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Abstract. We derive a new representation of Lagrangian subspaces in the form

ImΠT
[
I
X

]
,

where Π is a symplectic matrix which is the product of a permutation matrix and a real orthogonal
diagonal matrix, and X satisfies

|Xij | ≤
{

1 if i = j,√
2 if i 6= j.

This representation allows to limit element growth in the context of doubling algorithms for the
computation of Lagrangian subspaces and the solution of Riccati equations. It is shown that a simple
doubling algorithm using this representation can reach full machine accuracy on a wide range of
problems, obtaining invariant subspaces of the same quality as those computed by the state-of-the-art
algorithms based on orthogonal transformations.

The same idea carries over to representations of arbitrary subspaces and can be used for other
types of structured pencils.
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1. Introduction. A Lagrangian subspace U is an n-dimensional subspace of C2n

such that u∗Jv = 0 for each u, v ∈ U . Here u∗ denotes the conjugate transpose of u,
and the transpose of u in the real case, and we set

J =
[

0 I
−I 0

]
.

The computation of Lagrangian invariant subspaces of Hamiltonian matrices of the
form

H =
[
F G
H −F ∗

]
with H = H∗, G = G∗, satisfying (HJ)∗ = HJ , (as well as symplectic matrices
S, satisfying S∗JS = J), is an important task in many optimal control problems
[16, 25, 31, 36].

Most current solution algorithms [5, 10, 31, 33] use a structured Schur form
approach and represent these subspaces via orthogonal bases

U = Im
[
Q1
Q2

]
. (1.1)
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and then use these to compute the Hermitian solution X = X∗ = Q2Q
−1
1 of the

associated algebraic Riccati equation,

0 = H + FTX +XF −XGX.

The solution of the Riccati equation corresponds to the choice of representing a
Lagrangian subspace as a graph subspace via

U = Im
[
I
X

]
. (1.2)

However, some Lagrangian subspaces cannot be represented in this form, e.g., if in the
orthogonal representation (1.1) the matrix Q1 is singular. But even if Q1 is invertible
but ill-conditioned with respect to inversion, then the representation (1.2) is not a
good representation. This happens e.g. in control theory for systems that are close
to being uncontrollable or unstabilizable [31] or in robust control problems near the
optimal solution, see e.g. [6].

A common alternative in the case that the representation (1.2) is ill-conditioned is
to abandon the solution of the optimal control problem via the Riccati equation and
instead use the invariant Lagrangian subspace to solve the optimality boundary value
problem directly. On the other hand, in particular for large scale problems in the context
of optimal control problems with constraints given by partial differential equations, the
Riccati approach has some advantages, since it allows low rank approximations of the
Riccati solution, and thus can be carried on with low storage requirements. Thus it is
used together with low-rank variants of the Newton method [8, 35]. In this context,
only the part of the solution that corresponds to large eigenvalues of the positive
semidefinite solution of the Riccati equation is important, and it is usually sufficient
to compute this dominant low rank component. Another advantage of the Riccati
approach is that Lagrangian property of the subspace in (1.2) is equivalent to X = X∗,
and thus it is easier to preserve or enforce explicitly during numerical computations.
In contrast, with (1.1), the subspace is Lagrangian if and only if Q∗1Q2 = Q∗2Q1, a
property which is easily lost along numerical computations and is difficult to enforce
explicitly, for instance by projection. Deviation from Lagrangian property is a problem
for numerical methods enforcing this representation, such as the Laub trick [26, 33].

Another class of methods that has recently received much attention is the class of
doubling algorithms which are used in particular for discrete time problems or via a
Cayley transformation also in the case of continuous time problems [1, 3, 4, 11, 12, 23,
24, 28]. They are based on a suitable representation of H as a matrix pencil, and on
the use of pencil (or inverse-free) arithmetic, [4] which is a tool to extend some basic
linear algebra operations to matrix pencils.

As we see in the following, both the problems of representing a matrix H with an
equivalent matrix pencil and inverse-free arithmetic are intimately related with the
problem of representing (Lagrangian) subspaces that we have mentioned above. Again,
two main strategies exist for their implementation; we can either choose orthogonal
representations along the algorithm, leading to the inverse-free sign (and disc) method
[3, 4], or impose the presence of identities and zero blocks in specified locations, leading
to the structure-preserving doubling algorithm [1, 11, 12, 24]. Similarly to the subspace
setting, in the former case all the matrices are norm-bounded, but trouble arises from
loss of structure in the pencil, while in the latter the structure is preserved exactly,
but the price is the inversion of some matrices which may be ill-conditioned along the
algorithm. The authors have suggested a hybrid approach in [32], which improves
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slightly the performance of the structure-preserving algorithms, but still does not
perform as well as the Schur form based algorithms [5, 10, 33, 31] on the harder
benchmark problems.

In view of this, and in order to improve the performance of doubling algorithms,
we suggest to use a modification of (1.2) as

U = ImΠT

[
I
X

]
, (1.3)

where Π is, up to sign changes, a permutation matrix. It is an easy corollary of a
result of [15] that every Lagrangian subspace admits at least one representation as
(1.3). We show that we can choose and compute such a representation in which the
entries of X are bounded above by a small constant.

Introducing this approach in doubling algorithms shows that already the most
simple doubling algorithm enhanced with this representation can reach full machine
accuracy on a wide range of problems, obtaining invariant subspaces of the same
quality as that for the Schur type methods.

In the following, we denote by ek the k-th column of the identity matrix and with
0 and e the vectors whose elements are all zeros and all ones, respectively. The sizes of
said vectors can usually be inferred by the context, and are specified explicitly when
needed. We denote by Mi,: the i-th row of a matrix M and by M:,j its j-th column.

The paper is organized as follows. In Section 2 we introduce some of the basic
concepts. In Section 3 we describe how to obtain theoretically a bounded representation
of Lagrangian subspaces, while in Section 4 we describe how to compute it numerically
in practice. In Sections 5 and 6 we apply this result to the representation of structured
matrix pencils and to doubling algorithms, respectively. In Section 7 we discuss the
convergence and numerical stability of this approach, and in Section 8 we test it
with several numerical experiments. Finally, some conclusions and open problems are
presented in Section 9.

2. Permutations, Plücker coordinates and minors. In this section we in-
troduce some of the basic concepts that are needed to develop our new approach.

Let U ∈ Cm,n, with m ≥ n and let Π be a permutation matrix, then we define
Y Π ∈ Cn,n, ZΠ ∈ Cm−m,n, and, whenever Y Π is nonsingular, XΠ = [xΠi,j ] ∈ Cn−m,n,
as

ΠU =
[
Y Π

ZΠ

]
, XΠ = ZΠ(Y Π)−1. (2.1)

We then have the following characterization for the minors of XΠ .
Lemma 2.1. Let U ∈ Cm,n (m ≥ n) and let Π be a permutation such that Y Π

is nonsingular. Let XΠ
I,J be the square submatrix of XΠ corresponding to rows I =

(i1, i2, . . . , ik) and columns J = (j1, j2, . . . , jk). Then, detXΠ
I,J = ±detY Π′Π/detY Π ,

where Π ′ is any permutation satisfying

Π ′(j) =
{
n+ i` if j = j` for some `,
j otherwise,

for j = 1, . . . , n.
Proof. Due to the choice of Π ′, we have

(Y Π
′Π(Y Π)−1)j,: =

{
Xil,: if j = jl for some `,
eTj otherwise.
3



Therefore, detY Π′Π/ detY Π = detY Π′Π(Y Π)−1 = detXΠ
I,J .

The quantities detY Π enjoy the following properties.
Theorem 2.2. Let U ∈ Cm,n, (m ≥ n) have linearly independent columns. Then,
1. detY Π 6= 0 for at least one permutation Π.
2. If we replace U by UQ with a nonsingular matrix Q ∈ Cn,n, then for all

permutations Π, the values of detY Π are multiplied by a common factor
detQ.

3. The values of detY Π for all possible Π uniquely characterize the subspace
ImU .

Proof. 1. Since U has full column rank, there must be at least one nonzero n× n
minor.

2. The claim follows from

ΠUQ =
[
Y ΠQ
ZΠQ

]
.

3. Choose a permutation Π such that detY Π 6= 0. Then all entries of XΠ are
uniquely determined, as (XΠ)i,j = detXΠ

(i),(j) by Lemma 2.1. Thus,

U = ΠT

[
I
XΠ

]
Y Π , ImU = ImΠT

[
I
XΠ

]
.

Up to row reordering, there are only
(
m
n

)
possible choices of Y Π , corresponding

to the possible subsets of n elements out of m. Their determinants form a set of
projective coordinates for the subspace ImU , that is known in projective geometry
as Plücker coordinates [20]. Note that a canonical row ordering is needed to obtain a
well-defined set of Plücker coordinates, and that different such orderings differ only by
a change of sign.

While Theorem 2.2 is a classical result in algebraic geometry [20], the following
result is not typically of interest in that field, although it is crucial here.

Theorem 2.3. Let U ∈ Cm,n (m ≥ n) have full column rank. Then there
exists a permutation matrix Π such that Y Π (as in (2.1)) is nonsingular and we have∣∣xΠi,j∣∣ ≤ 1.

Proof. From part 1. of Theorem 2.2, it follows that
∣∣detY Π

∣∣ 6= 0 for at least one
Π. Choose any permutation Π for which

∣∣detY Π
∣∣ is maximal. Then, by Lemma 2.1,∣∣xΠi,j∣∣ =

∣∣∣detY Π′Π
∣∣∣ / ∣∣detY Π

∣∣ ≤ 1. This result can be recast in the context of
representations of subspaces in the following way.

Corollary 2.4. Let U be an n-dimensional subspace of Cm+n. Then, there
exists a permutation matrix Π, and a square matrix XΠ such that

U = ImΠT

[
I
XΠ

]
(2.2)

where the entries of XΠ satisfy
∣∣xΠi,j∣∣ ≤ 1. It follows that a subspace can be

represented with a basis that has an identity in selected rows and norm-bounded (by
1) entries in the remaining ones. We call such a form a permuted graph representation.

3. Permuted graph representations of Lagrangian subspaces. In this sec-
tion we adapt the ideas of the previous section to obtain norm-bounded structure-
preserving representations of Lagrangian subspaces.
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Let In := {0, 1}n. For each v ∈ In, we define a symplectic swap matrix as an
orthogonal symplectic matrix given by

Πv :=
[

diag(v̂) diag(v)
−diag(v) diag(v̂)

]
,

where v̂ is the vector with v̂i = 1− vi.
Multiplication with the matrices Πv permutes (up to a sign) the entries of a vector,

with the limitation that the i-th row of a vector may only be exchanged with the
n + i-th. Notice that J = Πe with e =

[
1 1 · · · 1

]T . We denote by S2n the set
of all 2n symplectic swap matrices of size 2n. For U ∈ C2n,n and Π ∈ S2n, we define
Y Π , ZΠ and (whenever Y Π is nonsingular) XΠ by the formulas in (2.1).

In the following we will make frequent use of the following result.
Theorem 3.1 ([15]). If the columns of U ∈ C2n,n span a Lagrangian subspace,

then there exists Π ∈ S2n such that Y Π is nonsingular.
In fact, in [15] an equivalent result is shown in the context of symplectic matrices;

the version presented here follows from their result after observing that the first n
columns of a symplectic matrix span a Lagrangian subspace.

Lemma 3.2. For U ∈ C2n,n the following are equivalent.
1. ImU is Lagrangian;
2. there exists at least one Π ∈ S2n such that Y Π is nonsingular and XΠ is

Hermitian;
3. there exists at least one Π ∈ S2n such that Y Π is nonsingular, and, for all

such choices of Π, XΠ is Hermitian.
Proof. We prove a closed chain of implications.
1.⇒ 3. This follows directly from Theorem 3.1.
3.⇒ 2. is obvious.
2.⇒ 1. If Im

[
I
XΠ

]
is Lagrangian andΠT is symplectic, then ImU = ImΠT

[
I
XΠ

]
is Lagrangian as well. Therefore, every Lagrangian subspace admits at least one

representation as ImΠT

[
I
XΠ

]
. We call the pair (XΠ , Π) a permuted Lagrangian

graph representation. Note that in [15] a related object was called complementary
basis representation.

The 2n injective maps

fΠ : X 7→ ΠT

[
I
X

]
form an atlas for the Lagrangian Grassmannian, i.e., the variety of Lagrangian sub-
spaces, and are a means to obtain a structure-preserving parametrization of these
subspaces.

A result similar to Lemma 2.1 holds for symplectic swap matrices, with an
important restriction on the allowed index sets, I = J .

Lemma 3.3. Let U be given, and Π ∈ S2n, constructed from a vector v ∈ In, such
that Y Π is nonsingular. Let XΠ

I,I be the principal submatrix of XΠ corresponding to
rows and columns I = (i1, i2, . . . , ik). Let Π ′ ∈ S2n be constructed from a vector v′ that
differs from v only in positions i1, i2, . . . , ik. Then, detXΠ

I,I = ±detY Π′/ detY Π .
Proof. Due to the choice of Π ′, we have

(Y Π
′
(Y Π)−1)i,: =

{
±Xil,: if i = il for some `,
eTi otherwise.
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Therefore, detY Π′/ detY Π = ±detY Π′(Y Π)−1 = ±detXΠ
I,I .

With these preliminaries we are able to obtain a bound on the elements of a
particular XΠ .

Theorem 3.4. For every Lagrangian subspace U = ImU , there exists Π ∈ S2n

such that Y Π is nonsingular and

∣∣xΠi,j∣∣ ≤
{

1 if i = j,√
2 if i 6= j

. (3.1)

Proof. Choose Π ∈ S2n such that
∣∣detY Π

∣∣ is maximal then this determinant
is nonzero, because of Theorem 3.1. For diagonal entries, we have directly from
Lemma 3.3 that ∣∣xΠi,i∣∣ = ±detY Π

′
/detY Π ≤ 1.

For off-diagonal entries, we obtain∣∣∣∣det
[
xΠi,i xΠi,j
xΠj,i xΠj,j

]∣∣∣∣ = ± detY Π
′
/ detY Π ≤ 1.

Using the triangle inequality, we then obtain
∣∣xΠi,j∣∣2 =

∣∣xΠi,jxΠj,i∣∣ ≤ 1 +
∣∣xΠi,i∣∣ ∣∣xΠj,j∣∣ ≤ 2.

The bound (3.1) is sharp, as shown by the Lagrangian subspace spanned by the
columns of

U =


1 0
0 1
1
√

2√
2 1

 .
4. Numerical computation of bounded permuted graph representations.

In this section we discuss the numerical computation of bounded permuted graph
representations of both Lagrangian and generic subspaces.

While it is not apparent how to compute a representation that maximizes
∣∣detY Π

∣∣,
there is a simple descent algorithm that guarantees the weaker condition

∣∣xΠi,j∣∣ ≤ 1 for
all i, j.

The underlying idea is that, whenever we have an entry xΠi,j of modulus larger than
1, this means that there exists a permutation Π ′ such that

∣∣∣detY Π′Π
∣∣∣ ≥ ∣∣detY Π

∣∣, and
thus we can updateΠ toΠ ′Π. We present the unstructured version as Algorithm 1 and
then discuss the changes that are needed to perform the algorithm in the Lagrangian
case.

Algorithm 1 has the following properties.
• The value of

∣∣detY Π
∣∣ increases monotonically during the iteration, thus the

procedure always terminates, in exact arithmetic, after going through all n!
permutations. With the proposed heuristic of always picking the entry of XΠ

with largest modulus, in practice we observe that only a moderate number of
steps is needed.

• When a subspace representation is computed in a converging iterative process,
i.e., if U is updated during an iteration with a small modification, then the
algorithm can be warm-started with the previous value of Π, thus greatly
reducing the number of required steps.
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Algorithm 1: Computation of a permuted graph representation satisfying∣∣xΠi,j∣∣ < T

Input: U ∈ Cn+m,n, optionally an initial Π such that detY Π 6= 0, and a
threshold value T ≥ 1.

Output: A permuted graph representation (Π,XΠ) with
∣∣xΠi,j∣∣ ≤ T for all i, j.

If an initial Π is not supplied, choose an initial Π such that Y Π is not exactly
singular (e.g., by computing a QR decomposition with column pivoting,
UT = QRP and use the permutation Π = P );
Compute XΠ ;
repeat

let M = max
∣∣xΠi,j∣∣, attained for i = ı̂, j = ̂;

if M > T then
update the permutation Π by swapping Π(n+ ı̂) and Π(̂);
update XΠ (see Algorithm 2 below);

end
until M ≤ T ;

• The algorithm may also be used with a maximum threshold T > 1 for the
modulus of the entries of XΠ , thus requiring less steps. In order to minimize
the impact of numerical errors, we recommend using at least T = 1 +

√
u,

where u is the machine precision.
• If XΠ has to be updated after a change of the permutation Π which involves
only a small number of entries, then this can be done using the Sherman-
Morrison updating formula [18], since the new Y Π differs from the identity
only by a small number of rows. Indeed, we change only one row at a time
in Algorithm 1, but we present here an update formula in higher generality
to allow an easier generalization to the Lagrangian case and to blocked
versions. Namely, when entries (n+ i1, . . . , n+ ik) are exchanged with entries
J = (j1, . . . , jk), then we update X via

X ← (X − eI(eTI X − eTJ ))(I − eJ(eTJ − eTI X))−1

= X + (eI +XeJ)(eTI XeJ)−1(eTJ − eTI X),

where eI is obtained by stacking horizontally the columns ei for each i ∈ I, and
analogously for eJ . However, this formula may lead to numerical instabilities
when the pivot-block XI,J has an inverse with large entries; a better update
strategy can be obtained by expanding four different versions of the formula
separately, according to whether the row (resp. column) indices belong to I
(resp. J) or not. We describe this procedure in Algorithm 2.
• To avoid accumulation of errors along successive low-rank corrections, it is

advisable to recompute XΠ from scratch from the original entries of U at the
end of the procedure and, optionally, after a fixed number of steps.
• We expect the algorithm to be robust even when started with an ill-conditioned
Y Π , since we only need to estimate correctly the magnitude of the elements in
order to get a good Π. In this case, after obtaining Π, the exact value of XΠ

can be recomputed from the original U , as suggested in the previous point.
• The procedure in Algorithm 1 resembles the basic “complementary tableaux”
implementation of the simplex method [13].
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Algorithm 2: Updating a permuted graph representation XΠ

Input: X = XΠ and index sets I = (i1, . . . , ik), J = (j1, . . . , jk) such that
detXΠ

I,J is large
Output: X = XΠ′Π , where Π ′ swaps all indices n+ ik with jk
. Let Ī, J̄ denote the entries not appearing in I and J respectively;
S ← X−1

I,J ;
XĪ,J̄ ← XĪ,J̄ −XĪ,JSXI,J̄ ;
XĪ,J ← XĪ,JS;
XI,J̄ ← −SXI,J̄ ;
XI,J ← S;

When the subspace is Lagrangian, a modification of Algorithm 1 can be used to
obtain a bounded permuted Lagrangian graph representation. This procedure is given
in Algorithm 3.

Algorithm 3: Computation of a permuted Lagrangian graph representation of
a Lagrangian subspace satisfying (3.1)

Input: U ∈ C2n,n of full rank, spanning a Lagrangian subspace, and optionally
an initial Πv ∈ S2n such that detY Π 6= 0 and two thresholds S ≥ 1,
T ≥

√
1 + S2

. Output: A permuted Lagrangian graph representation (Π,XΠ) satisfying
(3.1)

. If an initial Π is not supplied, choose an initial Π ∈ S2n such that Y Π is not
exactly singular (e.g., compute a QR decomposition with column pivoting
UT = QRP and take vi = 1 if n+ i comes first than i in the permutation P );
compute XΠ ;
repeat

let M = max
∣∣xΠi,j∣∣, i 6= j, attained for i = ı̂, j = ̂;

let N = max
∣∣∣xΠk,k∣∣∣, attained for k = k̂;

if N > S then
update the swap matrix Π = Πv with vk̂ ← 1− vk̂;

else if M > T then
update the swap matrix Π = Πv with vı̂ ← 1− vı̂ and v̂ ← 1− v̂;

end
update XΠ ;

until M ≤ T , N ≤ S ;

Algorithm 3 has the following properties
• If U spans a Lagrangian subspace, then the first computed value of XΠ should

be Hermitian; this property can fail only due to numerical errors in the given
U or in the computation, so we can safely enforce it by projecting it on the
nearest Hermitian matrix with X ← X+X∗

2 .
• After computing the first permuted graph representation, all subsequent

updates can be performed using a variant of Algorithm 2, since swap matrices
differ from permutations only by a change of sign. The updates can be
performed using operations that preserve the Hermitian property of XΠ
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exactly.
• It is important to check the optimality on diagonal elements first: We need
to have

∣∣∣xΠk,k∣∣∣ ≤ S for each k, in order to prove that for any i, j such that∣∣xΠi,j∣∣ > T we have
∣∣detX(i,j)(i,j)

∣∣ =
∣∣xΠi,ixΠj,j − xΠi,jxΠj,i∣∣ > T 2 − S2 ≥ 1, and

thus the swapping operation increases the value of Y Π . This is in turn needed
to prove the termination of the algorithm.

5. Permuted graph representations of matrix pencils. In the context of
eigenvalues and invariant subspace computation, matrix pencils are usually considered
up to right equivalence, i.e., up to the equivalence relation defined by

sE1 −A1 ≡ sE2 −A2

with E1 = ME2, A1 = MA2 for a nonsingular square matrix M . We may interpret
this equivalence in terms of subspaces, by saying that we are not interested in the

matrix
[
ET

AT

]
, but rather in the subspace Im

[
ET

AT

]
. Therefore, our results on the

representation of subspaces may be adapted to representations of pencils up to right
equivalence. Our main motivation stems from the representation of regular symplectic
pencils, i.e.,regular pencils sE − A satisfying EJE∗ = AJA∗ for which we have the
following theorem.

Theorem 5.1. Let sE − A, with E,A ∈ C2n,2n, be a regular symplectic pencil.
Then, there exist Π1, Π2 ∈ S2n such that

sE −A ≡ s
[
I X11
0 X21

]
Π1 −

[
X12 0
X22 I

]
ΠT

2 , (5.1)

where

XΠ =
[
X11 X12
X21 X22

]
is Hermitian and satisfies (3.1).

Proof. Partitioning the pencil as E =
[
E1 E2

]
, A =

[
A1 A2

]
, where all blocks

are 2n× n, we can rewrite the condition EJE∗ = AJA∗ as

[
E1 A2 E2 A1

] 
0 0 I 0
0 0 0 I
−I 0 0 0
0 −I 0 0



E∗1
A∗2
E∗2
A∗1

 = 0, (5.2)

Moreover,
[
E1 A2 E2 A1

]
is of full row rank, since otherwise one could find

a vector w such that
[
E1 A2 E2 A1

]∗
w = 0, i.e., w∗E = w∗A = 0, which

contradicts the regularity assumption.
Therefore, the columns of

[
E1 A2 E2 A1

]∗ span a Lagrangian subspace of
C4n, and Theorem 3.4 gives us a permuted graph representation

Πv


E∗1
A∗2
E∗2
A∗1

 =
[
I
XΠ

]
(Y Π)−1.
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Note that Πv acts separately on the blocks columns (1, 3) and (2, 4); these actions

are given by Π1 = Πv1 and Π2 = Πv2 , where v =
[
v1
v2

]
. After reshuffling the blocks,

we obtain (5.1). The representation (5.1) with Π1 = Π2 = I is well-known, see e.g.
[30, 31, 34], where the representation

sE −A = s

[
I G
0 F ∗

]
−
[
F 0
H I

]
with F = F ∗, G = G∗ is used, but without the permutations the boundedness of
the matrices cannot be guaranteed and this may lead to ill-conditioning in numerical
methods.

Similarly for Hamiltonian pencils, i.e., pencils satisfying EJA∗ +AJE∗ = 0, or,
equivalently,

[
E1 E2 A2 −A1

] 
0 0 I 0
0 0 0 I
−I 0 0 0
0 −I 0 0



E∗1
E∗2
A∗2
−A∗1

 = 0 (5.3)

we have that Im
[
E1 E2 A2 −A1

]∗ is Lagrangian and sE − A is equivalent to
sẼ − Ã with[

Ẽ1 Ã2
]

=
[
I X11
0 X12

]
Π1,

[
−Ã1 Ẽ2

]
=
[
X21 0
X22 I

]
Π2, X

Π =
[
X11 X12
X21 X22

]
,

where XΠ is Hermitian and elementwise bounded as in (3.1). Again, the case Π = I
gives the well-known representation sI − H, where HJ is Hermitian (i.e.,H is a
Hamiltonian matrix).

6. Permuted graph representations and doubling algorithms. In this
section we discuss doubling algorithms for the computation of the stable deflating
subspace of a symplectic pencil. These methods are based on the following result.

Theorem 6.1 ([3]). Let sE − A with E,A ∈ Cn,n be a regular pencil, and let
Ẽ, Ã ∈ Cn,n be such that

ẼA = ÃE, Rank
[
Ẽ Ã

]
= n. (6.1)

Then, the pencil sẼE − ÃA has the same deflating subspaces as the original pencil,
and its eigenvalues are the squares of the corresponding eigenvalues. If in Theorem 6.1
the matrices E and Ẽ are invertible, this result is simple, as (E−1A)2 = (ẼE)−1(ÃA).
However, it provides an extension of the squaring operation to matrix pencils that is
well-defined and can be applied also when E is singular or ill-conditioned. By iterating
the above transformation and scaling to avoid element growth, the eigenvalues of the
pencil are squared at each iteration and thus the stable eigenvalues converge to 0 and
the unstable ones to ∞. After a sufficient (not too large) number of steps, it is easy to
recover the stable and unstable invariant subspace as kernels of the two coefficients of
the pencil.

The inverse-free disc method [3] performs this doubling iteration by choosing[
Ẽ Ã

]T
with orthonormal rows; namely, it computes a QR decomposition[

Q11 Q12
Q21 Q22

] [
A
E

]
=
[
R
0

]
(6.2)
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and takes Ẽ = −Q21, Ã = Q22. The Lagrangian property of the resulting subspace is
not enforced and may be lost in finite precision arithmetic during the iteration. In
other words, the algorithm is not structure-preserving with respect to the Lagrangian
structure. The structure-preserving doubling algorithm (SDA) [11] is based instead on
the version Π = I of the representation (5.1). At each step, the method uses a pencil
of the form

E =
[
I X11
0 X21

]
, A =

[
X12 0
X22 I

]
. (6.3)

and chooses Ẽ and Ã having blocks I and 0 in the same position, and thus this
structure is maintained in the products ẼE and ÃA. The resulting pencil is then
symplectic if and only if the matrix X is Hermitian, and this can be easily enforced
at every step. Matrices Ẽ and Ã with the required block structure can be found
by inverting a suitable matrix, which is often well-conditioned but may approach
singularity in some cases [23]. As an additional advantage of having these prescribed
identity blocks, these methods have a lower computational cost than the ones in the
inverse-free methods, as the latter require building and factorizing a 4n× 4n matrix
rather than working directly with its n× n blocks.

A doubling variant that enforces a hybrid representation is presented in [32], in
order to deal with the cases in which the representation (6.3) is a poor choice. A block
structure similar to (6.3) is used, but the identities are replaced by general matrices in
order to maintain orthonormal bases for the first block row of E and the second of A.
The algorithm works better than the classical SDA for those problems in which the
representation (1.2) is a poor choice, but this new variant is not structure-preserving
and still needs the inversion of a matrix at each step that may be ill-conditioned.

In view of these observations it seems natural to study the combination of the ideas
in the structure-preserving doubling algorithm with the idea of enforcing a bounded
permuted graph representation at every step to achieve added stability. Given a pencil
sE −A and a bounded permuted graph representation[

A
E

]
= ΠT

[
I
XΠ

]
,

we can compute Ẽ, Ã with bounded entries thanks to the relation([
−XΠ I

]
Π
)
ΠT

[
I
XΠ

]
= 0. (6.4)

The resulting complete procedure is presented in Algorithm 4.
Note that Algorithm 4 in this form is still unsatisfactory, because it does not

manage to go from a permuted graph representation matrix XΠ for sE −A to one for
sẼE− ÃA using only matrix operations that map exactly between Hermitian matrices,
but one has to enforce the Hermitian property explicitly in the last instruction in
the while cycle. The task of finding a symmetry-preserving version of the update
formulas is currently under our investigation. Nevertheless, we show below that this
preliminary version gives very good computational results.

7. Convergence and stability issues. From our derivation it is not clear at
all that doubling algorithms converge when eigenvalues on the unit circle are present.
A positive answer to this question was first given in [23], and the proof was later
adapted to different types of doubling algorithms [9, 32]. We use the same technique
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Algorithm 4: Structure-preserving doubling algorithm with bounded permuted
graph representation

Input: A starting symplectic pencil sE −A.
Output: A basis for its stable invariant subspace.

Compute an optimal (Π,XΠ) for the subspace
[
A
E

]
using Algorithm 1 (from

the second step on, we warm-start with the Π from the previous iteration);
while a suitable stopping criterion is not satisfied do

Compute
[
Ã −Ẽ

]
=
[
−XΠ I

]
Π;

Form the products ẼE, ÃA;
Compute an optimal (Π,XΠ) for the symplectic pencil sE −A with
Algorithm 3 (warm-started);
Symmetrize X ← X+X∗

2 to reduce the impact of numerical errors;
end

return U = ker
[
X22 I

]
ΠT

2 = Π2

[
I
−X22

]
;

here, based on the Kronecker canonical form [17], to prove convergence of this new
doubling variant; note that the proof is easier in our setting since we do not have to
worry about boundedness, and that we need no nonsingularity assumption.

First of all, we introduce some notation. Let A0− sE0 be a regular 2n× 2n matrix
pencil, and denote its Kronecker chains with (wi1, wi2, . . . , wiki

), and the associated
eigenvalues with λi (here wi1 are the eigenvectors; the λi are possibly infinite, and may
be repeated if there are multiple chains with the same eigenvalue, and

∑
i ki = 2n).

Let S = {wij : |λi| < 1}, U = {wij : |λi| > 1}, C1 = {wij : |λi| = 1, j ≤ k1/2},
C2 = {wij : |λi| = 1, j > k1/2}. Notice that |S| + |U| + |C1| + |C2| = 2n (where |X |
denotes the cardinality of a set X ), and in fact their union is a basis of C2n composed
of Kronecker chains.

With this notation in effect, we have the following convergence theorem.
Theorem 7.1. Let A0 − sE0 be a regular 2n × 2n matrix pencil, such that for

each i such that |λi| = 1, ki is even and |S|+ |C1| = n.
Let Ak+1, Ek+1 be the sequence of matrix pencils generated by Algorithm 4. Then,

Π2

[
I

−X2,2

]
, ΠT

1

[
−X1,1
I

]
converge to spanS ∪ C1 and spanU ∪ C1 respectively. The convergence is quadratic
with rate lmax/lmin, where

lmax := max
|λi|<1

|λi| , lmin := min
|λi|>1

|λi| ,

if C1 (and thus C2) is empty, and linear with rate 1/2 otherwise.
Proof. After some easy manipulations of the Kronecker form, we obtain

W (A1−sE1)Z =


JS

JC1 H
JC1

I

−s

I

I
I

JU

 , Z =
[
S C1 C2 U

]
12



where the columns of S, C1, C2, U are the elements of the corresponding sets S, C1,
C2, U , and JS − sI, JC1 − sI, I − sJU are the Kronecker forms of the pencil restricted
to the corresponding spaces. As in [23], from this equality we obtain

AkZ


I

I
I

J2k

U

 = EkZ


JS

JC1 H
JC1

I


2k

= EkZ


J2k

S

J2k

C1
Hk

J2k

C1
I

 ,
where Hk is defined so that the rightmost equality holds. Clearly, J2k

S = O(s2k ),
J2k

U = O(u−2k ), and it is proved in [23, Lemma 4.4] that Hk is invertible for sufficiently
large k, and H−1

k J2k

C1
= O(2−k), J2k

C1
H−1
k J2k

C1
= O(2−k). Multiplying both sides with

I
I

−H−1
k JC1

I


from the right, we obtain

AkZ



I

I
0

0

+O(2−k)

 = EkZO(2−k).

Thus, using the definition of Z and boundedness of Ak and Ek,

O(2−k) = Ak
[
S C1

]
=
[
X12
X22 I

]
ΠT

2
[
S C1

]
,

from which we see that Π2

[
I
−X22

]
converges to a permuted graph representation of[

S C1
]
. The analogous result for the semi-unstable subspace follows with a similar

argument by considering a Kronecker canonical form with Z̃ =
[
U C1 C2 S

]
.

To examine the stability and conditioning, for a given matrix U , we define its
condition number κ(U) = σmin(U)−1σmax(U), where σmin(U) and σmax(U) denote,
respectively, the smallest and largest singular value. This condition number can be
regarded as a measure of how good U is as a representation of its column space.
This quantity plays a central role when computing projectors, for which we need to
form (UTU)−1, and when extracting an orthonormal basis, as the condition number
of the Q factor in the QR factorization of U depends on it [21]. In this sense, we
show that, when XΠ has bounded entries, a permuted graph representation is a good
representation of the subspace, and it can be computed stably from another given
good representation.

Theorem 7.2. Let ΠT

[
I
X

]
= U ∈ Cm+n,n, where

∣∣XΠ
ij

∣∣ ≤ T for each i, j. Then,

κ(U) ≤
√
mnT 2 + 1.

Proof. We have U∗U = I + X∗X ≥ I in the Loewner ordering of symmetric
matrices, thus σmin(U) = λmin(U∗U) ≥ 1. To assess σmax(U), we estimate directly
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‖U‖2. Given a vector w with ‖w‖2 = 1, (XΠw)i ≤ T
√
n for each i, by the Cauchy-

Schwarz inequality, and thus σmax(U) = ‖U‖2 ≤
√
mnT 2 + 1.

Theorem 7.3. Let U , Π, Y Π , ZΠ , XΠ be as in (2.1), and let
∣∣xΠi,j∣∣ ≤ T for

each i, j. Then,

κ(Y Π) ≤ κ(U)
√
mnT 2 + 1.

Proof. Since multiplying by the orthogonal matrix Π has no effect on the condi-
tioning, we may safely assume Π = I and drop the superscripts Π for ease of notation.
Let QDQ∗ = Y ∗Y + Z∗Z and PEP ∗ = I +X∗X be spectral decompositions of the
symmetric positive definite matrices in the right-hand side, so that P,Q are unitary
and D,E are diagonal. Then,

QDQ∗ = Y ∗Y + Z∗Z = Y ∗(I +X∗X)Y = Y ∗PEP ∗Y,

and

I = D1/2Q∗Y ∗PE1/2E1/2P ∗Y QD1/2,

from which we infer that L = E1/2P ∗Y QD1/2 is unitary. Then, we have the inequalities

‖Y ‖2 =
∥∥∥PE−1/2LD−1/2Q

∥∥∥
2
≤
∥∥∥D−1/2

∥∥∥
2

∥∥∥E−1/2
∥∥∥

2
,

and ∥∥Y −1∥∥
2 =

∥∥∥Q∗D1/2L∗E1/2P ∗
∥∥∥

2
≤
∥∥∥D1/2

∥∥∥
2

∥∥∥E1/2
∥∥∥

2
.

Multiplying the two bounds and noticing that∥∥∥D−1/2
∥∥∥

2

∥∥∥D1/2
∥∥∥

2
= κ(U),

∥∥∥E−1/2
∥∥∥

2

∥∥∥E1/2
∥∥∥

2
= κ

(
ΠT

[
I
XΠ

])
≤
√
mnT 2 + 1

the assertion follows.
Another interesting observation is the following. Given a choice of (Ẽ, Ã) satisfying

(6.1), all other possible choices can be expressed as (MẼ,MÃ) for a suitable nonsingular
M . Note that all such M lead to the same sẼE − ÃA up to right-handed equivalence.
However, not all choices of M , i.e., of the pair satisfying (6.1), are equally good from
a numerical point of view, since some might give rise to large errors in the resulting
pencil. For instance, it is clear that in the two pencils

s

[
1 0
0 1

]
−
[
1 1
1 1

]
, s

[
1 0
1 ε

]
−
[

1 1
1 + ε 1 + ε

]
,

the first is to be preferred, since the second is close to a singular pencil since the two
matrices almost have a common left nullspace. Extending our analogy between matrix

pencils up to right-handed equivalence and subspaces, we may argue that κ
([
ET

AT

])
measures how well-conditioned our choice of the representative is in the equivalence
class of pencils up to right-handed equivalence. If we are looking for the best possible

representation of sẼ − Ã, then it is clear that an orthogonal basis of κ
([

ẼT

ÃT

])
is
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the best choice, and this is precisely what is computed by the inverse-free doubling
algorithms. However, a more meaningful goal is stability of the final result of the
doubling step, i.e.,

κ

([
ET ẼT

AT ÃT

])
. (7.1)

In this view, it is not clear that the path chosen in the inverse-free disc algorithm is the
best choice; in fact, we argue that for very small matrices the graph subspace strategy
is equivalent. We compared the magnitude of (7.1) when (Ẽ, Ã) are computed via a
QR decomposition as in (6.2) or with a permuted graph representation and (6.4). We
chose 1000 random pencils with entries extracted from a Gaussian distribution of mean
zero and variance one. In all cases, the condition numbers given by the two techniques
are comparable. In 551 cases the conditioning of the doubled pencil computed with
(6.2) is lower, and in the other 449 (6.4) gave a lower condition number. This shows
that, despite the intuition that using an orthonormal basis should always give more
stable results, in fact the two strategies are comparable for small matrices. For larger
matrices, we may lose (on average) a factor n with respect to the orthogonal approach,
as predicted by Theorem 7.3.

The next natural step in a complete stability analysis would be to show that a single
step of doubling performed with the strategy of (6.4) is backward stable. However, this
result cannot be obtained, not because the error bounds are unsatisfactory, but rather
because of the fact that the backward stability setting cannot be adapted meaningfully
to doubling algorithms. Consider for instance the matrix pencil

sE −A = s

[
1 0
0 1

]
−
[
0 0
0 0

]
,

for which all known doubling methods give

sẼE − ÃA = s

[
1 0
0 1

]
−
[
0 0
0 0

]
.

Note that this is a perfectly good problem, far from the critical and ill-conditioned
cases, from the point of view of computing the invariant subspace associated with
the eigenvalues inside the unit circle. A backward stability result would give us, for a
special choice of the perturbation, a pair (Ec, Ac) that is very close to (E,A) and for
which

sẼcEc − ÃcAc = s

[
1 0
0 1

]
−
[
0 ε
0 0

]
holds in exact arithmetic. However, this would imply that E−1

c Ac is a matrix square

root of
[
0 ε
0 0

]
, but it is well known that this matrix does not admit a square root [22].

Therefore, a backward stability result for a single step of doubling is impossible. If we
focus on the full algorithm as a way to compute the stable and anti-stable invariant
subspace, a backward stability analysis may still be possible, although a challenging
task.

8. Numerical results. We implemented a Matlab version of a permuted graph
representation doubling algorithm (PGR-SDA) as in Algorithm 4. We ran the method
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on the 33 test examples in [10], which are created from the standard carex test suite,
and on the corresponding problems with Hamiltonian −H instead of H, as suggested
in [32] in order to obtain problems for which vanilla structure-preserving doubling
algorithm (SDA) runs into trouble as a method for computing invariant subspaces.
We transformed the pencil sI −H to a symplectic pencil using a Cayley transform
with parameter γ = ‖H‖2. Notice that this differs from the usual heuristic for γ in
the standard SDA. The reason is that the usual heuristic aims to reduce the value
of κ(Y Π), with Π = I, in the first step of the algorithm. Since we do not restrict
ourselves to Π = I in the new algorithms, it makes no sense to use a heuristic aimed
at this case. In the optimization, Algorithm 1 was run with a threshold T = 2 and
Algorithm 3 with S = 2, T = 3.

We compared the results with the original SDA algorithm [11], with the Matlab
command care, and with the palindromic doubling algorithm (PDA) of [27]. The PDA
method is a new type of doubling algorithm, which enforces palindromic rather than
symplectic structure. It still relies on the inversion of a possibly ill-conditioned matrix
at each step, but the condition number of this matrix does not seem to be related
to the one of the matrix to be inverted in SDA; there are problems for which it is
unstable, but they are in general different from those for which SDA is unstable. The
care command from Matlab can handle satisfactorily most of the original problems,
but for four of the modified problems (namely, problems 7, 8, 32, 33) it stops reporting
that the Riccati equation has no finite solution (incidentally, this does not seem to
agree with the results from the column κ(X) in [7, Table 1]). This reflects a problem
implicit in the approach of using a Riccati equation solver for computing subspaces,
since when the Riccati solution does not exist or is ill-conditioned we cannot use it to
recover accurately the associated graph subspace as an invariant subspace; the same
problem could in principle appear with the original SDA.

The numerical results are reported in Figure 8.1 for the original problems and
Figure 8.2 for the problems with Hamiltonian −H. We measured the residual of the
computed stable invariant subspace as suggested in [10], with the formula

rS =
∥∥HU − UUTHU∥∥2

‖H‖2
. (8.1)

This allows an immediate comparison of Figure 8.1 with [10, Figure 4], in which the
same residuals lie among 10−14 and 10−18.

The results show that doubling algorithms with permuted graph representations
can compute invariant subspaces of the same quality as the ones provided by the direct
methods based on orthogonal transformations. The method does not run into the
same numerical troubles as classical SDA methods when the Riccati solution does not
exist or has very large entries. All the other tested algorithms, on the contrary, do
have convergence problems for some of the test cases.

The number of rank-1 and rank-2 updates to be performed using Algorithm 2 is
very small in all test cases; in all of them, no more than max(7, 2n) updates (counting
1 for a rank-1 update and 2 for a rank-2 one) are needed as a whole along all doubling
steps.

9. Conclusions and challenges. As main result of this paper we have shown
that doubling algorithms can be performed in a structure-preserving fashion, without
the need of inverting ill-conditioned matrices, and that the accuracy of the computed
invariant subspaces is of equal quality as that of the modern algorithms based on
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Fig. 8.1. Subspace (relative) residual for the 33 problems in [10]
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orthogonal transformations. We have formulated all results for complex matrices, but
all the results hold in a similar way for real matrices.

Still, several questions remain open.
• Can we perform the doubling step in Algorithm 4 using a strategy that
preserves the Hermitian structure explicitly? This would lead to a more
efficient implementation, and allow to drop the final symmetrization at every
step after the first.

• Doubling iterations for the matrix sign function can be accelerated with a
suitable scaling. The same strategy could in principle be applied to this
doubling variant. Note that choosing a suitable γ in the Cayley transform
corresponds to scaling at the first step only. Moreover, as argued in the
previous section, the value of γ is not usually chosen in order to minimize the
number of iterations, but rather in order to obtain good conditioning in the
matrix to invert at the first step. Since we have now overcome that problem,
a different heuristic for the choice of γ can be sought, focusing on convergence
speed.

• We are still missing theoretical results on the worst-case and mean-case number
of swap steps needed during the optimization process (Algorithm 1 and 3).

• The presented results can be adapted to doubling algorithms for several
nonsymmetric entry-wise-positive equations as studied in [19, 9]. It would
be interesting to see if the entry-wise positive structure can be preserved
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Fig. 8.2. Residual for the modified problems with Hamiltonian −H
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explicitly.
• Another possible application of doubling algorithms is spectral separation

for some divide-and-conquer nonsymmetric eigenvalue calculation algorithms
[2, 14, 29]. The goal of this class of algorithms is to move all the computational
work into routines such as matrix multiplications and QR factorizations, as
they can be parallelized and implemented on complex memory architectures
with better performance than the usual Hessenberg QR-based algorithms. In
order to make our new version of doubling suitable to this setting, more work
needs to be done to restructure Algorithm 1 into a more high performance-
computing version, with less communication costs and more use of BLAS
level-3 arithmetic.

10. Acknowledgments. The authors are grateful to David Speyer [37] for point-
ing out the connection to Plücker coordinates, that led to a clearer presentation of the
results in Section 2.
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