OPUS 4 Latest Documents RSS FeedLatest documents
http://opus4.kobv.de/opus4-ubbayreuth/index/index/
Sat, 11 May 2013 10:04:42 +0100Sat, 11 May 2013 10:04:42 +0100Computational Bounds for Elevator Control Policies by Large Scale Linear Programming
http://opus4.kobv.de/opus4-ubbayreuth/frontdoor/index/index/docId/1378
We computationally assess policies for the elevator control problem by a new column-generation approach for the linear programming method for discounted infinite-horizon Markov decision problems. By analyzing the optimality of given actions in given states, we were able to provably improve the well-known nearest-neighbor policy. Moreover, with the method we could identify an optimal parking policy. This approach can be used to detect and resolve weaknesses in particular policies for Markov decision problems.Stefan Heinz; Jörg Rambau; Andreas Tuchschererpreprinthttp://opus4.kobv.de/opus4-ubbayreuth/frontdoor/index/index/docId/1378Tue, 05 Nov 2013 10:04:42 +0100The Top-Dog Index: A New Measurement for the Demand Consistency of the Size Distribution in Pre-Pack Orders for a Fashion Discounter with Many Small Branches
http://opus4.kobv.de/opus4-ubbayreuth/frontdoor/index/index/docId/374
We propose the new Top-Dog-Index, a measure for the branch-dependent historic deviation of the supply data of apparel sizes from the sales data of a fashion discounter. A common approach is to estimate demand for sizes directly from the sales data. This approach may yield information for the demand for sizes if aggregated over all branches and products. However, as we will show in a real-world business case, this direct approach is in general not capable to provide information about each branchs individual demand for sizes: the supply per branch is so small that either the number of sales is statistically too small for a good estimate (early measurement) or there will be too much unsatisfied demand neglected in the sales data (late measurement). Moreover, in our real-world data we could not verify any of the demand distribution assumptions suggested in the literature. Our approach cannot estimate the demand for sizes directly. It can, however, individually measure for each branch the scarcest and the amplest sizes, aggregated over all products. This measurement can iteratively be used to adapt the size distributions in the pre-pack orders for the future. A real-world blind study shows the potential of this distribution free heuristic optimization approach: The gross yield measured in percent of gross value was almost one percentage point higher in the test-group branches than in the control-group branches.Sascha Kurz; Jörg Rambau; Jörg Schlüchtermann; Rainer Wolfpreprinthttp://opus4.kobv.de/opus4-ubbayreuth/frontdoor/index/index/docId/374Tue, 15 Apr 2008 10:59:29 +0200Lotsize optimization leading to a p-median problem with cardinalities
http://opus4.kobv.de/opus4-ubbayreuth/frontdoor/index/index/docId/373
We consider the problem of approximating the branch and size dependent demand of a fashion discounter with many branches by a distributing process being based on the branch delivery restricted to integral multiples of lots from a small set of available lot-types. We propose a formalized model which arises from a practical cooperation with an industry partner. Besides an integer linear programming formulation and a primal heuristic for this problem we also consider a more abstract version which we relate to several other classical optimization problems like the p-median problem, the facility location problem or the matching problem.Constantin Gaul; Sascha Kurz; Jörg Rambaupreprinthttp://opus4.kobv.de/opus4-ubbayreuth/frontdoor/index/index/docId/373Tue, 15 Apr 2008 10:55:26 +0200Demand forecasting for companies with many branches, low sales numbers per product, and non-recurring orderings
http://opus4.kobv.de/opus4-ubbayreuth/frontdoor/index/index/docId/368
We propose the new Top-Dog-Index to quantify the historic deviation of the supply data of many small branches for a commodity group from sales data. On the one hand, the common parametric assumptions on the customer demand distribution in the literature could not at all be supported in our real-world data set. On the other hand, a reasonably-looking non-parametric approach to estimate the demand distribution for the different branches directly from the sales distribution could only provide us with statistically weak and unreliable estimates for the future demand.Sascha Kurz; Jörg Rambauarticlehttp://opus4.kobv.de/opus4-ubbayreuth/frontdoor/index/index/docId/368Tue, 15 Apr 2008 10:41:39 +0200