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Abstract

We consider the problem of automatically extracting simplified models out of com-
plex high-dimensional and time-dependent data. The simplified model is given by
a linear Langevin equation with time-varying coefficients. The reduced model may
still be high-dimensional, but it is physically intuitive and much easier to interpret
than the original data. In particular we can distinguish whether certain dynamical
effects are influenced by friction, noise, or systematic drift. The parameters for the
reduced model are obtained by a robust and efficient numerical predictor-corrector
scheme which relies on analytical solutions to a maximum-likelihood problem pro-
vided the time steps between successive observations are not too large. Our approach
emphasizes the specific hypoelliptic structure of the Langevin equation given high-
dimensional observation data, and therefore can be considered as complemetary to
the procedure recently proposed in Horenko et al. (submitted STAM MMS, 2007) by
one of the authors, or to the problem of incomplete (one-dimensional) observations
Pokern et al. (submitted to JRSSB, 2007). If the data set is very heterogeneous the
time series is better described not by a single model, but by a collection of reduced
models. This scenario is accounted for by embedding the parameter estimation pro-
cedure into the framework of hidden Markov models which it is particularly suited
to treat high-dimensional data. That is, we decompose the data into several sub-
sets, each of which gives rise to an appropriate linear Langevin model, where the
switching between the local model is done by a Markov jump process. The opti-
mal decomposition into submodels can then be regarded as one global Langevin
model with piecewise constant coefficients. We illustrate the performance of the al-
gorithm by means of several examples. Especially we focus on the numerical error
as a function of the time step of the observation sequence.
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1 Introduction

Increasing amount of measurement data and growing complexity of processes
in all fields of applied sciences during the last few years has led to a persistent
demand for methods that allow for automatized extraction of the physically in-
terpretable information out of raw data. Such data-based modelling approaches
should be able to flexibly incorporate multidimensional statistical models for
the observed data, yet they should be simple enough to enable physical un-
derstanding of the process under consideration.

Therefore the genuine aim of data-based modelling is to reduce the complexity
of processes and data; this should be carefully distinguished from analytical
approaches like, e.g., spatial decomposition methods such as proper orthogonal
decomposition, the Karhunen-Loéve expansion, or also averaging techniques.
These approaches make the point of reducing the dimension of a given model,
although the problem of finding a good decomposition may be data-driven as
well. See the textbook [1], or the excellent review article [2] for an overview.
Compare also [3] for a related approach.

We can distinguish three classes of related approaches for data-based model
reduction: (i) Box-Jenkins Model identification strategy, (ii) Bayesian models
or neural networks, (iii) and approaches which are based on fitting of the data
with a system of differential equations.

The first group of methods (i) is originated in econometrics in the beginning
of 1970 and is known under the name Boz-Jenkins technique or ARIMA (au-
toregressive integrable models with moving average) [4,5,6]. The main idea of
these methods relies on fitting the observed data with a discrete time stochas-
tic difference scheme. The Box-Jenkins approach is restricted to the analysis
of stochastic processes that can be made stationary, i.e., cast into stochastic
processes X; of bounded variation, constant first moment, and second mo-
ment E(X;X,) that depends only on (¢ — s); this can be achieved, e.g., by
differencing the time series. Moreover, the resulting autoregressive difference
scheme is discrete in time, which implies constant time intervals between single
realizations of the process.

The second group (ii) is based on dynamical Bayesian networks, such as hidden
Markov models (HMM) [7,8], or neural networks [9,10]. These are set-oriented
approaches, as they decompose the configuration space into several sets, where
the dynamics of the system in each of the domains is described by an inde-
pendent data model (see Figure 1). The overall dynamics of the process is
then governed by a hidden process switching between those sets. Most of the
approaches that we are aware of are designed in the context of the discrete
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Figure 1. Dynamical Bayesian Networks. Here the arrows denote the casual de-
pendencies, M; labels the hidden variable or model, Y; is the observation. In the
standard HMM approach the observation is triggered by the sequence of hidden
states for a prescribed probability distribution of the output (Figure (a)), whereas

in the HMMSDE scheme the observation sequence is connected through a physical
model, that depends on the hidden states (Figure (b)).

(

stochastic systems, which means that they are not based on a reasonable
physical model. Moreover the efficient implementation for high-dimensional
physical systems is lacking. See Figure 1 for illustration.

The third group of methods (iii) attempts to fit a global physical model, e.g.,
a Langevin equation, to observed data [11]. Unfortunately the available meth-
ods can deal with high-dimensional data only under very specific assumptions
(e.g., thermodynamical equilibrium, all matrices are diagonal etc.). The ap-
proach that we develop here is a multidimensional extension of the recently
proposed HMMSDE method (Hidden Markov Models with Stochastic Differ-
ential Equations) for the case of Langevin dynamics [12,13]. The method links
dynamical Bayesian approaches with local Langevin models that are fitted to
an observed time series, provided the time steps between successive observa-
tions are not too large. In this sense the approach allows for the construction
of global physical models for high-dimensional data. A very similar procedure
that has been put forward in [14] does not have the limitations regarding the
observation time lag, but it fails to preserve the hypoelliptic structure of diffu-
sion model. Finally, the authors of [15] follow a maximum-likelihood strategy
for incomplete observations (without momenta). However so far the approach
therein is limited to one-dimensional configuration data.

The rest of the article is organized as follows: In Section 2 we introduce the
general model, explain the basic method and derive the evolution equations for
the time-dependent parameters. The algorithmic strategy for identifying the
local Langevin models and to estimate the respective parameters is described
in Section 3. Finally we demonstrate the proposed technique by application
to some generic examples in Section 4.



2 Reduced model system

We shall restrict the class of models that are to be parametrized to Langevin
equations on Euclidean configuration space () C R", which are of the form:

Mi(t)==VU(q(t)) = ~q(t) + oW (t) ¢€Q.

Here U : Q — R denotes the interaction potential, and W (t) is the standard
Brownian motion. This model can be thought of stemming from a separa-
ble Hamiltonian including viscous friction and noise; the more general non-
separable case will be treated in a forthcoming paper. Here both friction co-
efficient v € R™", and the mass matrix M € R"*" are symmetric, positive
definite matrices, where we do not assume that M is diagonal. The noise
amplitude o € R™" is definite. Exploiting further that some of the involved
matrices are symmetric, reduces the number of undetermined parameters from
n? to n(n + 1)/2 for the respective matrices matrix.

Introducing standard conjugate variables (¢, p) for positions and momenta on
the phase space T*Q) ~ R"™ x R", we can rewrite the Langevin equation as
the following equivalent first order system

q(t)=M""p(t) '
p(t) =—VU(q(t)) —vM 'p(t) + oW (t) .

Clearly, estimating the parameters in the last equation is hopeless for a general
nonlinear potential U. Here we assume that the potential is quadratic, i.e.,

Ulq) = %(q—u)TH(q—u),

where H = D?U(q) € R™™ is symmetric and positive definite. As we will
see below this harmonic approximation leads to computationally tractable
problems if we embed the parameter estimation procedure into the HMM
framework. Moreover harmonic approximations have proven useful on various
occasions for elliptic stochastic differential equations [12,13].

Here we do not assume that the time series corresponds to an equilibrium
process. Hence we do not require that any kind of fluctuation-dissipation rela-
tion between noise and friction coefficients is met. This makes it impossible to
estimate the mass matrix explicitly unless we can observe velocities and con-
jugate momenta independently such that we can take advantage of p = Mg.
This degeneracy can be made clear upon introducing mass scaled variables



q— M'Y2q and p — M~Y?p. The latter is clearly is a symplectic transform,
and the thus scaled equations read

q(t) = v(t)
o(t) = —H(q(t) — p) = yu(t) +oW(t),

where the coefficients transform according to

(2.1)

H — M—l/QHM—l/Q ’ y - M_l/Q'YM_l/Q ’ o — M—l/Qo_

The mass scaling amounts to setting M = 1 in the Langevin equation, such
that we identify tangent space and phase space in the sense that v = p.
Although we do not assume any kind of fluctuation-dissipation relation, it is
important to note that the mass scaling respects this particular relation:

BooT =~ o M YV2ocTMV? = M~V 2yM—12 .

Consequently the fluctuation-dissipation relation itself does not provide any
additional condition, by means of which the mass matrix in the model could
be determined. (The only known possibility employs the covariance matrix of
the momentum Maxwell distribution in equilibrium.)

Note that the Langevin equation has some rather specific properties as com-
pared to general hypo-elliptic diffusion equations which are due to its statisti-
cal mechanics origin. In particular, ¢ and v (or p) have always the same dimen-
sionality, and the Langevin equation transforms like a Hamiltonian vector field
under point transformations, i.e., the Ito-Stratonovich ambiguity disappears.
Accordingly the indeterminacy of the mass matrix M amounts to a scaling
invariance with respect to the (symplectic) mass scaling transformation.

Remark 2.1 For almost all molecular dynamics simulations, e.q., MD trajec-
tories produced with standard numerical integrators like Leapfrog/Verlet [16],
the Cartesian data consist of positions q and velocities v. Hence we can trace
any position-dependent observable ¢ : R — RE (for example, torsion an-
gles) by means of ¢(t) = ¢(q(t)); the respective velocities are then given by
d(t) = Do(q(t)) - v(t). However the conjugate momenta to ¢ are in general
unknown, since the momenta are obtained via Legendre transform of the La-
grange function which is associated with the model and that must be explicitly
known as a function of ¢ and gb

The optimal set of parameters for noise, friction, and the potential function
is uniquely determined by a mazimum-likelihood principle. At a later stage
we shall consider parameters which will be only piecewise constant, in the
sense that each parameter tuple is optimal only for a specific subsequence of



the full time series. As we will show later on we can use the HMM algorithm
to switch between these distinct parameter sets; the underlying idea is to
decompose a complex time series by means of the Viterbi algorithm into several
subsequences each of which can be treated again by the maximum-likelihood
estimation. Such complex time series may occur in case there is metastability
in the system. For examples see [12] and the references therein.

Remark 2.2 The reader may argue that the considered Langevin model with
linear friction does not capture memory effects, which may be important, e.g.,
for the dynamics of biomolecules. This objection is typically formulated in
terms of slowly decaying velocity autocorrelations in the data. However it is
often ignored that these ”global” autocorrelation functions, i.e., autocorrelation
functions that are estimated over the full time series, are meaningful only
for stationary time series; for non-equilibrium processes the autocorrelation
function may be totally misleading.' Furthermore the autocorrelation is no
reliable measure for the memory in the system as it known from the theory of
time series analysis [4], even for stationary time series. According to Wold’s
Theorem [17] any time-discrete stationary process Xy € R has an infinite
moving average (MA) representation, i.e., it can be written in the form

Xt = U + Z ,l/}TWth 5
7=0

where 1 = EX; is the constant expectation value of the process Xy, Wi, is a
realization of white noise at time (t — 7), and the coefficients 1, satisfy

0o
5 il < o0
=0

The latter condition guarantees that the process X, is invertible (i.e., all eigen-
values of the associated characteristic polynomial lie outside the unit circle in
the complex plane), in which case the process has an infinite auto-regressive
(AR) representation

Xe=p+ Z B Xt + Wy (2.2)

=1

with coefficients (3, that are functions of the ¥, and which are called partial
autocorrelations. The (B, can be computed from the ordinary autocorrelation
function

I For example, consider the autocorrelation function of a discretization of the one-
dimensional harmonic oscillator, which is clearly periodic (hence non-stationary).
But the system is deterministic and defines a Markov process without memory.
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p(t—S)ZW, p(t —s) = p(s =)

by means of the Yule-Walker equations [19]:

p(1) =B1p(0) + B2p(1) + B5p(2) + Bap(3) + - ..
p(2) =B1p(1) + B2p(0) + B3p(1) + Bap(2) + - ..
p(3) =B1p(2) + B2p(1) + B5p(0) + Bap(1) + . ..

As both partial and ordinary autocorrelations will decay as time increases, the
infinite system of Yule- Walker equations can be truncated in practice, such that
the partial autocorrelations turn out to be the adequate statistical measure for
the depth of the non-Markovian memory for stationary time-discrete stochastic
processes [18]. In fact, in many interesting cases the autocorrelation function
decays rather slowly, whereas the corresponding partial autocorrelation decays
several orders of magnitude faster indicating that the memory in the system
cannot be estimated just by looking at the autocorrelation function (see the
Cyclophane example in the numerics section).

If the partial autocorrelation reveals non-negligible memory at the timescale of
interest, the simple Langevin model with linear friction should be replaced by a
generalized Langevin equation [20,21] that involves a nontrivial memory ker-
nel, and which can be considered the continuous variant of the auto-regressive
model (2.2). For the memory problem we refer to the recent paper [22] by the
authors.

3 Optimal model parameters

Given an observation time series, the aim of the current work is to find op-
timal parameters for the model equations (2.1) by means of some maximum-
likelihood principle. To this end it is helpful to rewrite the linear Langevin
equation (2.1) as the following first-order system

#(t) = F (2(t) — v) + SB(1)

with the abbreviations z = (¢,v) € R*" and



Given h > 0 the formal solution of the linear Langevin equation becomes
h
2t + h) = i+ exp (hF) (2(t) — p) + /0 exp ((h — s)F) S dB(s) .
3.1  Maximum-likelihood principle

Suppose we are given an observation series X = {Xj,... X1} with X =
(@Q,V) and equal spacing in time, i.e., h = 1 — t;. We are aiming at maxi-
mizing the probability density of the output Xy, that is evolved according to
the Langevin model, starting from the observed datum Xj. The corresponding
conditional probability density is given by the expression

1
pr(Xest | X0) = poexp (=5 (Xt = T Xt = i) - (B1)

with the time-dependent parameters

Thi1 = p+ exp (AF) (Xi — )

and

S = (/Ohexp (sF) T exp (sFT)>_ :

The last expression is well-defined as can be seen writing down the corre-
sponding Lyapunov equation for the covariance matrix S~! in the conditional
probability density (3.1), viz.,

FST'4+ ST FT = A, A=exp(hF)SST exp(hFT) — 57

It follows from the inertia theorem for Lyapunov equations [23] that S (or
S~1) is unique and symmetric positive definite, whenever the right hand side
of the Lyapunov equation is symmetric negative semidefinite and the matrix

[A FA F?A ... F* 4]

has maximum rank 2n. Finally, the positive function

1 vdet S

o= (2m)"



normalizes the total probability to one.

We define the log-likelihood function of the observation sequence as

LX) = log w(X|A) (3.2)

where

M
w(X|\) = H (X1 | Xe) (3.3)

denotes the joint probability distribution of the observation sequence for the
parameter set A = (H, u, 7, 00?), where we used that py(Xgi1|X1,..., Xi) =
pa(Xk11|Xg) is Markovian. The optimal parameters are those which maximize
the log-likelihood function. Inserting the equations (3.1) and (3.3) into (3.2)
the log-likelihood becomes

M

M 1
E()\‘X) = —7 10g det S — 5 Z <S<Xk+1 — .f’kJrl),XkJrl — i’k+1> .

k=1

3.2 Short-time asymptotics

In order to compute the critical point of the log-likelihood function, we eval-
uate the necessary condition d£ = 0. For this purpose we have to compute
the partial derivatives of the log-likelihood with respect to the parameters
H, p,7v,00". Instead of evaluating the solution of the Lyapunov equation for
the covariance matrix S~! explicitly, it is convenient to consider its Taylor ex-
pansion for sufficiently small observation time lag h. An alternative approach is
to consider the exact likelihood, treating the entries of the propagator exp(hF')
as unknowns. Although appealing, we do not follow this route here, since the
exact procedure does not preserve the specific block structure of drift matrix
F; for the details we refer to [14]. Clearly the resctriction on the time lag has to
be verified for each data set. For example, given a sufficiently long time series,
we could compute the optimal parameters at different time lags and check if
the parameters remain constant. We shall come back to this point later on in
the examples section, where we consider the dethreading of Cyclophane.

Doing a Taylor expansion in the time lag h the covariance matrix becomes to
lowest order



. 0 0
(87 )=
0 hoo'

The fact that the covariance matrix is singular amounts to the hypo-ellipticity
of the Langevin system: on short times the equation for the position variables
is purely deterministic, whereas the noise immediately ”diffuses” the veloc-
ity observation. On the other hand the log-likelihood function depends upon
the shape matrix S rather than the covariance matrix S~1. The lowest-order
expansion for the shape matrix yields

0 0
0 (co™)"1/h

S():

which is consistent with the non-singular part of the expanded matrix S—1
above. The singularity that appears in the lower right block as the time lag h
goes to zero describes the fact that the former velocity /momentum observation
Vj, is sharp (i.e. the conditioning argument in py(Xj41]/Xx)). Omitting additive
constants, the leading order of £(A|X) thus reads

M 1 ¥
Lo(AX) = ) logdet oo™ — o > <UUT(Vk+1 — Og+1), Vier1 — @k+1> ;
k=1

where

h
Vg1 = Vi — h <H(Qk+ §Vk — 1) +’7Vk> .

is obtained by a symmetric second-order discretization of the propagator
exp(hF). Computing the partial derivatives we find for the stiffness matrix

oL,

M
i Z Qr— 1) @A}, (3.4)

l\DlH

using the abbreviation A}, = Vi1 — Uk41. The tensor product (Kronecker
product) is defined by (X ®Y');; = X,Y;, where X, Y are any two vectors from
R”. The derivative with respect to p is

oL 1

10



Taking the the derivative with respect to the friction matrix yields the expres-
sion

M
% oo™ Y Ve AL (36)
g k=1

Last but not least we have

0Lo _ 1 riax~pav gpav M oor-
aUUOT - %@UT) QZAkH@AkH_ 7(‘70T) 17 (3.7)
k=1

for the derivative with respect to the covariance matrix of the noise process.
The unknown parameters A = (H, u,~y,00!) are determined by solving the
nonlinear system of equations (3.4)—(3.7) for a given observation sequence
X ={Xy,..., Xy} If either the configuration space is one-dimensional or all
degrees of freedom are decoupled from each other we can solve this system
analytically. This explicit solution may then serve as a predictor in solving
the fully coupled high-dimensional system numerically. The numerical scheme
therefore can be considered as predictor-corrector method, where the corrector
step is performed using a standard Newton iteration [29].

3.8 Hidden Markov model and expectation-maximization algorithm

Up to now we have considered a single, possibly high-dimensional global
model, which approximates the whole time series in the maximum-Ilikelithood
sense. Alternatively we could imagine that different segments of the time series
correspond to different local Langevin models, each of which is characterized
by a particular set of constant parameters \; = (v;, 02, H;, pi;). Switching back
and forth between these local parameter sets can then be understood as one
global model with parameters that are piecewise constant in time.

We shall consider the problem of estimating optimal parameters within the
framework of hidden Markov models (HMM): For a prescribed number L
of local parameter sets \;,;7 = 1,...L, we use the expectation-maximization
algorithm [7,30,31]. Hence we assume that the switching between the different
parameter sets is governed by a Markov jump process. For example, one may
think that the configuration space has a metastable decomposition; then every
instance ¢ in the time series is assigned to a metastable set i(¢). Thus the model
consists of two related stochastic processes X (t) and i(t), where the latter
is not directly observed (hidden) and fulfills the Markov property. On the
other hand the observation sequence is a stochastic process X (t) = (X|i)(t)
conditional on the hidden state i(t) at time t.

11



Overall a HMM is fully specified by an initial distribution 7 of hidden states,
a transition matrix 7" of the hidden Markov chain i(¢), and by the parameters
of the output process \; for each state . If the rate matrix of the jump process
is denoted by R € RE*L, then the transition probability to jump from state
i(ty) = m to state i(ty41) = n within time h is given by the respective entry
of the transition matrix

T'(m,n) = (exp(hR)), ... -

In the standard version of HMM the observables X (t) are identical and inde-
pendent random variables [32,33]. Here instead we consider random variables
that are the output of the Langevin equation (2.1) for the current hidden state
i =i(t), that is,

q(t) = v(t)
o(t) = —Hi(q(t) — ps) — oo (t) + o:W (t) (3.8)
i:R—{1,2,...,L}.

Now embedding the problem of estimating optimal parameters for the model
(3.8) into the context of HMM, the joint probability distribution (3.3) of the
observation sequence reads

I
—=

r(X[A) T (g, thy1) on(Xnra|inr1, Xi) (3.9)

k=1

where the conditional probability o,(|-) is defined as p,(-|-) before except that
the parameters now depend on the hidden state i1 = i(tx+1). The algorithm
for the identification of parameters conditional on the hidden (metastable)
states comprises the following three steps:

(1) Determine the optimal parameters § = (m, A, \;) for all statesi = 1,..., L
by maximizing the lowest-order likelihood Ly(0|X,); in general this is a
nonlinear global optimization problem.

(2) Determine the optimal sequence of hidden metastable states {iz} :=
{i(t)} for given optimal parameters.

(3) Determine the number of important metastable states (up to now we have
simply assumed that the number L of hidden states is given a priori).

The first two problems can be addressed by standard HMM algorithms. The
parameter estimation on the partially observed data is carried out using the
expectation-maximization (EM) algorithm. The optimal parameters 6 are

12
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Figure 2. Lower panel: Multi-well potential U = U(q) as defined in the text. Upper
panel: Typical realization of the dynamics given by the Langevin equation (4.1)
with noise intensity n? = 0.1. The time series has total length of 60.000.

identified by iteratively maximizing the entropy

S(X) = mgxx?ﬁo(ﬂX, i)log Lo(0]) X, 1) .

For the identification of the optimal sequence of hidden metastable states
the Viterbi algorithm [34] is used, which exploits dynamic programming tech-
niques to resolve the optimization problem

max Lo(0|X, 1)

in a recursive manner. For the details see [35] and the references therein.

Addressing the first two problems (1) and (2) requires the specification of a
number L of hidden states, which is unknown a priori. A practical way to
handle this problem is to assume a sufficiently large number of hidden states
and then aggregate the resulting transition matrix, which gives the minimum
number of hidden states which are necessary to resolve the metastable sets
[36,37]. The aggregation is performed by the Perron cluster cluster analysis
(PCCA), exploiting the spectral properties of the transition matrix 7" to trans-
form it to a matrix with quasi-block structure [12,38,39]. These blocks then
correspond to the existing metastable states.

4 Numerical examples

In this section we present different types of numerical examples for the pro-
posed method. We start from a one-dimensional Langevin equation whose hid-
den states are implicitly defined by the metastable sets of a perturbed three-
well potential, demonstrating the data-based decomposition of the dynamics

13



RPN I R IR 20 O N O

Log-Likelyhood
~
©o
I
x

0 5 10 15 20

Number of EM lterations
Figure 3. Log-likelihood maximization with the EM algorithm. The separation into
linearized models and the estimation of the optimal parameters converges after
approximately ten iterations.

into locally harmonic Langevin models that are connected by a Markov jump
process. As a slightly more challenging task, we apply the reduction algorithm
to a multidimensional problem with known parameters. In the parameter es-
timation we especially focus on the quantitatively correct reconstruction of
the flipping dynamics between metastable sets. By studying drift, friction and
noise parameters for each local model we obtain moreover information about
the dominant dynamical effects in the metastable regions. We show that the
approach, in contrast to simple correlation analysis of a time series, maintains
the physical structure of the underlying dynamics; it is therefore possible to
reconstruct physical processes by means of incomplete observations.

In the last example we apply the method to a molecular dynamics simula-
tion of Cyclophane, demonstrating the ability of also estimating parameters
of inherent non-equilibrium processes, only from short fragments of the MD

simulation. We also perform a numerical investigation of the time step length
influence on the quality of the parameter estimation.

Diffusive motion in a perturbed three-well potential. As a second
example we consider realizations of the Langevin equation

§(t)=—=VU(q(t)) = 74(t) +nW(t) (4.1)

with the potential defined by

Ulg) = f(q) +asin(Bg), flg) = ard",
k=0

where the parameters are

14
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Figure 4. Jumps between the three dominant metastable states i € {1, 2,3} versus
time t. Left: As computed from the original time series with the perturbed three-well
potential (state 1 = {x < —0.5}, state 2 ={—0.5 > = > 0.5}, state 3 = {x > 0.5}).
Right: Viterbi path computed for L = 3.

2000
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Figure 5. Upper panel: Colouring of the time series according to the optimal de-
composition into linearized models. Lower panel: Multi-well potential (solid), and
harmonic approximations with L = 3 hidden states (dashed).
a=(1.3515,0.2104, —2.3786, —0.1462, 1.0123, —0.0168, —0.0438)
(o, B) = (0.005, 50.000) .

This system exhibits metastable transitions between its three wells, if the
noise amplitude 7 is reasonably small; the potential is shown in Figure 2.
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Table 1
Parameters of the Langevin models (4.1).

1%t Langevin model | 2! Langevin model | 3" Langevin model
7 —-0.97 0.05 0.88
H 777 0.44 6.38
~y 1.02 1.00 1.09
n? 0.109 0.104 0.11
Table 2

Parameters of the three-hole potential. The corresponding Viterbi path is shown in
Figure 7

l a i do k
I=1] 3.00 |(0,1/3)]0.05 | 3.00
I=21 -3.00] (0,5/3) | - | -
1=3| -500]| (1,o) | - | -
l=4| -500]| (~1,0) | — | -

We set n* = 0.1,y = 1 which leads to metastability, as we can see from
the realization shown in Figure 2. The observation sequence is generated by
numerical integration of (4.1) using the Euler-Maruyama [40] scheme with
time step 7 = 0.02. Only every second step enters the observation sequence,
thus the observation time step is h = 0.04.

The HMM-Langevin model (3.8) is trained on this time series employing the
expectation-maximization algorithm for L = 6 hidden states (more than we
actually expect), the subsequent clustering of the transition matrix results
in L = 3 hidden states for the jump process. As can be seen from Figure 3
the algorithm quickly converges towards a local maximum of the log-likelihood
function. The estimated optimal parameters of three linearized Langevin mod-
els are given in the Table 1.

In order to evaluate the quality of the assignment of states to three locally
linearized Langevin models, we compare the jump sequence between the three
metastable states produced by the original dynamics with that identified by
the Viterbi algorithm for L = 3. Figure 4 shows that the two pathways are in
good agreement. Small deviations between the two paths may result from rare
recrossings of the barrier (cf. the time series Figure 2, in particular around ¢ =
1400). The shape of the corresponding harmonic potentials in the estimated
model is illustrated in Figure 5. Notice that the algorithm resolves the internal
structure of the metastable states; both the centers u‘ and the stiffnesses H*
of the harmonic potentials approximate the mean Hessians of the metastable
sets quite well.
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Figure 6. Realization of (4.2) with 60.000 observations and time step h = 0.01.

Nonlinear potential coupled to a harmonic bath. We consider realiza-
tions of the Langevin equation

§(t)==VU(q(t)) = 7d(t) + oW (2) (4.2)

with ¢ = (z,7) € R* x R!Y and the three-hole potential defined by

1

Ulx,y)=> ajexp|—(r — p,x — —(Hy,
(z,y) l;z p< (@ = gy = pu) + 5 ( yy>)

;50 (cos(2mk(xy 4+ x2)) + cos(2mk(z — x9)))

where Jy < 1 is a perturbation parameter, and x = (z1,25) labels those
degrees of freedom of the three-hole potential, where the wells (holes) are
located at (—1,0), (1,0) and (0,5/3); the harmonic bath variables are denoted
by y. The parameters of the three-hole potential are given in Table 2 below.

As a test we generate a realization of the Langevin model 4.2 with 60.000 ob-
servations and a time step h = 0.01. As the potential energy function in this
example has three local wells, the model reduction produces three locally har-
monic 12-dimensional models with a Markov chain switching between them.
The corresponding Viterbi path produced by the EM algorithm is shown in
Figure 7, which should be compared to the projection of the time series onto
first two degrees of freedom (see Figure 8). The colouring is due to the com-
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Figure 8. Left: Projection of the 12-dimensional time series onto the 2-dimensional
subspace of the three-hole potential. The projected time series is coloured accord-
ing to the Viterbi path in Figure 7. Right: Comparison of the contour lines of the
three-hole potential (solid lines) with the contour plots of three locally harmonic
models as obtained from the EM algorithm. The arrows graphically represent tran-
sitions and the corresponding rates between the hidden states.

puted Viterbi path, and it can be seen that the states of the hidden Markov
chain coincide with the respective local minima of the potential energy func-
tion.

Additionally we test the quality of estimated parameters by comparing them
to the exact model parameters that have been used generating the time series
(cf. Figure 9). Apparently the estimated parameters are in good agreement
with the exact ones, and it is even possible to resolve the fine off-diagonal
structure of the parameter matrices, that is responsible for the coupling be-
tween different degrees of freedom.
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Figure 9. Comparison of the original noise, friction and Hessian matrices (left col-
umn) with the parameters estimated by the EM algorithm (right column). The
difference between the real and estimated parameters in matrix 2-norm is of the
order of magnitude 1072

4.1 Dethreading of Cyclophane

In previous examples the performance of the numerical scheme was tested
on artificial models with known parameters. In this section we shall apply the
technique to a real molecular system whose underlying physical model is a pri-
ori unknown. To this end we consider a time series of a Cyclophane dethreading
process that has been provided by Alessandro Laio and Michele Parinello at
ETHZ [41]. The system represents a complex of tetracationic Cyclophane and
a 1,5-Dihydroxynaphtalene solvated in Acetonitrile as illustrated in Figure 10.

One of the basic insights in the work [41] is that the essential dynamics of
the system is well represented by two internal coordinates: ¢; is the distance
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Figure 10. Chemical structure of Cyclophane (left) and the 1,5-Dihydroxynaphtalene
(right)

Figure 11. Comparison of the free energy surface (solid) of the reduced time series
with the locally harmonic potentials of the Langevin models (dashed) with one
hidden state (left) or two hidden states (right).

between the centroids of the Cyclophane and the Naphtalene molecules, and
g2 labels the coordination number of the Naphtalene with the molecules of the
solvent. The two-dimensional time series comes as a 7ns observation sequence
with a lag time of h = 2fs between successive obervations.

The free energy landscape computed with respect to the two essential coordi-
nates is anharmonic (see Figure 11). Application of the estimation procedure
with one hidden state however produces a meaningful harmonic approxima-
tion of the free landscape around the minimum. Incorporating further hidden
states in the model clearly gives a better approximation of the free energy
landscape and results in a global Langevin model which consists of several
locally harmonic Langevin models that are connected by a rapidly mixing
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Markov chain.

In order to estimate if fitting of the linear friction model to the given data
is reasonable, we compute the partial autocorrelation function for the veloc-
ities v; and vy. We assume that v1, v, can be considered as a realization of
a generalized time-discrete Markov process. Then, as it can be seen from the
comparison of autocorrelation and partial autocorrelation functions in Figure
12, the partial autocorrelation of vy, vy decays after about 20fs, and so does the
memory of the process. The ordinary velocity autocorrelation function how-
ever tells a different story: here the autocorrelations decay on time scales which
are far beyond picoseconds, hence it is misleading regarding memory effects
in the system. Indeed, as Figure 13 shows (left panel), some of the estimated
parameters change about one order of magnitude, while the observation lag
time is varied from 2fs to 24fs. This could be either because of a too large lag
time or because of memory effects that prohibit the use of a Markovian model
below a lag time of 20fs. Finally, the convergence of the model parameters for
a as a function of observation sequence length for fixed lag time is illustrated
in Figure 13 (right panel).

5 Conclusions

The algorithm introduced here allows for the parametrization of reduced mod-
els for high-dimensional time series. The proposed Langevin models are simple
enough to provide physical insight into complicated data, yet flexible enough,
so as to capture a variety of dynamical phenomena. The algorithm does nei-
ther require stationarity of the time series, nor thermodynamical equilibrium
(fluctuation-dissipation relation). The numerical effort of the method scales
linearly with the total length of the time series, quadratic in the dimension-
ality and the number of hidden states, i.e., in the number of local models (cf.
[12]); nevertheless the method works quite well even for high-dimensional data,
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Figure 13. Convergence of the 2-dimensional parameter estimation for different time
steps h (left column), and with increasing length of the observation time M for a
single hidden state (right column).

although estimating the parameters for the Langevin equation is a global non-
linear optimization problem. Moreover the method reveals information about
the interaction and coupling among certain degrees of freedom or regions in
phase space. In addition to that we gain some knowledge about the dominant
dynamical effects in the metastable regions, by means of which one could, for
example, explain why different molecular conformations have different flexi-
bilities.

The parameter estimation for the reduced model is based on a predictor-
corrector scheme exploiting an analytical solution to the corresponding maxi-
mum-likelihood problem. We have shown in the examples section by means
of several model problems that the numerics successfully recovers the original

22



CPU time (s)
= N N w
Ul o ul o
(=] o o o
AY
AY
AY
AY
AY
AY
x

=
o
o
.
.

N,

2
o
wn

1 15 2 2.5 3
Observation time (ns)

Figure 14. Numerical performance (CPU time in seconds) of the algorithm as a
function of the time series’ length (in nanoseconds).

parameters of the used model, whenever the time stepping between succes-
sive observations is not too large. The time stepping issue reveals the main
difficulty for the algorithm: what does a small step size mean? Unfortunately
there is no a prior: criterion at hand in order to decide whether a given time
series is fine enough or not. However the parameter estimation can be per-
formed, checking a posteriori whether the truncated terms in the short-time
asymptotics are negligible indeed. Alternatively we could also solve the exact
equations of motion for the parameters numerically, i.e., without any approx-
imations, and then use this result maximizing the log-likelihood by means
of Newtons method with an appropriate damping scheme. However we have
decided to stick to the analytical expressions that are available from the lowest-
order perturbative expansion, since this has proven quite efficient, and it lets
the parameter estimation be remarkably robust.

A second restriction concerns the linearity of the Langevin equation: neither
do we consider memory effects, nor do we treat Langevin equations that orig-
inate from non-separable Hamiltonians. The second limitation pertains data
that arise, e.g., in rigid body motion or in coarse-grained modelling of DNA
[43], for such systems are usually described by non-separable Hamiltonians.
Memory effects play a crucial role on time scales, where partial correlations
in the system have not been decayed yet. Although the correlation times of
the ”global” autocorrelation functions are far beyond the short time inter-
vals between the individual observations [42], partial autocorrelations, which
are a measure for the memory in the system, often decay much faster. One
such instance is the cyclophane example where we show that the observation
time lag restriction may compete with the requirement of choosing a time lag
that is larger than the maximum decay time of the partial autocorrelations.
The problem of finding appropriate parameters for non-Markovian systems
exhibiting memory is addressed in the recent work [22] by the authors.
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