can be operated. Here, the health states of the vehicles are considered to be random variables distributed by a family of probability distribution functions, and the maintenance services should be scheduled based on the failure probability of the vehicles. The proposed algorithm first generates a solution by solving an integer linear program and then heuristically improves this solution by applying a local search procedure. For this purpose, the trips assigned to the vehicles are split up and recombined, whereby additional deadhead trips can be inserted between the partial assignments. Subse- quently, the maintenance is scheduled by solving a shortest path problem in a state-expanded version of a space-time graph restricted to the trips of the individual vehicles. The solution approach is tested and evaluated on a set of test instances based on real-world timetables.}, language = {en} } @misc{PrauseBorndoerfer, author = {Prause, Felix and Bornd{\"o}rfer, Ralf}, title = {Construction of a Test Library for the Rolling Stock Rotation Problem with Predictive Maintenance}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-91734}, abstract = {We describe the development of a test library for the rolling stock rotation problem with predictive maintenance (RSRP-PdM). Our approach involves the utilization of genuine timetables from a private German railroad company. The generated instances incorporate probability distribution functions for modeling the health states of the vehicles and the considered trips possess varying degradation functions. RSRP-PdM involves assigning trips to a fleet of vehicles and scheduling their maintenance based on their individual health states. The goal is to minimize the total costs consisting of operational costs and the expected costs associated with vehicle failures. The failure probability is dependent on the health states of the vehicles, which are assumed to be random variables distributed by a family of probability distributions. Each distribution is represented by the parameters characterizing it and during the operation of the trips, these parameters get altered. Our approach incorporates non-linear degradation functions to describe the inference of the parameters but also linear ones could be applied. The resulting instances consist of the timetables of the individual lines that use the same vehicle type. Overall, we employ these assumptions and utilize open-source data to create a library of instances with varying difficulty. Our approach is vital for evaluating and comparing algorithms designed to solve the RSRP-PdM.}, language = {en} } @article{EulerLindnerBorndoerfer, author = {Euler, Ricardo and Lindner, Niels and Bornd{\"o}rfer, Ralf}, title = {Price optimal routing in public transportation}, series = {EURO Journal on Transportation and Logistics}, volume = {13}, journal = {EURO Journal on Transportation and Logistics}, publisher = {Elsevier BV}, issn = {2192-4376}, doi = {10.1016/j.ejtl.2024.100128}, pages = {1 -- 15}, language = {en} } @misc{PrauseBorndoerferGrimmetal., author = {Prause, Felix and Bornd{\"o}rfer, Ralf and Grimm, Boris and Tesch, Alexander}, title = {Approximating the RSRP with Predictive Maintenance}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-89531}, abstract = {We study the solution of the rolling stock rotation problem with predictive maintenance (RSRP-PM) by an iterative refinement approach that is based on a state-expanded event-graph. In this graph, the states are parameters of a failure distribution, and paths correspond to vehicle rotations with associated health state approximations. An optimal set of paths including maintenance can be computed by solving an integer linear program. Afterwards, the graph is refined and the procedure repeated. An associated linear program gives rise to a lower bound that can be used to determine the solution quality. Computational results for two instances derived from real world timetables of a German railway company are presented. The results show the effectiveness of the approach and the quality of the solutions.}, language = {en} } @misc{PetkovicZakiyeva, author = {Petkovic, Milena and Zakiyeva, Nazgul}, title = {Mathematical Optimization for Analyzing and Forecasting Nonlinear Network Time Series}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-88037}, abstract = {This work presents an innovative short to mid-term forecasting model that analyzes nonlinear complex spatial and temporal dynamics in energy networks under demand and supply balance constraints using Network Nonlinear Time Series (TS) and Mathematical Programming (MP) approach. We address three challenges simultaneously, namely, the adjacency matrix is unknown; the total amount in the network has to be balanced; dependence is unnecessarily linear. We use a nonparametric approach to handle the nonlinearity and estimate the adjacency matrix under the sparsity assumption. The estimation is conducted with the Mathematical Optimisation method. We illustrate the accuracy and effectiveness of the model on the example of the natural gas transmission network of one of the largest transmission system operators (TSOs) in Germany, Open Grid Europe. The obtained results show that, especially for shorter forecasting horizons, the proposed method outperforms all considered benchmark models, improving the average nMAPE for 5.1\% and average RMSE for 79.6\% compared to the second-best model. The model is capable of capturing the nonlinear dependencies in the complex spatial-temporal network dynamics and benefits from both sparsity assumption and the demand and supply balance constraint.}, language = {en} } @misc{Pedersen, type = {Master Thesis}, author = {Pedersen, Jaap}, title = {Multiperiod Optimal Power Flow Problem In Distribution System Planning}, pages = {61}, abstract = {Growing demand, distributed generation, such as renewable energy sources (RES), and the increasing role of storage systems to mitigate the volatility of RES on a medium voltage level, push existing distribution grids to their limits. Therefore, necessary network expansion needs to be evaluated to guarantee a safe and reliable electricity supply in the future taking these challenges into account. This problem is formulated as an optimal power flow (OPF) problem which combines network expansion, volatile generation and storage systems, minimizing network expansion and generation costs. As storage systems introduce a temporal coupling into the system, a multiperiod OPF problem is needed and analysed in this thesis. To reduce complexity, the network expansion problem is represented in a continuous nonlinear programming formulation by using fundamental properties of electrical engeneering. This formulation is validated succesfully against a common mixed integer programming approach on a 30 and 57 bus network with respect to solution and computing time. As the OPF problem is, in general, a nonconvex, nonlinear problem and, thus, hard to solve, convex relaxations of the power flow equations have gained increasing interest. Sufficient conditions are represented which guarantee exactness of a second-order cone (SOC) relaxation of an operational OPF in radial networks. In this thesis, these conditions are enhanced for the network expansion planning problem. Additionally, nonconvexities introduced by the choice of network expansion variables are relaxed by using McCormick envelopes. These relaxations are then applied on the multiperiod OPF and compared to the original problem on a 30 and a 57 bus network. In particular, the computational time is decreased by an order up to 10^2 by the SOC relaxation while it provides either an exact solution or a sufficient lower bound on the original problem. Finally, a sensitivity study is performed on weights of network expansion costs showing strong dependency of both the solution of performed expansion and solution time on the chosen weights.}, language = {en} } @misc{FujiiKimKojimaetal., author = {Fujii, Koichi and Kim, Sunyoung and Kojima, Masakazu and Mittelmann, Hans D. and Shinano, Yuji}, title = {An Exceptionally Difficult Binary Quadratic Optimization Problem with Symmetry: a Challenge for The Largest Unsolved QAP Instance Tai256c}, issn = {1438-0064}, url = {http://nbn-resolving.de/urn:nbn:de:0297-zib-93072}, abstract = {Tai256c is the largest unsolved quadratic assignment problem (QAP) instance in QAPLIB. It is known that QAP tai256c can be converted into a 256 dimensional binary quadratic optimization problem (BQOP) with a single cardinality constraint which requires the sum of the binary variables to be 92. As the BQOP is much simpler than the original QAP, the conversion increases the possibility to solve the QAP. Solving exactly the BQOP, however, is still very difficult. Indeed, a 1.48\% gap remains between the best known upper bound (UB) and lower bound (LB) of the unknown optimal value. This paper shows that the BQOP admits a nontrivial symmetry, a property that makes the BQOP very hard to solve. The symmetry induces equivalent subproblems in branch and bound (BB) methods. To effectively improve the LB, we propose an efficient BB method that incorporates a doubly nonnegative relaxation, the standard orbit branching and a technique to prune equivalent subproblems. With this BB method, a new LB with 1.25\% gap is successfully obtained, and computing an LB with 1.0\% gap is shown to be still quite difficult.}, language = {en} }