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Abstract

Dissipativity is an important property of individual systems that guarantees a stable interconnected system. However, due
to errors in the modeling process weakly non-dissipative models may be constructed. In this paper we introduce a method to
perturb a non-dissipative LTI system in order to enforce dissipativity using spectral perturbation results for para-Hermitian pencils.
Compared to earlier algorithms the new method is applicableto a wider class of problems, it utilizes a simpler framework, and
employs a larger class of allowable perturbations resulting in smaller perturbations. Moreover, system stability canbe enforced
as well. Numerical examples are provided to show the effectiveness of the new approach.
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Tobias Brüll and Christian Schröder are both with the Department of Mathematics, Technische Universität Berlin, D-10623, Germany (e-mail:
{bruell,schroed}@math.tu-berlin.de)

This research is supported by the DFG Research Center MATHEON in Berlin.





IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS 1

Dissipativity enforcement via Perturbation of
para-Hermitian Pencils

I. I NTRODUCTION

T HE RESEARCH that motivated this work started from
an attempt to generalize the results of [1] to so called

descriptor systems, i.e., linear time-invariant systems of the
form

Eẋ(t) = Ax(t) +Bu(t), (1a)

y(t) = Cx(t) +Du(t), (1b)

whereE,A ∈ Rρ,n, B ∈ Rρ,m, C ∈ Rℓ,n, andD ∈ Rℓ,m.
Conventionally,E and A are square, i.e.,ρ = n, but non-
square systems make sense in some situations, see Exam-
ple 10. With Cq

∞ denoting the infinitely often differentiable
functions mappingR to Rq we call u ∈ Cm

∞ the input,
x ∈ Cn

∞ the state, and y ∈ Cℓ
∞ the output. A triple

(u, x, y) ∈ Cm
∞ × Cn

∞ × Cℓ
∞ = Cm+n+ℓ

∞ which fulfills (1) is
called atrajectoryof (1). In [1] only the special case of (1) in
which ρ = n andE = I (the identity matrix) was considered.
However, the modeling of electrical circuits and systems often
leads to systems of the form (1), whereE is not the identity.

It is common practice [2] to measure the power supplied
to a system of the form (1) at a time pointt along a certain
trajectory(u, x, y) through a so calledsupply functions : Rℓ×
Rm → R of the form

s(u(t), y(t)) :=

[

y(t)
u(t)

]∗ [
Q S
ST R

] [

y(t)
u(t)

]

, (2)

whereQ = QT ∈ Rℓ,ℓ, S ∈ Rℓ,m, andR = RT ∈ Rm,m.
Consequently, the energy which is supplied to system (1) along
a certain trajectory in the time interval[t0, t1] is measured by

∫ t1

t0

s(u(t), y(t))dt.

In the well known special case of (1) describing an RLC circuit
with current and voltage sources (e.g., [3]) we haveρ = n,
ℓ = m and the supplied power is measured as the product of
current and voltage, i.e.,s(u, y) = uTy which corresponds to

[

Q S
ST R

]

=
1

2

[

0 I
I 0

]

. (3)

If, however, (1) stems from a realization procedure of scatter-
ing parameters (e.g., [3]), we usually haveρ = n, E = I, and
the supplied power is measured vias(u, y) = ‖u‖22 − ‖y‖22,
i.e.,

[

Q S
ST R

]

=

[

−I 0
0 I

]

. (4)

The supplies given by (3) and (4) are essentially those, which
are considered in earlier literature.

Colloquially speaking, a system is dissipative, if it cannot
output more energy than is fed into it. A rigorous definition
follows.

Definition 1. We call (1)dissipative(with respect to (2)) if
the inequality

0 ≤
∫ ∞

−∞
s(u(t), y(t))dt,

holds for all trajectories(u, x, y) of (1) which have compact
support, i.e., for all trajectories that vanish outside of a
bounded interval.

For stable systems (1) withE = I, the well-known concepts
of passivityandcontractivity[2] are equivalent to dissipativity
with respect to the special supply functions (3) and (4),
respectively.

In this paper we consider the following question. Assume
that (1) models a physical system which is known to be dissi-
pative, i.e., it does not generate energy. However, due to errors
or inaccuracies during modeling, linearization, discretization,
realization, model order reduction, or similar we end up with a
slightly non-dissipative system. Then a post-correction method
is desired to perturb (part of) the matricesA, B, C, D, E, Q,
S, andR such that the perturbed system is dissipative.

Earlier approaches to this question are manifold. Methods
for systems given in rational function form, which are derived
from tabulated data, are considered in [4], [5], [6]. Methods
for state space systems based on semi-definite programming
are presented in [7], [8], [9], [10].

The converse problem of computing the smallest perturba-
tion that makes a passive system non-passive is studied in [11].
Finally we mention [12] where a method similar to ours is used
to compute the pseudo spectral abscissa of a matrix.

Our approach is related to a series of papers beginning
with [1], where the basic methodology is introduced. The
scope there is restricted to the two cases i)E = I, D +DT

invertible and supply functions of the form (3), and ii)E = I,
‖D‖2 < 1 and supply functions of the form (4). The main
computational cost in [1] is the computation of eigenvalues
and -vectors of a Hamiltonian matrix. In [13] this approach
was enhanced by the use of structure preserving algorithms
for the Hamiltonian eigenvalue problem, resulting in a faster
and more robust method. The method in [14] can deal with
general matricesE and D. Central to the method are now
the eigenvalues of a Hamiltonian/skew-Hamiltonian pencil.
Explicit computation of spectral projectors is used to extract
relevant subsystems. The latter point is alleviated in [15]
where no projectors are needed and the required eigenval-
ues and eigenvectors are computed in a structure-preserving
manner. All the previous methods restrict the perturbations
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to the matrixC. We also mention [16], [17] where smallest
perturbations to Hamiltonian matrices and the computationof
the distance to bounded-realness are considered.

Our new method deals with a wider class of problems
(general supply function, non-squareE,A) and allows a larger
class of perturbations (any chosen entries of A,B,C,D,E,Q,R,S
can be perturbed). Moreover, not only dissipativity, but also
stability can be enforced.

The paper is structured as follows. The remainder of this
section introduces further notation. Section II describeshow
to check for dissipativity of a given system using a character-
ization of dissipative systems in terms of the spectrum of a
family of Hermitian matrices. During the next four sections
our method is introduced: Section III reviews a spectral
perturbation result that is used later on, in Sections IV andV
first order conditions on the wanted perturbation (that enforces
dissipativity and stability) are derived and in Section VI all
the pieces are combined to the final algorithm. Numerical
experiments are described in Section VII. Section VIII adapts
the method to the behavior approach while in Section IX we
offer our conclusions.

A. Notation

Let R [λ] denote the set ofpolynomialsin the indeterminate
λ and letR [λ]1 denote the set of first-order polynomials, i.e.,
all polynomials of the formλa + b, where a, b ∈ R. Let
R [λ]p,q denote the set ofpolynomial matrices, i.e., thep-by-q
matrices in which every entry is a polynomial and analogously,
let R [λ]

p,q

1 denote the set of first-order polynomial matrices,
which are also calledpencils. Let R (λ) denote the set of
rational functions. Since the rational functions form a field one
can speak of therank of a matrixR ∈ R (λ)

p,q, whose entries
are rational functions. We denote this rank (over the field of
rational functions) byrankR(λ) (R). Since the polynomials
are a subset of the rational functions, we can also attribute
a rank to every polynomial matrixP ∈ R [λ]

p,q, namely
rankR(λ) (P ). We say thatP is regular (overR (λ)) if p = q
andrankR(λ) (P ) = p, or equivalently, ifp = q anddet(P (λ))
is not identically zero. Using the Smith canonical form [18,
p. 141, Theorem 3] on can show that

max
λ0∈C

rank (P (λ0)) = rankR(λ) (P ) . (5)

Furthermore, the maximum in (5) is attained for almost all
λ0 ∈ C and there is only a finite set of points where the rank
drops, i.e., whererank (P (λ0)) < rankR(λ) (P ). We call those
points thezerosof a polynomial matrix and denote the set of
all zeros by

ζ (P ) :=
{

λ0 ∈ C
∣

∣ rank (P (λ0)) < rankR(λ) (P )
}

.

Note that for regular matrix polynomials the zeros ofP
coincide with its eigenvalues.

For a matrix polynomialP ∈ R [λ]p,q we define itspara-
conjugate transposedP∼ ∈ R [λ]

q,p through

P∼(λ) := P ∗(−λ) = PT (−λ)

and we call a matrixN ∈ R [λ]
k,k para-Hermitian if N =

N∼. A para-Hermitian matrix is Hermitian on the imaginary

axis, i.e., forω ∈ R we have

(N (ıω))
∗
= N (−ıω) = N (ıω),

whereı denotes the imaginary unit. Thus, for everyω ∈ R the
matrixN (ıω) hask real eigenvalues, let us sayπ non-negative
andν negative. Then we define thesignsum functionthrough
the expression

η (N (ıω)) = π − ν, (6)

i.e., the signsum function of a Hermitian matrix is the number
of non-negative eigenvalues minus the number of negative
ones.

II. CHECKING DISSIPATIVITY

In order to enforce dissipativity we introduce a suitable
characterization of a dissipative system. Our approach is based
on the following result.

Theorem 2. Consider system (1) with supply (2). Assume

rank
([

ıωE −A −B
])

= ρ, (7)

for all ω ∈ R . Set k := ρ + 2ℓ + n + m and define the
para-Hermitian pencilN = N∼ ∈ R [λ]

k,k

1 by

N (λ) := λN −M := (8)












0 0 0 λE −A −B
0 0 I −C −D
0 I Q 0 S

−λET −AT −CT 0 0 0
−BT −DT ST 0 R













Then (1) is dissipative if and only if for allω ∈ R we have

η (N (ıω)) = n+m− ρ. (9)

Proof: See [19].
Because of (7) we see that the right hand side of (9) specifies

the dimension of the co-kernel of
[

λE −A −B
]

. Thus the
right hand side of (9) can be considered as the number of free
variables in (1a). This is the reason why in behavioral systems
theory [20], this quantity is also called the ”number of inputs”,
although, ifρ 6= n, this notion conflicts with the definition of
inputs from (1), since in this case some of the variables in the
statex can be interpreted as inputs.

The zeros of
[

λE −A −B
]

are also called theuncon-
trollable modesof system (1), see [20]. Thus, the assumption
(7) is a kind of controllability condition, since it demands
that there are no uncontrollable modes on the imaginary axis,
although this will not play a prominent role in the following.
Also note that, by using (5), we obtain that (7) implies that
rankR(λ)

([

λE −A −B
])

= ρ, i.e., that
[

λE −A −B
]

has full row rank overR (λ).
To understand how Theorem 2 can help to solve the

problem of dissipativity enforcement, we introduce what we
call the spectral plotof a para-Hermitian matrix polynomial
N ∈ R [λ]k,k. This is done in the following way. First, for the
givenN we uniquely define the functionfN : R → Rk such
that for everyω ∈ R the vectorfN (ω) contains thek real
eigenvalues of the Hermitian matrixN (ıω) in non-increasing
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order. Now consider the situation in Theorem 2. In this case,
for everyω ∈ R the matrixN (ıω) has the form

N (ıω) =

[

0 W
W ∗ H

]

,

with

W =

[

0 ıωE −A −B
I −C −D

]

andH = HT given by

H =





Q 0 S
0 0 0
ST 0 R



 .

Assumption (7) implies thatrank (W ) = ρ + ℓ. Thus, by
congruence transformations we obtain

N (ıω) ∼





0 Iρ+ℓ 0
Iρ+ℓ H11 H12

0 H∗
12 H22



 ∼





0 Iρ+ℓ 0
Iρ+ℓ 0 0
0 0 H22





∼





−Iρ+ℓ 0 0
0 Iρ+ℓ 0
0 0 H22



 . (10)

Hence, by Sylvester’s law of inertia [21], the matrixN (ıω) has
at least(ρ+ℓ) positive and at least(ρ+ℓ) negative eigenvalues
for every ω ∈ R. SincefN (ω) is ordered non-increasingly,
this implies that the functionfN can be partitioned into
fN =:

[

fT
1 , gTN , fT

3

]T
, where f1, f3 : R → Rρ+ℓ and

f1(ω) contains only positive entries whereasf3(ω) contains
only negative entries for everyω ∈ R. Thus, to determine the
value ofη (N (ıω)) in (6) it is sufficient to take into account
the k − 2(ρ+ ℓ) = n+m− ρ eigenvalues ingN only. Thus,
recalling (9), a system is dissipative if and only if all elements
of gN (ω) are non-negative for allω ∈ R. A plot of the function

gN : R → R
n+m−ρ

is what we call aspectral plot. A typical example of a spectral
plot is given in Fig. 1, where a system withn = ρ andm = 2
is depicted.

0

Fig. 1. Spectral plot of a system with two inputs; the thick bars show the
slopesσj of the lines

In Fig. 1 the points where one of the lines becomes zero
are marked byωj ’s and also the slope/derivative of the lines
at eachωj are plotted as thick bars. We will denote the
slope byσj in the following. Clearly, the system in Fig. 1
is not dissipative, because the curves are negative for some
ω. However, it would be if the two bulges betweenω1 and

ω4 could be ”moved upwards”. The method that will be
developed in this paper will moveω1 and ω3 (and alsoω2

andω4) towards each other, which has the consequence that
the negative bulge between them gets smaller and smaller and
eventually vanishes, thereby reducing the number of rootsωj,
as depicted in Fig. 2.

0

0

Fig. 2. Schematic sketch of system perturbation

Note, that in the spectral plot in Fig. 1 there exists aω̂ ∈ R

at which both lines are different from0; actually both lines
are different from zero everywhere except at the pointsωj,
for j = 1, . . . , 4. Thus, for such an̂ω the matrixH22 in (10)
is invertible, which implies thatN (ıω̂) is invertible. Using
(5) this implies thatN is regular, which we will always
assume in the following. In the same way, we obtain that
for ωj the matrixH22 in (10) is singular and thus we have
rank (N (ıωj)) < k, for j = 1, . . . , 4. This implies thatıωj is
a zero ofN . Analogously, the converse is true, namely, that
the zeros ofN mark the points on the imaginary axis where
one of the lines in the spectral plot changes from positive to
negative (ifσj < 0) or vice versa (ifσj > 0). Thus, everyωj

accounts for a change of2 in the value ofη (N (ıω)), more
precisely

η (N (ı(ωj − ε)))

= η (N (ı(ωj + ε))) +

{

2 if σj > 0

−2 if σj < 0
(11)

for a sufficiently smallε > 0. We distinguish two cases.

Definition 3. A dissipativity enforcement problem is called
feasible, if condition (9) is violated in a bounded interval only.
If, on the other hand, (9) is violated in an unbounded interval
then the problem is calledinfeasible.

Note that in the special case ofρ = n, E = I feasibility
is implied by positive definiteness ofDT +D (if the supply
function is of the form (3)) or by‖D‖2 < 1 (if the supply
function is of the form (4)). When dealing with passivity, those
two assumptions onD are standard, see, e.g., [1].

Example 4. An example of a feasible system is given in Fig.
1. Here we see that condition(9) is violated in the bounded
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interval [ω1, ω4] only. Thus, if all imaginary eigenvalues are
moved into each other and away from the imaginary axis as
discussed above (while not changing the value ofη (N (ıω))
outside of[ω1, ω4]), we conclude dissipativity by Theorem 2.

An example of an infeasible system is given in Fig. 3, where
condition (9) is violated in the unbounded interval[ω6,∞).

Fig. 3. Spectral plot of an infeasible system with two inputs; without slopes

Thus, even if we move all purely imaginary zeros away from
the imaginary axis (i.e., by mergingω1 with ω2, ω3 with ω4,
andω5 with ω6) condition (9) is still violated, implying a non-
dissipative system.

From the above it is clear that the two cases can be distin-
guished numerically in the following way. First one computes
the value ofa := η (N (ıω̂)) for some fixedω̂ 6∈ ζ(N ). Then
one counts the number of positive slopesσj > 0 (saya1) and
the number of negative slopesσj < 0 (saya2) for all ωj > ω̂.
Analogously, for allωj < ω̂, one computes the number of
positive slopesσj > 0 (say b1) and the number of negative
slopesσj < 0 (say b2). Then, using (11), we see that if

n+m− ρ = η (N (ıω̂)) + 2(a1 − a2)
= η (N (ıω̂)) + 2(b1 − b2),

(12)

we are in the feasible case, otherwise we are in the infeasible
case. In the following we will only consider the feasible case.

Next we want to compute the previously announced pertur-
bation that moves the imaginary eigenvalues closer together or
even completely off the imaginary axis. To this end we allow
perturbations inM , i.e., inA,B,C,D,Q,R, andS. Allowing
all these matrices to change results in smaller perturbations
compared to the situation when justC may change as was
the case in earlier methods [1], [13], [14], [15] of this kind.
On the other hand, we do not allow perturbations inN (that
is E), although this should allow even smaller perturbations
in some cases, because that could easily change the rank of
N completely altering the spectral plots forω → ∞. More
research is needed to gain enough insight so that alsoE can be
perturbed. First steps in this direction were undertaken in[22].

III. PERTURBATION THEORY

Let λE − A ∈ R [λ]
n,n be a regular matrix polynomial

and let λ0 ∈ ζ (λE −A) be a zero, i.e., assume that
rank (λ0E −A) < rankR(λ) (λE −A) = n. This shows that
the matrix(λ0E −A) ∈ Cn,n is singular and thus there exist
vectorsu0, v0 ∈ Cn \ {0} such that

(λ0E −A)v0 = 0 and u∗
0(λ0E −A) = 0.

In this case (i.e., only ifλE−A is regular) we callv0 (andu0)
a right (and left) eigenvectorassociated with theeigenvalue

λ0. We note again that for regular matrix polynomials the
notions of ”eigenvalue” and ”zero” coincide.

Theorem 5. [23, p.183] Let λ0 ∈ C be a simple finite
eigenvalue of the regular pencilλE−A ∈ R [λ]n,n with right
eigenvectorv0 and left eigenvectoru0. Then there exists a
function φ : Rn,n → C which fulfills φ(Λ) = O(‖Λ‖2) for
Λ → 0 such that

λ̃0 = λ0 +
u∗
0Λv0

u∗
0Ev0

+ φ(Λ) (13)

is an eigenvalue of the perturbed pencilλE − (A+ Λ).

Assume thatλ0 = ıω0 is a purely imaginary eigenvalue of
the regular and para-Hermitian pencilλN − M ∈ R [λ]

k,k

1

associated with the eigenvectorx0, i.e., assume that we have
0 = ıω0Nx0 −Mx0. Taking the conjugate transpose of this
equation and using thatN is skew-symmetric and thatM is
symmetric (sinceλN −M is para-Hermitian) shows that

0 = x∗
0N

∗ıω0 − x∗
0M

∗ = −ıω0x
∗
0(−N)− x∗

0M,

i.e., that x0 is also a left eigenvector associated withıω0.
We conclude that for regular and para-Hermitian matrix poly-
nomials the left and right eigenvectors of purely imaginary
eigenvalues coincide.

With this, we can use Theorem 5 to determine the slopes of
the lines in the spectral plot at theωj ’s. Therefore, letxj be
a generalized eigenvector of the pencilN (with N given by
(8)) associated with the purely imaginary eigenvalueωj . This
implies thatxj is a standard (left and right) eigenvector of
the constant matrixN (ıωj) associated with the eigenvalue0,
i.e., thatN (ıωj)xj = 0 andx∗

jN (ıωj) = 0. To find out what
happens to this eigenvalue in a small neighborhood ofωj we
observe that the matrixN (ı(ω+∆ω)) = N (ıω)+ ı∆ωN has
(due to (13) withE = I, λj = 0, Λ = ı∆ωN ) an eigenvalue
at

λ̃ = 0 + ı∆ω
x∗
jNxj

x∗
jxj

+ φ(ı∆ωN)

which means that for normalized eigenvectors‖xj‖2 = 1 the
derivative is given by

σj = lim
∆ω→0

λ̃− 0

∆ω
= ıx∗

jNxj . (14)

Note thatσj is real, becauseN is skew-Hermitian. Let us
remark that the slopes used in [1] are fractions of the terms
used here and denominators involving inverse matrices. The
cost to evaluate these fractions led to the advise to not use
slopes at all [14].

If we apply Theorem 5 to the regular and para-Hermitian
matrix pencil λN − (M + ∆) ∈ R [λ]k,k1 (with symmetric
perturbation∆) and the purely imaginary eigenvalueıωj with
eigenvectorxj then, since in this case the left and right
eigenvectors coincide, equation (13) reads (neglecting higher
order terms)ıω̃j ≈ ıωj+

x∗

j∆xj

x∗

j
Nxj

, which by multiplication with
x∗
jNxj and the use of (14) leads to

σj(ω̃j − ωj) ≈ x∗
j∆xj . (15)

Note that both sides of (15) are real numbers.
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Looking at (15) we see that the perturbation matrix∆ is
what we actually want to compute, i.e.,∆ is the indeterminate.
To transform the formula (15) into a linear equation in the
usual form, we need the following definitions. LetW ∈ Cn,m

be a matrix with columnsw1, . . . , wm ∈ Cn. Then we define
the vec operatorvec : Cn,m → C

nm by

vec (W ) :=







w1

...
wm






.

If additionally V ∈ Cp,q is a matrix with entriesvi,j then we
define theKronecker product⊗ : Cp,q × Cn,m → Cpn,qm

through

V ⊗W :=







v1,1W . . . v1,qW
...

...
vp,1W . . . vp,qW






.

Combining these two definitions one can show by basic
manipulations that

x∗∆y =
(

yT ⊗ x∗) vec (∆) (16)

which is a linear equation invec (∆).

IV. D ERIVATION OF EQUATIONS FOR DISSIPATIVITY

ENFORCEMENT

For our method we assume thatN as in Theorem 2 is
regular and that the problem is feasible according to Definition
3. From condition (12) we already deduced that for feasible
problems the number of purely imaginary eigenvalues ofN is
even, say2θ. We denote these eigenvalues asıω1, . . . , ıω2θ ∈
ıR and assume thatω1 < . . . < ω2θ. The corresponding
eigenvectors are calledx1, . . . , x2θ ∈ Ck \{0} and we assume
w.l.o.g. that

‖xi‖2 = 1 for all i = 1, . . . , 2θ.

SinceN,M ∈ Rk,k are real matrices we have thatωi =
−ω2θ+1−i which, using the notation

ω−i := ω2θ+1−i, x−i := x2θ+1−i, (17)

can be rewritten as

ω−i = −ωi, (18)

for i = 1, . . . , θ. This implies thatıω−iNxi = −ıωiNxi =
ıωiNxi = Mxi = Mxi, from which one can deduce thatxi is
an eigenvector of the eigenvalueıω−i for i = 1, . . . , θ. Thus,
w.l.o.g. one can assume that

x−i = xi, (19)

since otherwise this could be achieved by multiplying with a
complex number of absolute value1. Using (14) we observe
that with this we have

σ−i = ıx∗
−iNx−i = ıxi

∗Nxi = −ı (x∗
iN

∗xi)
∗

= −σi. (20)

Our goal in this section is to compute a symmetric pertur-
bation ofM , which we call∆ = ∆T ∈ Rk,k, such that the

eigenvalueωi in the unperturbed pencilλN − M moves to
the eigenvaluẽωi in the perturbed pencilλN − (M + ∆),
for i = 1, . . . , 2θ. For the moment, we will assume that we
know these positions̃ωi and we will later describe different
methods to determine them in Subsection VI-A. Then (15) and
(16) show that∆ = ∆T has to satisfy

σi(ω̃i − ωi) ≈
(

xT
i ⊗ x∗

i

)

vec (∆) , (21)

for i = 1, . . . , 2θ. Using (18), (19), (20), and making the
reasonable assumption that̃ω−i = −ω̃i we see that for
i = 1, . . . , 2θ we have

σ−i(ω̃−i − ω−i) =
(

xT
−i ⊗ x∗

−i

)

vec (∆)

⇔ σi(ω̃i − ωi) =
(

xi
T ⊗ xi

∗) vec (∆)

⇔ σi(ω̃i − ωi) =
(

xT
i ⊗ x∗

i

)

vec (∆) .

Thus, we can rewrite (21) as

σi(ω̃i − ωi) ≈
(

xT
i ⊗ x∗

i

)

vec (∆) ,

σi(ω̃i − ωi) ≈
(

xT
i ⊗ x∗

i

)

vec (∆) ,

for i = 1, . . . , θ. Of course, we would like to have a system
of equations, in which all coefficients are real numbers.

Lemma 6. Let α ∈ C and v ∈ C1,n. Then the system of
equations in the unknownδ ∈ Rn given by

α = vδ
α = vδ

(22)

is equivalent to the system of equations

Re (α) = Re (v) δ
Im (α) = Im (v) δ.

(23)

Proof: The result follows by basic manipulation.
Sinceσi(ω̃i − ωi) ∈ R is a real number, Lemma 6 shows

that (21) is equivalent to




















σ1(ω̃1 − ω1)
...

σθ(ω̃θ − ωθ)
0
...
0





















≈





















Re
(

xT
1 ⊗ x∗

1

)

...
Re
(

xT
θ ⊗ x∗

θ

)

Im
(

xT
1 ⊗ x∗

1

)

...
Im
(

xT
θ ⊗ x∗

θ

)





















vec (∆) .

Since the entries of the symmetric matrix∆ are real numbers,
we see that for everyx ∈ Ck we have

Im
(

xT ⊗ x∗) vec (∆) = Im
((

xT ⊗ x∗) vec (∆)
)

= Im (x∗∆x) = 0.

This implies, that (21) is also equivalent to






σ1(ω̃1 − ω1)
...

σθ(ω̃θ − ωθ)






≈







Re
(

xT
1 ⊗ x∗

1

)

...
Re
(

xT
θ ⊗ x∗

θ

)






vec (∆)
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which, with the notation

ω :=







ω1

...
ωθ






, Σ :=







σ1

. . .
σθ






,

ω̃ :=







ω̃1

...
ω̃θ






, X :=







Re
(

xT
1 ⊗ x∗

1

)

...
Re
(

xT
θ ⊗ x∗

θ

)






,

can be written as

Σ(ω̃ − ω) ≈ Xvec (∆) . (24)

Looking at the matrixM in Theorem 2 we conclude that we
do not want to allow for arbitrary symmetric perturbations∆,
especially we do not want to perturb the zero blocks in the
matrixM . We follow the approach that we only allow for per-
turbations from a linear subspace of the symmetric matrices.
Therefore, letK ∈ N and let∆1, . . . ,∆K ∈ Rk,k be a basis
of that linear subspace of the symmetric matrices, which we
want to allow. Since we want∆ ∈ span (∆1, . . . ,∆K) we
represent∆ in the form

∆ =

K
∑

i=1

∆iδi. (25)

Introduce

δ :=







δ1
...
δK






, and D :=

[

vec (∆1) . . . vec (∆K)
]

and observe that with this we have

vec (∆) = vec

(

K
∑

i=1

∆iδi

)

=

K
∑

i=1

vec (∆i) δi = Dδ. (26)

Thus, equation (24) becomes

Σ(ω̃ − ω) ≈ XDδ. (27)

We remark that the matrix productXD can be formed directly,
i.e., without explicitly computingX andD. Indeed, using that
∆j is real, we have for the(i, j)-element ofXD

(XD)ij = Re
(

xT
i ⊗ x∗

i

)

vec (∆j)

= Re (x∗
i∆jxi)

for all i = 1, . . . , θ, j = 1, . . . ,K. Proceeding like this seems
advisable wheneverK ≪ n2.

V. DERIVATION OF EQUATIONS FOR STABILIZATION

In many applications, in which one deals with systems of
the form (1), one is also interested in the stability ofλE−A.
Here, we call a matrix pencilλE − A stable if all its finite
zeros are in the open left half plane.

Remark 7. There are stronger notions of stability. For exam-
ple, one can additionally require impulse controllability, i.e.,
that

rank[E,AS∞, B] = n, (28)

where the columns of the matrixS∞ form an orthonormal
basis of kernel(E), see [24]. If this notion is strived for,
condition(28) can easily be checked numerically.

For numerical reasons we only consider closed stability
regions of the form

Cξ :=
{

z ∈ C
∣

∣Re (z) ≤ ξ
}

,

whereξ ∈ R∪{∞}. Choosingξ < 0 guarantees that all zeros
are bounded away from the imaginary axis.

If a non-trivial stability region (i.e.,ξ < ∞) is desired, we
additionally have to assume that the pencilλE−A ∈ R [λ]

ρ,n

is regular (which among others impliesρ = n) so that we
can talk about eigenvalues and eigenvectors. The aim is to
find a perturbationΛ of A such thatλE − (A+Λ) is stable.
More precisely, denoting the unstable eigenvalues ofλE −A
by µi, i = 1, 2, . . . (i.e., Re (µi) > ξ) and the corresponding
eigenvalues ofλE − (A + Λ) by µ̃i, we are looking for a
perturbation such that

Re (µ̃i) = ξ. (29)

Note, that we only prescribe the real part of the moved
eigenvalues, while leaving the imaginary part free. A naive
approach would have been to setµ̃i = ξ+Im(µ), but placing
less conditions usually results in a smaller perturbationΛ.

We remark that the perturbation ofA will in general move
all eigenvalues, not just the unstable ones. So it can not be
excluded that some previously stable eigenvalue will become
unstable. This situation will be detected and dealt with at a
later stage.

We divide the unstable eigenvalues into two classes: i)
those that are real and ii) those that form complex conjugate
pairs. Let us say that there areβ complex conjugate pairs
and γ real unstable eigenvalues and thatµ1, . . . , µ2β+γ are
ordered by their imaginary part. Thenµi = µ2β+γ+1−i for
i = 1, . . . , 2β + γ and Im (µi) ≥ 0 for i = 1, . . . , β + γ.
Introducing the notation

µ−i := µ2β+γ+1−i, u−i := u2β+γ+1−i, v−i := v2β+γ+1−i

in the style of (17) this means that

µi = µ−i,

for i = 1, . . . , 2β + γ and we restrict the moved eigenvalues
γ̃i to satisfy analogous relations, i.e.,

µ̃i = µ̃−i and µ̃β+1, . . . , µ̃β+γ ∈ R.

For i = 1, . . . , 2β + γ we denote right and left eigenvectors
associated withµi by vi ∈ C

n and ui ∈ C
n, respectively,

chosen such that

vi = v−i, ui = u−i for i = 1, . . . , β;

vi, ui ∈ R
n for i = β + 1, . . . , β + γ;

u∗
iEvi ∈ R for i = 1, . . . , 2β + γ.

Then, by Theorem 5,Λ has to satisfy the conditions

u∗
iEvi(µ̃i − µi) ≈ u∗

iΛvi,

for i = 1, . . . , 2β+γ. For i = β+1, . . . , β+γ these conditions
are real. For the complex conditions we can separate real and
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imaginary parts and, invoking Lemma 6, obtain the alternative
set of conditions

u∗
iEvi · Re (µ̃i − µi) ≈ Re (u∗

iΛvi) , (30)

for i = 1, . . . , β + γ and

u∗
iEvi · Im (µ̃i − µi) ≈ Im (u∗

iΛvi) , (31)

for i = 1, . . . , β. Since (29) only specifies the real part
of µ̃i, the conditions (31) are not necessary, and only the
conditions (30) remain.

So far, we have obtained conditions on the matrixΛ. How-
ever, we rather want conditions on the symmetric perturbation
∆. We see from (8) that both perturbations are related via

∆ =













× × × Λ ×
× × × × ×
× × × × ×
ΛT × × × ×
× × × × ×













, (32)

where× denotes block matrices of appropriate size. Defining

ŭi :=
[

uT
i 0 0 0 0

]T
,

v̆i :=
[

0 0 0 vTi 0
]T

,
(33)

analogously to the partitioning in (8) (or (32)) we see that with
(16) and (26) we have

u∗
iΛvi = ŭ∗

i∆v̆i =
(

v̆Ti ⊗ ŭ∗
i

)

vec (∆) =
(

v̆Ti ⊗ ŭ∗
i

)

Dδ.

Thus, we can rewrite (30) as

u∗
iEvi ·Re (µ̃i − µi) ≈ Re

(

v̆Ti ⊗ ŭ∗
i

)

Dδ, (34)

for i = 1, . . . , β + γ. Finally, we introduce

µ :=







Re (µ1)
...

Re (µβ+γ)






, µ̃ :=







ξ
...
ξ







Y :=









Re
(

v̆T1 ⊗ ŭ∗
1

)

...

Re
(

v̆Tβ+γ ⊗ ŭ∗
β+γ

)









,

and

T := diag
(

u∗
1Ev1, . . . , u

∗
β+γEvβ+γ

)

.

Note that withu∗
iEvi alsoT is real. Then we can rewrite (34)

in matrix form as

T (µ̃− µ) ≈ YDδ. (35)

VI. T HE METHOD

In the two previous sections we have derived conditions
on the perturbation∆ such that the eigenvalues that prevent
dissipativity or stability are moved to harmless positions. What
remains is determining the smallest perturbation∆ (in the
sense that‖δ‖2 in (26) is minimized) satisfying the two
conditions (27) and (35). This is a standard least squares
problem with solution

δ = Q1R
−T
1

[

Σ(ω̃ − ω)
T (µ̃− µ)

]

, (36)

whereDT [XT , Y T ] = Q1R1 denotes a skinny QR factor-
ization [25, p. 230] andΣ, ω̃, ω, T, µ̃, µ,X, Y , andD are as
in (27) and (35). Onceδ is known, ∆ can be computed and
M (i.e. A, B, C, D, Q, R, S) can be updated.

We have the following algorithm.

Algorithm 8. (Dissipativity Enforcement)
Input: The matrices of the system (1) and the matrices of

the supply (2) such that the resulting pencil (8) is
regular and the problem is feasible, i.e., condition
(7) is fulfilled.
A basis of the perturbation (25), such that each basis
element∆i only has non-zero entries in those places
where the matrixM in (8) has a non-zero block.
An integer describing the maximum number of itera-
tions,MAXITER. The stability parameter from Section
V, which is ξ ∈ R ∪ {∞}. λE − A is additionally
required to be regular, ifξ 6= ∞.

Output: An error if the problem is infeasible, otherwise a
dissipative system or a message that dissipativation
was not possible.

Step 1: Check if the problem is feasible or infeasible via
condition (12). Return with an error if infeasible.
Otherwise, initialize the iteration counterITER := 0.

Step 2: Form the para-Hermitian pencilλN −M as in (8).
Step 3: Compute the purely imaginary eigenvalues and asso-

ciated eigenvectors of the pencilλN −M .
Step 4: If λE − A is regular, compute the eigenvalues and

associated eigenvectors ofλE−A, which are not in
the stability regionCξ, see Section V.

Step 5: If (8) has no more purely imaginary eigenvalues and
no eigenvalues outside the stability region, goto 10.
Otherwise, ifITER > MAXITER, goto 10 and return
with a message, indicating that the dissipativation
failed.

Step 6: Choosẽω, for example, as described in the following
subsection.

Step 7: Assemble the matrices in (27) and (35) and compute
δ by (36).

Step 8: Use (25) to compute the perturbation∆ and update
M → M +∆.

Step 9: IncreaseITER and goto 3.
Step 10:Break up the actualM according to the block

structure from (8) to obtain the perturbed system and
supply matricesA, B, C, D, Q, S, andR.

The complexity of Algorithm 8 is essentially determined
by the eigenvalue computations in Steps 3 & 4 and the QR-
factorization in Step 6. To analyze the complexity assume that
in (1) we haveρ = n and that the number of inputs and
outputsm + ℓ is small compared ton. This implies that the
eigenvalue computations in Steps 3 and 4 takeO(n3) flops.

The number of basis elements, in the case wheren is
dominating, can be assumed to beK = O(n2). At the
same time, the number of (purely imaginary) eigenvalues of
the pencil (8) can be bounded byO(n) and the number of
eigenvalues ofλE−A as in (1) is smaller thann. This implies
that the total number of relevant eigenvaluesp := θ+ 2β + γ
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is at most in the order ofO(n) although it will usually be
much smaller. Since a skinny QR factorization of theK-by-p
matrix DT [XT , Y T ] takesO(p2K) operations we conclude
that Step 6, and thus one iteration of Algorithm 8, has a worst
case runtime of

O(n4),

although in practice it will rather beO(n3), if the number
purely imaginary eigenvalues of (8) and the number of unsta-
ble eigenvalues ofλE −A as in (1) is bounded.

Note that the updated system is neither guaranteed to be
dissipative nor stable, because a) we omitted higher order
terms during the derivation of the method and b) non-
imaginary eigenvaluesλN − M (or stable eigenvalues of
λE − A respectively) could have moved on the imaginary
axis (outside the stability region). Thus, the perturbed system
needs to be checked for dissipativity and stability again. If
either is violated, then a second, a third, . . . perturbationhas to
be computed in an iterative fashion, until the obtained system
is both dissipative and stable.

Usually this iteration finishes within a few steps only,
see our numerical examples in Section VII. However, it is
not guaranteed that the iteration ever completes successfully.
In fact, there are examples where the algorithm will iterate
forever.

Example 9. Consider the system

E = I2, A = −4I2, B = diag[5, 3], C = I2, D = 0

with supply function

Q = −I2, S = 0, R = I2,

and the single perturbation basis matrix

∆1 = −2(e1e
T
9 + e9e

T
1 ) + 2(e2e

T
10 + e10e

T
2 ) ∈ R

10,10.

SettingλN−M as in(8), its finite spectrum is{±3ı,±
√
7}.

We haveω1 = −3, x1 = [1, 4 + 3ı,−4 − 3ı, 4 + 3ı, 5]T ⊗
[1, 0]T , σ1 = −6, XD = −20. Choosing̃ω1 = 1

3 (e.g., by(38)
with τ = 5

9 ) we getδ(1) = 1. Applying the perturbation, the
finite spectrum of the perturbed pencilλN − (M + ∆1) is
now given by{±

√
7,±3ı}. Since there are still imaginary

eigenvalues, the perturbed system is still not dissipativeand
a second iteration of Algorithm 8 is necessary. This timeδ(2)

comes out to be−1, thus annihilating the first perturbation
(M +∆1)−∆1. So, the iteration will toggle betweenM and
M +∆1 forever.

Note that in this example there is exactly one choice
of δ achieving dissipativity. Indeed, the finite spectrum of
λN−(M+δ∆1) is given byλ1;2 = ±

√

(1− 2δ)(2δ − 9) and
λ3;4 = ±

√

(1− 2δ)(2δ + 7). So, for the value ofδ = 1
2 the

pencilλN− (M + 1
2∆1) has four eigenvalues at zero. A main

reason for this failure is the extremely limited set of allowable
perturbations. The effect here is that a perturbation that moves
a pair of imaginary eigenvalues off the imaginary axis, will
also move the other pair of eigenvalues onto the imaginary
axis, and vice versa. A remedy is to allow more perturbations.
If, for example,∆2 = −2(e2e

T
10 + e10e

T
2 ) is added as a

further perturbation basis matrix then the first iteration of

Algorithm 8 will not change and still result inδ(1) = [1, 0]T .
But in the second iteration we getδ(2) = [− 1

2 ,
1
2 ], yielding

λN− (M+ 1
2∆1+

1
2∆2) with two non-imaginary eigenvalues

and two eigenvalues at zero.

More than anything, Example 9 shows that a sufficiently
broad set of perturbation basis matrices is crucial for the
success of the method.

A different approach to the problem that moving imaginary
eigenvalues off the imaginary axis may cause previously non-
imaginary eigenvalues to move on the axis is employed in [16]:
There the perturbations are restricted to the invariant subspace
corresponding to the imaginary eigenvalues thereby making
sure that the non-imaginary eigenvalues will not move at
all. This, however, yields a dense perturbation∆ that does
not comply with the zero pattern ofM ; and just setting
those elements to zero would again admit the non-imaginary
eigenvalues to move. We prefer to choose∆ as discussed
above and note that our method is heuristic.

It remains to discuss how to choose the valuesω̃i and the
matrices∆i. This is done in the following subsections together
with a short discussion of how the computation of imaginary
eigenvalues at Step 3 of Algorithm 8 can be carried out.

A. Choice ofω̃

In this subsection we discuss different ways to choose the
ω̃i for i = 1, . . . , θ, which are introduced in Section IV. Since
the imaginary eigenvalues are to be moved towards each other,
a basic requirement is thatω̃i > ωi if σi < 0 and thatω̃i < ωi

wheneverσi > 0. Hence, a straight forward choice forω̃i is
given by

ω̃i := ωi − τ · sign (σj) . (37)

Here, as well as for the following choices below,τ denotes a
positive constant that is an additional input to Algorithm 8.

This simple strategy works surprisingly well in practice, but
has problems if dissipativity is violated in intervals of greatly
varying lengths. In that case it makes sense to choose the
distance|ω̃i−ωi| relative to the distance ofωi to its neighbors
ωi±1, i.e.,

ω̃i := ωi − τ ·
{

(ωi − ωi−1), if σi > 0

(ωi − ωi+1), if σi < 0
. (38)

Note, that this choice (employed in [1]) is also well-defined
for the border casesi ∈ {1, θ}, because we know thatσ1 < 0,
σθ > 0 (since we assume feasibility).

The choice (38) works well as long as only one curve in the
spectral plot falls below zero. But, if two or more curves fall
below zero in one interval, then some zerosωi are moved only
a very small distance (e.g., the zerosω1 andω4 in Fig. 1). This
motivates the following refined choice (introduced in [13]):
choose the distance|ω̃i − ωi| relative to the distance ofωi to
its neighbor of opposite sign of slope, i.e.,

ω̃i := ωi − τ ·
{

(ωi − ωi∗), if σi > 0

(ωi − ωi∗∗), if σi < 0
, (39)
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where

i∗ = max{j ∈ {1, . . . , i− 1} : σi · σj < 0},
i∗∗ = min{j ∈ {i+ 1, . . . , θ} : σi · σj < 0}.

Fig. 4. Illustration of the local parameters from which the new positionω̃i

can be computed

B. Choice of∆i

Let us offer some thoughts on how to chose the perturbation
basis matrices∆i. First of all, every∆i should be symmetric,
since M is. Hence, withM = [mij ]

k
i,j=1, a reasonable

perturbation basis is given by

{Eij : mij is allowed to change} (40)

with

Eij =
{

1√
2
(eie

T
j + eje

T
i ), i 6= j,

eie
T
i , i = j,

whereei denotes thei-th unit vector. Because the perturbation
to M needs to be interpretable as perturbations to the system
matrices,mij is allowed to change, only if it corresponds to
an element of (some of) the matricesA, B, C, D, E, Q,
R, S in (8). To decide which of those matrices should be
allowed to change, a rule of thumb is that everything that is
derived from measurements, linearizations or other potentially
inaccurate computations should be allowed to change whereas
tangible matrices like zero or identity blocks (e.g.,Q, R, S in
the cases (3) or (4)) should stay constant.

Another reasonable rule would be to allow only nonzero
elementsmij to change, which implies that the perturbation
∆ respects the sparsity pattern ofM . So, if n is large and
the matrices are stored in sparse format, then the perturbed
system does not need more storage than the original one. A
further consequence is that structures that result in certain
sparsity patterns (like higher order systems, cf. Section VIII,
or coordinated systems [26]) are preserved by our dissipativity
enforcement method.

Note that the choice (40) is easily adaptable to symmetric
systems (i.e.,E, A, D symmetric,B = CT ) such that also
the perturbed system is symmetric.

Note that for the choice (40) we have‖δ‖2 = ‖∆‖F . Since
‖δ‖2 is minimized by (36), also the Frobenius norm of∆ is
minimized. Furthermore, a scaling of the matrices∆i may be
used to minimize a weighted Frobenius norm. For example,
scaling the basis matrices in (40) by|mij |, i.e., employing the
basis

{|mij |Eij : mij 6= 0 andmij is allowed to change} ,

allows larger perturbations in large entries and smaller pertur-
bations in small entries ofM .

C. Computation of imaginary eigenvalues

In step 3 of Algorithm 8 we have to compute all imaginary
eigenvalues of a para-Hermitian pencilλN − M ∈ R [λ]k,k

and the corresponding eigenvectors. The approach to compute
all eigenpairs (e.g., using theeig command in MATLAB ) and
then discarding the non-imaginary eigenvalues seems obvious.
However, due to rounding errors the computed eigenvalues are
not exact. Thus one cannot decide whether an eigenvalue with
a negligible real part is really on the imaginary axis or only
nearby. The first situation indicates a non-dissipative system
and would hence require some action to be taken whereas the
latter situation does not.

To circumvent this inconvenience we make use of the skew
URV factorization [27], [28]: There exist orthogonal matrices
U, V ∈ Rk,k such that the productsT := UTMV , andZ :=
V TNV are anti triangular (hereT is called anti triangular if
tij = 0 wheneveri+j ≤ n) whereas the productS := UTNU
is quasi anti triangular, i.e., it is block anti triangular with 1×1
and 2 × 2 blocks on the anti diagonal. Then the eigenvalues
of λN −M can be read off the blocks on the antidiagonals of
S, T, Z. More precisely,1×1 blocks give rise to an eigenvalue
pair

λ2i;2i+1 = ±
√

(ti,n+1−itn+1−i,i)/(sn+1−i,izn+1−i,i). (41)

Note thatλ2i;2i+1 form a real or a purely imaginary eigenvalue
pair (depending on the signs ofti,n+1−i, tn+1−i,i, sn+1−i,i,
andzn+1−i,i). The2× 2 blocks are not of interest here, since
they correspond to a quadruple of complex non-real, non-
imaginary eigenvalues [27], [28]. We will assume thatU, V
were chosen such that the1 × 1 blocks that are responsible
for imaginary eigenvalues appear in the upper-right and lower-
left corners. (This is always possible. The potentially necessary
transformations can be achieved by an eigenvalue reordering
algorithm [29].) ThenT, S, Z can be partitioned into

T =





0 0 T13

0 T22 T23

T31 T32 T33



 , S =





0 0 −ST
31

0 S22 −ST
32

S31 S32 S33



 ,

andZ analogously toS whereT13, T31, S31, Z31 ∈ Rϑ,ϑ are
anti triangular. PartitionU = [U1, U2, U3], V = [V1, V2, V3]
conformably, that is,U1, U3, V1, V3 ∈ R

k,ϑ.
From the definitions ofT, S, Z we haveMV = UT ,MU =

V T T , NU = US, andNV = V Z and looking only at the
first block column givesM [V1, U1] = [V3, U3]M̃ , N [V1, U1] =
[V3, U3]Ñ where

M̃ =

[

0 T T
13

T31 0

]

, Ñ =

[

Z31 0
0 S31

]

.

The eigenvalues of the pencilλÑ−M̃ are given by (41) for
i = 1, . . . , ϑ. We note thatλ2i, λ2i+1 depend only on the anti
diagonal elements ofT, S, Z and (depending on their signs)
form a real or a purely imaginary eigenvalue pair.
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Denote the eigenvectors ofλÑ − M̃ corresponding to the
eigenvaluesλ2i;2i+1 by x̃2i;2i+1. Then eigenvectors ofλN −
M are given byx2i,2i+1 = [V1, U1]x̃2i;2i+1, because

Mx1;2 = M [V1, U1]x̃1;2 = [V3, U3]M̃x̃1;2

= λ1;2[V3, U3]Ñ x̃1;2 = λ1;2N [V1, U1]x̃1;2 = λ1;2Nx1;2.

Note that, although the columns of[V1, U1] are not orthogonal
in general, there cannot be cancellation in the computationof
x2i,2i+1 = [V1, U1]x̃2i;2i+1, becausẽx2i;2i+1 can be chosen
such that its firstϑ elements are real whereas the trailingϑ
elements are imaginary.

VII. N UMERICAL EXPERIMENTS

In this section we test Algorithm 8 on four different ex-
amples. The first two are the toy example from [1] and [14].
The other two were provided byCST AG, Darmstadtand stem
from a realization procedure of scattering parameters.

As explained in Subsection VI-B, we can control which of
the block entries in the matrixM from (8) can be perturbed
through the selection of the basis (25). In our examples we
are not going to perturb the matricesQ, S, and R of the
supply functional (2) but only (some of) the matricesA, B,
C, andD of the system (1). As input parameters of Algorithm
8 we choseMAXITER= 1000 and ξ = ∞, unless specified
otherwise explicitly.

A. A toy example

In [1] a system of the form (1) with

A =

[

− 1
2 1

−1 − 1
2

]

, B = CT =

[

1
2
1
2

]

, D =
1

2
, (42)

andE = I was considered together with the supply functional
(4). The spectral plot of (42) is given by the solid line in Fig.
5. In [1] the valueω̃ is chosen as in (38) withτ ∈

(

0, 1
2

]

and only perturbations to the matrixC are allowed. The left
column of Table I shows the results of Algorithm 8 under
the same conditions (i.e., employing (38) and restricting
the perturbation toC). It is not surprising, that the obtained
perturbation norms are very similar to those in [1]. However,
allowing perturbations to the matricesB and C results in
smaller norms of the perturbation.

TABLE I
INFLUENCE OF THE PARAMETERτ IN (38) ON THE PERFORMANCE OF

DISSIPATIVITY ENFORCEMENT ALGORITHM

τ Iterations ‖∆C‖
‖C‖

Iterations
√

‖∆C‖2+‖∆B‖2

‖C‖

0.1 57 0.0661 58 0.0475
0.2 19 0.0661 18 0.0475
0.25 4 0.0661 4 0.0475
0.255 2 0.0661 2 0.0476
0.26 1 0.0670 2 0.0476
0.27 1 0.0696 1 0.0492
0.28 1 0.0722 1 0.0510
0.3 1 0.0773 1 0.0547
0.4 1 0.1031 1 0.0729

0 0.5 1 1.5 2 2.5 3
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

ω

Fig. 5. Spectral plot (solid line) of the system (42) and of the perturbed
system (dashed line).

B. A singular toy example

In [14, Example 1] a system of the form (1) with

E =









16 12 −4 14
14 8 4 −14
−14 8 −4 34
6 −4 0 −10









, B =









−0.6
1
0.2
−0.3









,

A =









6 −19 7 −9
11 3 −21 18
25 −9 35 −16
−27 6 −16 38









, CT =









3.2
1.4
2.6
1.4









,

(43)

and D = 0.105 was considered together with the supply
function (3). The spectral plot of the system is given as the
solid line in Figure 6. In this example the matrixE is singular
and, even more, the pencilλE − A has index2. However, if
one allows for perturbations of the matrixA the index gets
reduced to1 while at the same time a very large eigenvalue at
−42849.27 (coming from infinity) is introduced. If one does
not allow for perturbations ofA the algorithm still works and
the passivated system is depicted as the dashed line in Figure 6.

C. A coaxial cable

The example in this section has the form (1) withE = I,
n = ρ = 35, andm = l = 2. It stems from a realization
procedure of the scattering parameters of a coaxial cable and
thus uses the supply functional (4). A spectral plot of the
system is given in Fig. 7 at different scales.

A possible perturbed system, which is dissipative, is given
in Fig. 8 only for the fine scale, since on the coarse scale it
can not be distinguished visually from Fig. 7 (top).

In this example we allowed all of the matricesA, B, C, and
D to be perturbed. In Table II we list the ratio of the norms
of the computed perturbation and of the original matrices, i.e.

∥

∥

∥

∥

[

∆A ∆B
∆C ∆D

]∥

∥

∥

∥

÷
∥

∥

∥

∥

[

A B
C D

]∥

∥

∥

∥

, (44)
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Fig. 6. Spectral plot (solid line) of the system (43) and of the passivated
system (dashed line).
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Fig. 7. Spectral plot of the unperturbed coaxial cable at a coarse scales (top)
and a fine scale (bottom).

for different choices of̃ω and τ as described in Subsection
VI-A. All values were computed withξ = −0.001. The
obtained results clearly suggest to chooseω̃ by (37).

D. An RJ45 connector

The example in this section has the form (1) withE = I,
n = ρ = 160, andm = l = 8. It stems from a realization
procedure of the scattering parameters of an RJ45 connector
and thus uses the supply functional (4). Here the matricesA
and B have the sparsity structure depicted in Fig. 9, which
is typical for matrices coming from a realization procedure,
while the matricesC andD are full. To keep the sparsity of
Fig. 9 we choose the basis in (25) accordingly.

In Table III we present iteration numbers and perturbation
norms for different values ofτ . The values in parenthesis
include stabilization (withξ = −0.001), the others solely

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1
x 10

−3

ω

Fig. 8. Spectral plot of the perturbed and dissipative system after 3010
iterations using (37) withτ = 10−4 and perturbations ofB andC allowed.

TABLE II
INFLUENCE OF THE CHOICE(38)-(37)AND THE PARAMETERτ ON THE

PERFORMANCE OF THE ALGORITHM.

Using (38) Using (39) Using (37)
τ Iter. (44) Iter. (44) Iter. (44)

0.5 3 1.7953e-4 2 3.8320e-5 1 8.0044e-5
0.2 26 1.0208e-4 17 3.1665e-5 1 3.2018e-5
0.1 55 8.7276e-5 53 2.1890e-5 2 2.6892e-5
0.05 122 5.5879e-5 119 2.0053e-5 6 2.5459e-5
0.02 367 3.2795e-5 316 1.9918e-5 14 2.2585e-5
0.01 646 2.4999e-5 844 2.0255e-5 28 2.0780e-5
0.001 1000 N/A 1000 N/A 298 2.0260e-5

dissipativity enforcement. No parenthesis are given, whenever
both variants yielded the same result. ”fail” indicates that the
maximum iteration countMAXITER=1000 was reached.

TABLE III
INFLUENCE OF PARAMETERτ IN (37) ON PERFORMANCE OF THE

ALGORITHM.

τ Iterations (44)
5 129 (fail) 2.356e-0 (N/A)
2 87 (fail) 8.384e-1 (N/A)
1 86 (63) 1.539e-1 (1.623e-1)

0.5 38 (32) 8.516e-2 (5.451e-2)
0.2 17 1.755e-2
0.1 19 8.307e-3
0.05 37 4.900e-3
0.02 88 4.737e-3
0.01 112 4.755e-3
0.005 227 4.595e-3
0.002 574 4.562e-3
0.001 874 4.688e-3

Remarkable about the results in Table III is that for large
values ofτ > 0.5 the number of necessary iterations begins to
rise again. This is due to the fact that the example has a more
complicated structure, as one can see in Fig. 10, compared
with, say, the toy example in Fig. 5. For the RJ45 connector,
the large perturbations (which are connected with a large value
of τ ) can cause lines in the spectral plot, which are already
above zero, to move below zero. This then makes a subsequent
perturbation necessary, and this process repeats and repeats,
similar to Example 9.

VIII. H IGHER-ORDER AND BEHAVIORAL SYSTEMS

For system (1) we introduced the notion of power supply
via (2), which is a function of the input valueu(t) and the
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Fig. 9. A Matlabspy plot of the concatenated matrix[A B] for the RJ45
connector. The perturbation also only acts on these non-zero entries.
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Fig. 10. Top: Spectral plot for the original RJ45 connector.Bottom: The
perturbed and dissipative system, using (37) withτ = 0.002.

output valuey(t), but not of the statex(t). However, it turns
out that this distinction into inputs, outputs, and states is not
essential to the problem of dissipativity enforcement. Indeed,
one can show that the problem can be formulated (and solved)
in a more general framework: the so calledbehavior approach,
cf. [20].

Example 10. Consider the electrical circuit given in Fig. 11
with inductanceL and resistanceR. Using Krichhoff ’s current
law we find that the circuit is described by the equations





L 0 0 0
0 0 0 0
0 0 0 0





d

dt









IL
IR
I
V









=





0 0 0 1
0 0 R −1
1 1 −1 0













IL
IR
I
V









.

(45)
There are two possibilities to rewrite this system into a system
of the form(1). Assuming that the source in Fig. 11 is voltage-
driven results in the statex =

[

IL IR I
]T

, the inputu =

Fig. 11. A simplistic electrical circuit

V , and the outputy = I. On the other hand, assuming that the
source is current-driven yields the statex =

[

IL IR V
]

,
the inputu = I, and y = V . Both choices are legitimate.
Sometimes, however, one does not want to make this choice a-
priori, in which case it is not reasonable to consider a system
of the form(1) with ρ = n.

Note that the power supply for the system(45) is measured
via V · I, which for both choices (voltage-driven or current-
driven source) has the form(4).

With the matrices from (1), define

F :=

[

0 E 0
0 0 0

]

, G :=

[

0 −A −B
I −C −D

]

, z :=





y
x
u



 , (46)

and thenp := ρ+ℓ, andq := ℓ+n+m such thatF,G ∈ Rp,q

and such thatz ∈ Cq
∞. Then(u, x, y) is a trajectory of (1) if

and only if z fulfills

F ż(t) +Gz(t) = 0. (47)

Since we can defineP (λ) := λF +G ∈ R [λ]
p,q

1 and rewrite
(47) in symbolic fashion asP

(

d
dt

)

z = 0, we call the set
of trajectories of (47) thebehaviorof λF +G. Furthermore,
we call the set of all trajectories of (47) which have compact
support thecompact behaviorand denote it by

Bc (λF +G) :=
{

z ∈ Cq
∞
∣

∣z has compact support and fulfills(47)
}

To adopt (2) to the behavioral setting we define

H :=





Q 0 S
0 0 0
ST 0 R



 . (48)

and then measure the power supply via

s(z(t)) = zT (t)Hz(t).

Together with the definitions from (46) this gives exactly (2).
In the behavior approach, however, it is not necessary to stick
to definitions (46) and (48). Arbitrary choices ofF , G, and
H are possible. An arbitrary pencilλF +G ∈ R [λ]

p,q

1 is then
called dissipative with respect to an arbitrary symmetric matrix
H = HT ∈ Rq,q if

0 ≤
∫ ∞

−∞
z∗(t)Hz(t)dt,
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for all z ∈ Bc (λF +G). This definition is equivalent to
Definition 1 if one uses (46) and (48). In this setting, the
equivalent formulation of Theorem 2 states that if the condition

rank (ıωF +G) = p,

holds, then the pencil

N (λ) := λ

[

0 F
−FT 0

]

+

[

0 G
GT H

]

, (49)

satisfies
η (N (ıω)) = q − p,

if and only if λF + G is dissipative with respect toH .
Thus, if N as in (49) is regular, we can compute the purely
imaginary eigenvalues and associated eigenvectors of thisN
and formulate equation (27) and the method in Section VI
in the very same way. However, it is not easily possible to
formulate the results from Section V in the behavioral setting,
which is why we preferred state-space systems (1) in this
paper.

For another choice ofF , G, andH consider the higher-order
behavior system

Pry
(r)(t) + . . .+ P1y

(1)(t) + P0y(t) = 0, (50)

wherePj ∈ Rp,q, y ∈ Cq
∞, andy(j) denotes thej-th derivative

of y. Through linearization, i.e., by defining

F :=











Iq
. . .

Iq
Pr











, z :=











y

y(1)

...
y(r−1)











(51)

G :=











0 −Iq
. . .

. ..
0 −Iq

P0 · · · Pr−2 Pr−1











,

we can again write system (50) as a system of the form (47). A
matching power supply for this kind of system is then allowed
to respect not onlyy but all entries inz (as in (51)), which
means that for (50) power supplies which assessy, . . . , y(r−1)

(in a quadratic fashion) can be handled by our algorithm. A
nice property of our dissipativity enforcement method is that
by choosing the basis of the perturbation (25) properly, it is
possible to keep the structure of the matrices (51) such that
the perturbed system can again be interpreted as a system of
the form (50).

IX. CONCLUSION

We have introduced a method to enforce dissipativity (which
generalizes the concepts of passivity and contractivity) of
LTI control systems. Compared to previous approaches our
method works for a larger class of systems (with general
supply function, and even behavioral systems). Moreover, the
class of allowed perturbations is wider and more flexibly
adaptable to the users needs: any part ofA, B, C, D, Q, R,
S can be perturbed and a weighting of the entries is possible.
Also the perturbation can be forced to be sparse, making our

method suitable for large systems, higher order systems, and
coordinated systems.

Moreover, we have introduced a new way to choose the
target positions of the unwanted purely imaginary eigenval-
ues, which in our experiments outperformed existing choices.
Further advantages are that in the new framework the slopes of
the eigenvalue curves are obtained as a by-product and that the
described way to compute the needed eigenvalues provides a
more robust way to find all of them. Finally, our method is able
to enforce stability of the system in addition to dissipativity.

Numerical examples of both academic and industrial origin
underpin the desirable properties of the method.
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[13] C. Schröder and T. Stykel, “Passivation of LTI systems,” DFG Research
Center MATHEON, TU Berlin, Preprint 368, 2007. [Online]. Available:
www.matheon.de/research/list_preprints.asp

[14] Y. Wang, Z. Zhang, C.-K. Koh, G. Pang, and N. Wong, “PEDS:
Passivity enforcement for descriptor systems via hamiltonian-symplectic
matrix pencil perturbation,” inComputer-Aided Design (ICCAD), 2010
IEEE/ACM International Conference on, nov. 2010, pp. 800 –807.

[15] M. Voigt and P. Benner, “Passivity enforcement of descriptor systems via
structured perturbation of hamiltonian matrix pencils,” talk at Meeting of
the GAMM Activity Group Dynamics and Control Theory, Linz, 2011;
paper in preparation.

[16] R. Alam, S. Bora, M. Karow, V. Mehrmann, and J. Moro, “Perturbation
theory for Hamiltonian matrices and the distance to bounded-realness,”
SIAM J. Matrix Anal. Appl., vol. 32, no. 2, pp. 484–514, 2011.
[Online]. Available: http://dx.doi.org/10.1137/10079464X

[17] S. Bora and V. Mehrmann, “Perturbation theory for structured matrix
pencils arising in control theory,”SIAM J. Matrix Anal. Appl., vol. 28,
pp. 148–169, 2006.

[18] F. Gantmacher,The Theory of Matrices I. New York, NY: Chelsea
Publishing Company, 1959.
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