
Hybrid Branching

Tobias Achterberg1 and Timo Berthold2?

1 ILOG, an IBM company, Ober-Eschbacher Str. 109, 61352 Bad Homburg, Germany
tachterberg@ilog.de

2 Zuse Institute Berlin, Takustr. 7, 14195 Berlin, Germany berthold@zib.de

State-of-the-art solvers for Constraint Satisfaction Problems (CSP), Mixed In-
teger Programs (MIP), and satisfiability problems (SAT) are usually based on a
branch-and-bound algorithm. The question how to split a problem into subprob-
lems (branching) is in the core of any branch-and-bound algorithm. Branching
on individual variables is very common in CSP, MIP, and SAT. The rules, how-
ever, which variable to choose for branching, differ significantly. In this paper,
we present hybrid branching, which combines selection rules from all three fields.

Branching Rules. In MIP, reliability pseudocost branching [2] is the current
state-of-the-art. This rule estimates the objective change in the LP relaxation
when branching downwards and upwards. It uses the average objective gains
per unit change, taken over all nodes, where this variable has been chosen for
branching. The resulting two values are called the pseudocosts of a variable.

In CSP and SAT, where no objective function is available, one may better
estimate the impact of a branching by taking the number of implied reductions
of other variable domains into account [4]. In analogy to the pseudocosts, we call
the estimated numbers of implied reductions the inference values of a variable.

In pure SAT solvers, learning short, valid conflict clauses from the analysis
of infeasible subproblems is one of the key ingredients [5]. The variable state
independent decaying sum (VSIDS) [6] branching strategy, which is a common
rule in SAT solving, prefers variables that have been used to create recent conflict
clauses. We call the VSIDS the conflict values of a variable.

The idea to use the average lengths of the conflict clauses a variable appears
in for branching was recently suggested by Kilinc et. al. [3]. We call this the
conflict lengths of a variable.

As noted above, all the described measures exist twice for each variable: for
upwards and downwards branching. Therefore, one has to combine them into a
single score value, which we do by multiplication [1].

Hybrid Branching. Hybrid branching combines all four selection criteria into
a single one and additionally includes a score which is based on the number of
subproblems that could be pruned due to branching on this variable, called the
cutoff values. We first normalize all the five individual values by mapping them
into the interval [0, 1). Afterwards, we take a weighted sum of them that puts
a high weight on the pseudocosts, a medium weight on the conflict values and
lengths, and a low weight on the inference and cutoff values.
? Supported by the DFG Research Center Matheon Mathematics for key technologies.



2 Tobias Achterberg and Timo Berthold

Table 1. Geometric means of time (in seconds) and branch-and-bound nodes over four test sets

test set MIPLIB2003 Cor@l Cor@l-BP Infeasible
Time Nodes Time Nodes Time Nodes Time Nodes

reliability 450.4 5091 803.6 4110 672.4 2145 290.7 5612
hybrid 445.6 5051 735.0 3575 577.2 1681 166.0 1998
ratio 1.01 1.01 1.09 1.15 1.16 1.28 1.75 2.81

Computational Results. We tested our new approach on a set of infeasible
binary programs (BPs) and two libraries of general MIP instances which are
publicly available: the MIPLIB2003 and the Cor@l collection. All computations
were performed on a PowerEdgeTM 1955 Xeon 5150 with 4 MB cache and 8 GB
RAM. A time limit of one hour was imposed.

We incorporated hybrid branching into the constraint integer programming
framework SCIP [1], version 1.1.0.5, using SoPlex 1.4.1 as underlying LP solver.
We compared hybrid branching against reliability pseudocost branching, which
is state-of-the-art in MIP solving. The shifted geometric means of the running
times and the branch-and-bound nodes were used as performance measures.

It turns out that for the MIPLIB2003, both branching rules perform equally
good, the difference is 1% in mean. For the Cor@l library, hybrid branching
outperforms reliability branching, the running time increases by 9%, the number
of nodes by 15%, when using reliability branching instead of hybrid branching.
If we only regard binary programs, which are roughly a third of the Cor@l test
set, the difference in performance is even larger. This meets our expectations,
since the inference and conflict values are especially meaningful for 0-1 variables.

The results for BPs gave rise to the last experiment, which showed that
for a set of infeasible binary programs, reliability branching is 75% slower and
nearly triplicates the number of branch-and-bound nodes. The conflict values
and conflict lengths arose from the analysis of infeasible subproblems, which
explains that taking them into account is crucial for handling infeasible MIPs.

Overall, hybrid branching is a successful integration of CSP, SAT, and MIP
technologies, which enables to solve standard MIP problems faster. By now,
hybrid branching is used as default branching rule in SCIP.

References

1. T. Achterberg, SCIP: solving constraint integer programs, Mathematical Pro-
gramming Computation, issue 1 (2008).

2. T. Achterberg, T. Koch, and A. Martin, Branching rules revisited, Operations
Research Letters, 33 (2005), pp. 42–54.

3. F. Kilinc Karzan, G. Nemhauser, and M. Savelsbergh, Information based
branching rules in integer programming. presentation at INFORMS Annual Meeting
2008.

4. C. M. Li and Anbulagan, Look-ahead versus look-back for satisfiability problems,
in Proc. of CP, Autriche, 1997, Springer, pp. 342–356.

5. J. P. Marques-Silva and K. A. Sakallah, GRASP: A search algorithm for
propositional satisfiability, IEEE Trans. of Comp., 48 (1999), pp. 506–521.

6. M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik, Chaff:
Engineering an efficient SAT solver, in Proc. of the DAC, July 2001.


