
ROBUST ESTIMATES FOR hp-ADAPTIVE APPROXIMATIONS OFNON-SELF-ADJOINT EIGENVALUE PROBLEMSSTEFANO GIANI, LUKA GRUBI�I�, AGNIESZKA MI�DLAR, AND JEFFREY S. OVALLAbstrat. We present new residual estimates based on Kato's square root theorem forspetral approximations of diagonalizable non-self-adjoint di�erential operators of onvetion�di�usion�reation type. These estimates are inorporated as part of an hp-adaptive �niteelement algorithm for pratial spetral omputations, where it is shown that the resultinga posteriori error estimates are reliable. Provided experiments demonstrate the e�ienyand reliability of our approah.
1. IntrodutionThis paper onerns the diret residual analysis of approximation errors involved in thevariational approximation of eigenvalues and eigenvetors of linear onvetion�di�usion�reation operators in bounded polygonal domains Ω ⊂ R2, as given by the formal di�erentialexpression(1.1) Aψ := −∇ ·A∇ψ + b · ∇ψ + cψ = λψ ,where standard assumptions (see Setion 2) on the oe�ients ensure that the inverse A−1 isa ompat operator. Abstrat estimates based on Kato's square root theorem [4, 17℄ providethe basis for onstruting a pratial hp-adaptive �nite element method for eigenomputa-tions. The utilization of the Kato's square root theorem in the ontext of �nite elementapproximation is one of the main ontributions of this paper, and we provide �rst-prinipleproofs wherever possible to emphasize its role in our error estimation tehnique.The ompatness of A implies that its spetrum Spec(A) is a ountable set and that, foreah eigenvalue, there is a �nite dimensional eigenspae (spae spanned by all eigenvetorsassoiated with an eigenvalue). More details on the spetral theory of non-self-adjoint op-erators an be found in [9℄ and the lassial referene [14℄. The problem (1.1) provides animportant example of a more general lass of non-self-adjoint eigenvalue problems in Hilbertspae for whih a Riesz basis an be onstruted from assoiated eigenvetors, see Example2.3 and [9, 14, 24℄ for further disussion and referenes.De�nition 1.1. A sequene of vetors (funtions) (fi)i∈N is alled a Riesz basis of a Hilbertspae H if there exists an orthonormal basis (ei)i∈N of H and a bounded operator X with abounded inverse X−1 suh that

fi = X ei with i ∈ N.2010 Mathematis Subjet Classi�ation. Primary: 65N30, Seondary: 65N25, 65N15.Key words and phrases. hp-adaptive mesh re�nement, �nite element method, a posteriori error estimates,eigenvalue problem, non-self-adjoint operator, onvetion�di�usion�reation operator .1



2 STEFANO GIANI, LUKA GRUBI�I�, AGNIESZKA MI�DLAR, AND JEFFREY S. OVALLCriteria for the existene of the Riesz basis of eigenvetors were given in [14, 24℄. To keepthe paper more self-ontained, in Example 2.3 we provide a �rst-priniple argument for theexistene of a Riesz basis for some operators of type (1.1).Remark 1.2. Sine an orthonormal basis is a Riesz basis with X = I, it is reasonable to usethe quantity κ(X ) := ‖X‖‖X−1‖ as a measure of the �non-orthogonality� of a basis (fi)i∈N.It is important to notie that the size of κ(X ) has a strong impat on the performaneof the numerial linear algebra routines used to solve the disretized (algebrai) eigenvalueproblems. In the ontext of numerial linear algebra κ(X ) is known as the ondition numberof the eigenvetors.In pratial omputations one is onerned with both the e�ieny and reliability of errorestimates. A reliability result asserts that the true error is bounded from above by a onstanttimes the estimated error (error is not greatly under-estimated), and an e�ieny result isthat it is bounded from below by a onstant times the estimated error (error is not greatlyover-estimated). We make expliit the dependene of the reliability of our abstrat residualestimates on the ondition number κ(X ) and the spetral gap λ ∈ Spec(A),gap(λ) = max
ξ∈Spec(A)\{λ}

|ξ|
|ξ − λ| ,(1.2)whih, due to the ompatness assumption, is a �nite number. These quantities also play alear role, as does the hp-regularity parameter γ, in the reliability of the a posteriori errorestimates in our realization of the abstrat error framework in an hp-�nite element setting.A proof of e�ieny is beyond the sope of the present paper, though numerial experimentsprovide strong evidene that the resulting error estimates are e�ient. Flexibility in hoos-ing the oe�ients A, b, c in (1.1) provides for rigorous testing of our error estimates in theproposed hp-adaptive algorithm. For example, by varying the size of b one an ontrol theinrease or the derease of the non-orthogonality measure κ(X ); whereas allowing disonti-nuities in the oe�ients (partiularly the di�usion matrix A) a�ets the regularity of theeigenvetors, making h-adaptivity neessary near the loal singularities.The paper is organized as follows. In Setion 2 we introdue notation and some basiproperties of the model problem (1.1). Setion 3 ontains the abstrat reliability resultsbased on Kato's square root theorem, whih form the basis of the hp a posteriori estimatesin Setion 4. Numerial experiments whih indiate the e�ieny and reliability of our hp-algorithm are presented in Setion 5. In order to simplify the presentation we have putsome of the more tehnially-involved results in the Appendix A. Here, we show that oureigenvetor results are luster robust, i.e., when approximating a subset of the spetrumfrom a subspae whose dimension is the same as the dimension of the assoiated spetralsubspae, then the estimates depend only on the distane between the omputed Ritz valuesand the omplement of the rest of the spetrum.2. Notation and Basi ResultsLet Ω ⊂ R2 be an open, bounded polygon. For double-indies α = (α1, α2) ∈ Z2

≥0, we let
|α| = α1 + α2 and Dαu = ∂|α|u

∂x
α1
1 ∂x

α2
2
. Throughout the paper we use the following standardnotation: for m ∈ N and S ⊂ Ω we denote the standard norms and semi-norms on the



ROBUST ESTIMATES FOR hp-ADAPTIVE EIGENVALUE APPROXIMATIONS 3(omplex) Hilbert spaes Hm(S) by(2.1) ‖φ‖2m,S =
∑

|α|≤m

‖Dαφ‖2S and |φ|2m,S =
∑

|α|=m

‖Dαφ‖2S ,where ‖ · ‖S denotes the L2-norm on S. If S = Ω, we omit it from the subsript. In mostases we use the notation ‖ · ‖ (with no subsript) to denote the L2-norm on Ω, and use thepreviously introdued subsripts only to larify the distintion between norms in a spei�argument or laim. The Hilbert spae in whih we pose the variational eigenvalue problemsis
H1

0 (Ω) = {v ∈ H1(Ω) : v = 0 on ∂Ω in the sense of trae} .De�nition 2.1. Given real-valued A ∈
[
L∞(Ω)

]2×2, b ∈ [L∞(Ω)
]2 with ∇ · b ∈ L∞(Ω), and

c ∈ L∞(Ω), we de�ne the bilinear form B : H1
0 (Ω)×H1

0 (Ω) → C by(2.2) B(w, v) =

∫

Ω

A∇w · ∇v + (b · ∇w + cw)v dx .We make the following ommon assumptions on the oe�ients:(A1) A is symmetri and uniformly positive de�nite a.e. in Ω, i.e., there is a σ0 > 0 forwhih (A(x)z) · z ≥ σ0z · z for all z ∈ R2 and a.e. x ∈ Ω.(A2) σ0 + min(0, pcΩ) > 0, where p = essinf{c(x) − ∇ · b(x)/2 : x ∈ Ω}, and cΩ is theoptimal Poinaré onstant for the domain, ‖v‖0 ≤ cΩ|v|1 for all v ∈ H1
0 (Ω).For the error estimates in Setion 4, we make one further assumption on A,(A3) There is a partition Ω = ∪p

k=1Ωk of Ω into polygons Ωk with disjoint interiors suhthat A|Ωk
∈ W 1,∞(Ωk) for eah k.Sine all of the oe�ients are bounded, the bilinear form B(·, ·) is learly bounded: thereis a γ1 > 0 suh that |B(w, v)| ≤ γ1‖v‖1‖w‖1 for all w, v ∈ H1

0 (Ω). Assumptions (A1)�(A2)guarantee that B(·, ·) is also oerive (f. [13, Theorem 3.8℄): there is a γ0 > 0 suh that
|B(v, v)| ≥ Re

(
B(v, v)

)
≥ γ0‖v‖21 for all v ∈ H1

0 (Ω). For the onveniene of the reader weprovide the Hermitian and anti-Hermitian parts of B(·, ·),
BH(u, v) =

1

2
(B(u, v) +B(v, u)) =

∫

Ω

A∇u · ∇v + b

2
· (v∇u+ u∇v) + cuv dx ,

BA(u, v) =
1

2
(B(u, v)−B(v, u)) =

∫

Ω

b

2
· (v∇u− u∇v) dx,and note that BH(·, ·) is an inner-produt, with

BH(v, v) = Re
(
B(v, v)

)
=

∫

Ω

A∇v · ∇v + (c−∇ · b/2)|v|2 dx .Also, reall that operators whose real parts are salar produts are alled aretive. Anoperator is maximal aretive if it has no proper aretive extension.By the �rst representation theorem from Kato [18℄, the operator A is related to the bilinearform B(·, ·) through(2.3) B(ϕ, φ) = (Aϕ, φ), ϕ ∈ Dom(A), φ ∈ H1
0 (Ω).



4 STEFANO GIANI, LUKA GRUBI�I�, AGNIESZKA MI�DLAR, AND JEFFREY S. OVALLWe use(2.4) (ϕ, φ) =

∫

Ω

ϕφdxto denote the standard L2(Ω) inner-produt.We onsider the following primal and dual eigenvalue problems:Find (λ, ψ) and (λ⋆, ψ⋆) in C×H1
0 (Ω) \ {0} suh that(2.5) B(ψ, φ) = λ(ψ, φ) and B(ϕ, ψ⋆) = λ⋆(ψ⋆, ϕ) for all φ, ϕ ∈ H1

0 (Ω) .By analogy with the linear algebrai version of this problem, we refer to ψ and ψ⋆, respe-tively, as right and left eigenfuntions for λ and λ⋆.We will now summarize some basi fats about the spetral theory of operators whih arede�ned by (2.2). A reent referene is [9℄, see in partiular [9, Example 13.4.4℄. For lassialreferenes we point the reader to the monographs [14, 24℄ and the referenes therein. Sine Ωis bounded, H1
0 (Ω) is ompatly embedded in L2(Ω). Sine the domain of the bilinear form

B(·, ·) is preisely H1
0 (Ω), we onlude that the solution operator whih maps the funtion

f ∈ L2(Ω) to u(f) ∈ H1
0 (Ω) ⊂ L2(Ω) is also ompat (as a mapping from L2(Ω) to L2(Ω)).The solution operator is de�ned by(2.6) B(u(f), φ) = (f, φ), for all φ ∈ H1

0 (Ω).Therefore the eigenvalue problem (2.5) is attained by a sequene of eigenpairs (λn, ψn) ∈
C× (H1

0 (Ω) \ {0}), n ∈ N suh that |λn| → ∞ as n→ ∞. Furthermore, the tehnique of [9,Example 13.4.4℄ assures that the vetors (ψn)n∈N form a Riesz basis of the spae H1
0 (Ω),whih implies that the algebrai and geometri multipliities of eah distint eigenvalueare the same, see also [14℄. The eigenvalue of the smallest modulus is real and simple (ofmultipliity one), and the orresponding eigenvetor may be hosen to be positive almosteverywhere. Sine the original problem has a ompat solution operator, the adjoint problemalso has a ompat solution operator whih maps the funtion f ∈ L2(Ω) to u⋆(f) and isde�ned by(2.7) B(ϕ, u⋆(f)) = (f, ϕ), for all ϕ ∈ H1

0 (Ω).The eigenvalues of the dual (adjoint) problem are the omplex onjugates of the eigenvaluesof the original problem. For further disussion of the abstrat notions see the lassialreferene of Babu²ka and Osborn [5℄.A diret generalization of the notion of an operator with a Riesz basis of eigenvetors(eigenfuntions) is the notion of a diagonalizable operator.De�nition 2.2. An operator A in a Hilbert spae L2(Ω) is said to be diagonalizable ifthere exists a bounded operator X whih has a bounded inverse X−1 and a normal (possiblyunbounded) operator H suh that
A = XHX−1and X−1Dom(A) ⊂ Dom(H).In some ases all eigenvalues are known to be real, so λ = λ∗, and we naturally onsidereigentriples (λ, ψ, ψ⋆) ∈ R × H1

0 (Ω) × H1
0 (Ω) of (2.5). Suh problems will be the fous ofSetions 3�5. We provide an example of suh a family of operators.



ROBUST ESTIMATES FOR hp-ADAPTIVE EIGENVALUE APPROXIMATIONS 5Example 2.3. Let Au := −∇ · (A∇u) + b · ∇u + cu, where the oe�ients A, b and csatisfy the onditions (A1)-(A2) presribed above. Further de�ne the multipliation operator
Xu := eβu for some funtion β ∈ W 1,∞(Ω). The following identities are obtained by diretomputation:

e−β [∇ · (A∇(eβu))] = ∇ · (A∇u) + 2A∇β · ∇u+ (∇ · (A∇β) + (A∇β) · ∇β)u ,
e−β[b · ∇(eβu)] = b · ∇u+ (b · ∇β)u .If A−1b is a onservative vetor �eld, then we hoose β suh that∇β = 1

2
A−1b, and determinethat H := X−1AX is self-adjoint and positive de�nite. In partiular,

Hu = X−1AXu = −∇ · (A∇u) +
(
c− 1

2
∇ · b+ 1

4
b · (A−1b)

)
u .From this argument we also dedue that (λ, φ) is an eigenpair ofH if and only if (λ, eβφ, e−βφ)is an eigentriple of A. In the ase where A and b are onstant, then the hoie β(x) =

1
2
A−1b · x, x ∈ Ω is obvious, and we see that the eigenvalues of A only di�er from those of

B by the additive onstant 1
4
b · (A−1b), where Bu := −∇ · (A∇u) + cu.In what follows, we draw our attention to a partiular lass of diagonalizable opera-tors. Partiularly, we onsider those diagonalizable operators whih are of the onvetion�di�usion�reation type with real spetrum.De�nition 2.4 (Condition S and Square Roots). We say that the operator A satis�es theondition S, where S stands for the square root, if it is of the form (1.1) and is diagonalizablein the sense of De�nition 2.2 with the additional assumption that the normal operator His self-adjoint and positive de�nite. For operators whih satisfy ondition S, we de�nethe unique maximal aretive square root operator in the sense of the Dunford funtionalalulus [10℄ by the formula

A1/2 = XH1/2X−1.Remark 2.5. Our main result, Theorem 3.1 below, an readily be extended to the more gen-eral ase where H is allowed to be a normal operator, as in the full sope of the deompositionof De�nition 2.2, but we do not pursue this generality here.Remark 2.6. Note that for any maximal aretive operator A whih is de�ned by a regularlyaretive sesquilinear form assoiated with a di�erential expression (1.1) in the spae H1
0 (Ω),where Ω is a polygonal domain, there exists a unique maximal aretive operator A1/2 whihsolves the operator equation Z2 = A. Suh an operator is alled the square root of A. Forfurther referenes on the existene of frational powers of maximal aretive operators aswell as for preise de�nitions of these terms see [18, Setion V.10℄ and [17℄. In this paper wewill assume that all of our operators satisfy the ondition S. In the ase in whih laims inour theorems hold in a more general setting, we will state this expliitly.Remark 2.7. It was a long-standing open problem, known as Kato's onjeture or Kato'ssquare root problem, see [17, 23℄ for the origin of the problem, to determine the domain ofde�nition of the operator A1/2. The onjeture was that the domain of the operator A1/2should be the same as the domain of the abstrat bilinear form B(·, ·) whih de�nes theoperator A. This hypothesis turned out to be false for the most general abstrat form ofthe bilinear operator, see [23, 25℄. However, in the ase when A is a onvetion�di�usion�reation operator of the form (1.1), Kato's onjeture does hold in all dimensions, see [3,



6 STEFANO GIANI, LUKA GRUBI�I�, AGNIESZKA MI�DLAR, AND JEFFREY S. OVALLTheorem 1.11℄ and [2, 4℄. In partiular, [4℄ asserts that there exist onstants cK , c∗K , CK and
C∗

K suh that
cK‖φ‖1 ≤ ‖A1/2φ‖ ≤ CK‖φ‖1, φ ∈ H1

0 (Ω),(2.8)
c∗K‖φ‖1 ≤ ‖A∗1/2φ‖ ≤ C∗

K‖φ‖1, φ ∈ H1
0 (Ω) .(2.9)Remark 2.8. Note that A∗ always satis�es ondition S when A does, and that its unique,self-adjoint and positive square root is given by the formula A∗1/2 = X−∗H1/2X ∗.3. Eigenvalue and Eigenvetor Approximation EstimatesWe will now present the main theoretial ontribution of this paper. We obtain reliabilityestimates for residual eigenvalue and eigenvetor approximations. We assume that the op-erator de�ned by (2.2) has a Riesz basis of eigenvetors, and that the eigenvalues are real.Example 2.3 provides a non-trivial lass of operators of this type. For real eigenvalues, wenaturally onsider eigentriples (λ, ψ, ψ⋆) ∈ R×H1

0 (Ω)×H1
0 (Ω) of (2.5), and this is re�etedin the results that follow. Of ourse, we impliitly assume that ψ 6= 0 and ψ⋆ 6= 0.3.1. Residual eigenvetor error estimates. In this setion we will obtain estimates ofthe eigenvetor errors. Eigenvetor approximation errors are assessed by measuring the anglebetween the given approximations ψ̂ and ψ̂⋆ and the subspaes S and S⋆ whih are spannedby all right and left eigenvetors assoiated with the hosen eigenvalue λ.As a �rst step we introdue the right and the left residual norm. For ϕ, φ ∈ H1

0 (Ω) and
µ ∈ C we de�ne the residual form

r(µ)[ϕ, φ] = B(ϕ, φ)− µ(ϕ, φ) .Given the vetor ϕ ∈ H1
0 (Ω) and the salar µ ∈ C we de�ne the funtional

φ 7→ r(µ)[ϕ, φ]whih we all the right residual of ϕ ∈ H1
0 (Ω) and µ ∈ C. The number(3.1) ‖r(µ)[ϕ, ·]‖−1 := sup

φ∈H1
0 (Ω)\{0}

|r(µ)[ϕ, φ]|
‖φ‖1is the H−1(Ω)-norm of the right residual. Analogously, the funtional

ϕ 7→ r(µ)[ϕ, φ]is alled the left residual of φ ∈ H1
0 (Ω) and µ ∈ C, and the number(3.2) ‖r(µ)[·, φ]‖−1 := sup

ϕ∈H1
0 (Ω)\{0}

|r(µ)[ϕ, φ]|
‖ϕ‖1denotes the H−1(Ω)-norm of the left residual.



ROBUST ESTIMATES FOR hp-ADAPTIVE EIGENVALUE APPROXIMATIONS 7Theorem 3.1. Let A satisfy ondition S and let (λ̂, ψ̂, ψ̂⋆) ∈ R×H1
0 (Ω)×H1

0 (Ω) be given.Suppose λ ∈ R is an eigenvalue of (2.5), and let S∗ and S⋆
∗ be the H1

0 (Ω)-orthogonal pro-jetions onto the subspaes S and S⋆ whih are spanned by all right and left eigenvetorsbelonging to λ, respetively. Then
‖(I − S∗)ψ̂‖1 ≤

C∗
K

cK
κ(X )gap(λ)

(
‖r(λ̂)[ψ̂, ·]‖−1 + |λ̂− λ|

)

‖(I − S
⋆
∗)ψ̂

⋆‖1 ≤
CK

c∗K
κ(X )gap(λ)

(
‖r(λ̂)[·, ψ̂⋆]‖−1 + |λ̂− λ|

)
,where cK, CK and c∗K and C∗

K are de�ned as in (2.8)�(2.9) and the measure of the spetralgap gap(λ) is de�ned as in (1.2).Proof. Reall that, following De�nition 2.2, for a diagonalizable operator A we have
r(λ)[ϕ, φ] = ((A− λI)ϕ, φ)L2(Ω) = (X (H− λI)X−1ϕ, φ)L2(Ω),where ϕ ∈ Dom(A), φ ∈ H1

0 (Ω).Let ϕ = A−1/2u and φ = A∗−1/2v and, as in Remark 2.8, A∗−1/2 = X−∗H−1/2X ∗. Then
r(λ)[ϕ, φ] = r(λ)[A−1/2u,A∗−1/2v] = ((A− λI)A−1/2u,A∗−1/2v)L2(Ω)

= (X (I − λH−1)X−1u, v)L2(Ω),where u, v ∈ L2(Ω).The following proof is based on the observation that the resolvent of H is ompat and
Spec(A) = Spec(H), and so the form r(λ)[A−1/2·,A∗−1/2·] generates a bounded operator
X (I − λH−1)X−1 whih has a losed range. This implies that there exists a onstant CLBB,see e.g., [7℄, suh that,

‖(I − P∗)u‖ ≤ CLBB sup
v∈L2(Ω)\{0}

|(X (I − λH−1)X−1u, v)L2(Ω)|
‖v‖

= CLBB sup
φ∈H1

0 (Ω)\{0}

|r(λ)[ϕ, φ]|
‖A∗ 1/2φ‖ .Here P∗ is the L2(Ω)-orthogonal projetion onto Ran(S∗) = Ker(A− λI) and we have usedthe substitution u = A1/2ϕ and v = A∗1/2φ. Spetral alulus, e.g., [28, Theorems VIII.5and VIII.6℄ for the self-adjoint operator (I − λH−1) implies the estimate

CLBB ≤ ‖X−1‖‖X‖gap(λ) = κ(X )gap(λ).(3.3)Moreover, we get the obvious equivalene
c∗K sup

φ∈H1
0 (Ω)\{0}

|r(λ)[ϕ, φ]|
‖A∗ 1/2φ‖ ≤ sup

φ∈H1
0 (Ω)\{0}

|r(λ)[ϕ, φ]|
‖φ‖1

≤ C∗
K sup

φ∈H1
0 (Ω)\{0}

|r(λ)[ϕ, φ]|
‖A∗ 1/2φ‖ ,(3.4)for any ϕ ∈ H1

0 (Ω). Also, given ϕ ∈ H1
0 (Ω) we have

‖(I − S∗)ϕ‖1 ≤ ‖(I − P∗)ϕ‖1 ≤
1

cK
‖A1/2(I − P∗)ϕ‖ =

1

cK
‖(I − P∗)A1/2ϕ‖.Here we have used the fat that the operatorA is de�ned in L2(Ω) by the Kato representationtheorem [18, Theorem VI.2.1℄ as given in (2.3), and therefore P∗ is the L2(Ω)-orthogonal



8 STEFANO GIANI, LUKA GRUBI�I�, AGNIESZKA MI�DLAR, AND JEFFREY S. OVALLprojetion onto the eigensubspae of A. Subsequently, P∗ is the orthogonal projetion ontothe eigensubspae of A1/2 and so they ommute.Let us now use the substitution u = A1/2ϕ and v = A∗1/2φ again, then
‖(I − S∗)ϕ‖1 ≤

1

cK
‖(I − P∗)u‖ ≤ CLBB

cK
sup

φ∈H1
0 (Ω)\{0}

|r(λ)[ϕ, φ]|
‖A∗ 1/2φ‖

≤ κ(X )gap(λ)C∗
K

cK
sup

φ∈H1
0 (Ω)\{0}

|r(λ)[ϕ, φ]|
‖φ‖1

.Using the obvious identity
r(λ)[ϕ, φ] = r(λ̂)[ϕ, φ] + (λ̂− λ)(ϕ, φ)and inserting ϕ = ψ̂, we omplete the proof of the �rst inequality. The proof of the dualinequality is analogous.Remark 3.2. For a matrix version of this proof see [11, Theorem 3.1℄. For other onsiderationsin the �nite element ontext see [8℄.Remark 3.3. Although we may naturally think of (λ̂, ψ̂, ψ̂⋆) ∈ R×H1

0 (Ω)×H1
0 (Ω) as an ap-proximate eigentriple of A in Theorem 3.1, with λ̂ �lose to� λ, this theorem does not requireany relation between these objets. Similarly, we do not need (ψ̂, ψ̂⋆) to be approximationsof the left and right eigenvetors (ψ, ψ⋆) in Lemma 3.6 below, though we also naturally thinkof them that way.3.2. Residual eigenvalue error estimate. We begin with the following lemma, whoseproof we inlude for ompleteness.Lemma 3.4 (Lemma 3.6 [20℄). Let (λ, ψ, ψ⋆) ∈ R×H1

0 (Ω)×H1
0 (Ω) be an eigentriple of (2.5).Then for all ϕ, φ ∈ H1

0 (Ω), (ϕ, φ) 6= 0,
B(ϕ, φ)

(ϕ, φ)
− λ =

B(ϕ− ψ, φ− ψ⋆)

(ϕ, φ)
− λ

(ϕ− ψ, φ− ψ⋆)

(ϕ, φ)
.Proof. It holds that

B(ϕ− ψ, φ− ψ⋆)

(ϕ, φ)
=
B(ϕ, φ)

(ϕ, φ)
+
B(ψ, ψ⋆)− B(ϕ, ψ⋆)− B(ψ, φ)

(ϕ, φ)

=
B(ϕ, φ)

(ϕ, φ)
+
λ
(
(ψ, ψ⋆)− (ϕ, ψ⋆)− (ψ, φ)

)

(ϕ, φ)

=
B(ϕ, φ)

(ϕ, φ)
+
λ
(
(ψ, ψ⋆)− (ϕ, ψ⋆) + (ϕ, φ)− (ψ, φ)

)

(ϕ, φ)
− λ

=
B(ϕ, φ)

(ϕ, φ)
+
λ(ψ − ϕ, ψ⋆ − φ)

(ϕ, φ)
− λ .Rearranging terms ompletes the proof.Let us now prove a �rst order residual estimate for eigenvalues; in Numerial Linear Algebra,suh a result is known as a Bauer�Fike type estimate, see [12℄.
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0 (Ω), ‖ψ̂‖ = 1 be given and let A satisfy the ondition

S. Then
min

ξ∈Spec(A)

|µ̂− ξ|√
µ̂ξ

≤ κ(X )

c∗K

‖r(µ̂)[ψ̂, ·]‖−1√
µ̂

.Here ‖ · ‖ denotes the norm on L2(Ω), and the negative norm of the residual is de�ned in(3.1).Proof. Let σmin(X ) := ‖X−1‖−1. This is a good de�nition, sine X is bounded and has abounded inverse. We now ompute
‖r(µ̂)[ψ̂, ·]‖−1 = sup

φ∈H1
0 (Ω)\{0}

|r(µ̂)[ψ̂, φ]|
‖φ‖1

≥ c∗K sup
φ∈H1

0 (Ω)\{0}

|r(µ̂)[ψ̂, φ]|
‖A∗ 1/2φ‖

= c∗K‖A1/2ψ̂ − µ̂A−1/2ψ̂‖Sine the operator A satis�es ondition S it follows that
‖r(µ̂)[ψ̂, ·]‖−1 = c∗K‖X (H1/2 − µ̂H−1/2)X−1ψ̂‖.We note that the operatorH1/2−µ̂H−1/2 is self-adjoint. Using the standard spetral alulusfor self-adjoint operators, e.g., [28, Theorems VIII.5 and VIII.6℄, it follows that

Spec(H1/2 − µ̂H−1/2) =

{
√
µ̂

(√
ξ√
µ̂
−
√
µ̂√
ξ

)
: ξ ∈ Spec(A)

}
,and the smallest in modulus eigenvalue of H1/2 − µ̂H−1/2 is √µ̂ min

ξ∈Spec(A)

|ξ − µ̂|√
ξµ̂

. This,together with norm properties and assumption ‖ψ̂‖ = 1 yields
‖r(µ̂)[ψ̂, ·]‖−1 = c∗K‖X (H1/2 − µ̂H−1/2)X−1ψ̂‖

≥ c∗Kσmin(X )
√
µ̂ min

ξ∈Spec(A)

|ξ − µ̂|√
ξµ̂

‖X−1ψ̂‖ .The onlusion now follows diretly.We will now improve this result by obtaining an estimate whih is higher order in theresidual norm ‖r(µ̂)[ψ̂, ·]‖−1. In the rest of the theorems we shall make a speial hoie forthe salar λ̂. Given two non-zero vetors ψ̂, ψ̂⋆ ∈ H1
0 (Ω) we de�ne the generalized Rayleighquotient

λ̂ =
B(ψ̂, ψ̂⋆)

(ψ̂, ψ̂⋆)
.We will now prove a general residual estimate.



10 STEFANO GIANI, LUKA GRUBI�I�, AGNIESZKA MI�DLAR, AND JEFFREY S. OVALLLemma 3.6. Let ψ̂, ψ̂⋆ ∈ H1
0 (Ω)\{0}, (ψ̂, ψ̂⋆) 6= 0 be given, and let λ̂ = B(ψ̂, ψ̂⋆)/(ψ̂, ψ̂⋆) bethe orresponding generalized Rayleigh quotient. For an eigentriple (λ, ψ, ψ⋆) ∈ R×H1

0 (Ω)×
H1

0 (Ω) of (2.5) the estimate
|λ̂− λ| ≤ max

{
‖r(λ̂)[ψ̂, ·]‖−1‖ψ̂⋆ − ψ⋆‖1, ‖r(λ̂)[·, ψ̂⋆]‖−1‖ψ̂ − ψ‖1

}

|(ψ̂, ψ̂⋆)|
(3.5)

+O
(∣∣λ− λ̂|max

{
‖ψ̂⋆ − ψ⋆‖1, ‖ψ̂ − ψ‖1

})holds.Proof. With Lemma 3.4 we obtain the following equality
λ̂− λ =

B(ψ̂, ψ̂⋆)

(ψ̂, ψ̂⋆)
− λ =

B(ψ̂ − ψ, ψ̂⋆ − ψ⋆)

(ψ̂, ψ̂⋆)
− λ

(ψ̂ − ψ, ψ̂⋆ − ψ⋆)

(ψ̂, ψ̂⋆)
.For the right hand side we then have

B(ψ̂ − ψ, ψ̂⋆ − ψ⋆)

(ψ̂, ψ̂⋆)
− λ

(ψ̂ − ψ, ψ̂⋆ − ψ⋆)

(ψ̂, ψ̂⋆)
=
B(ψ̂ − ψ, ψ̂⋆ − ψ⋆)− λ(ψ̂ − ψ, ψ̂⋆ − ψ⋆)

(ψ̂, ψ̂⋆)

=
B(ψ̂ − ψ, ψ̂⋆ − ψ⋆)− λ(ψ̂ − ψ, ψ̂⋆ − ψ⋆) + λ̂(ψ̂ − ψ, ψ̂⋆ − ψ⋆)− λ̂(ψ̂ − ψ, ψ̂⋆ − ψ⋆)

(ψ̂, ψ̂⋆)

=
B(ψ̂ − ψ, ψ̂⋆ − ψ⋆)− λ̂(ψ̂ − ψ, ψ̂⋆ − ψ⋆)

(ψ̂, ψ̂⋆)
+
λ̂(ψ̂ − ψ, ψ̂⋆ − ψ⋆)− λ(ψ̂ − ψ, ψ̂⋆ − ψ⋆)

(ψ̂, ψ̂⋆)
.The linearity of B(·, ·) in the �rst omponent, equation (2.5) and the de�nition of the residual

r(λ̂)[ψ̂, ·] imply
λ̂− λ =

r(λ̂)[ψ̂, ψ̂⋆ − ψ⋆]

(ψ̂, ψ̂⋆)
+

(λ̂− λ)(ψ, ψ̂⋆ − ψ⋆)

(ψ̂, ψ̂⋆)
+

(λ̂− λ)(ψ̂ − ψ, ψ̂⋆ − ψ⋆)

(ψ̂, ψ̂⋆)
.By taking the absolute value, applying triangle inequality and using the de�nition of the

H−1(Ω)-norm of the right residual we get
|λ̂− λ| ≤ ‖r(λ̂)[ψ̂, ·]‖−1‖ψ̂⋆ − ψ⋆‖1

|(ψ̂, ψ̂⋆)|
+

|λ̂− λ||(ψ, ψ̂⋆ − ψ⋆)|
|(ψ̂, ψ̂⋆)|

+
|λ̂− λ||(ψ̂ − ψ, ψ̂⋆ − ψ⋆)|

|(ψ̂, ψ̂⋆)|

≤ ‖r(λ̂)[ψ̂, ·]‖−1‖ψ̂⋆ − ψ⋆‖1
|(ψ̂, ψ̂⋆)|

+
|λ̂− λ|‖ψ̂⋆ − ψ⋆‖

|(ψ̂, ψ̂⋆)|

(
‖ψ‖+ ‖ψ̂ − ψ‖

)
.(3.6)Performing the same alulations using the left residual r(λ̂)[·, ψ̂⋆] ompletes the proof.We now ombine Theorem 3.1 and Lemmas 3.5 and 3.6 to obtain a result whih will formthe basis of our eigenvalue error estimation presented in the next setion. Before we proeed,let us reall the notion of the weak onvergene of a sequene of vetors vn ∈ H1

0 (Ω). We saythat the sequene vn ∈ H1
0 (Ω) onverges weakly to v∞ ∈ H1

0 (Ω) if (vn − v∞, u) + (∇(vn −
v∞),∇u) → 0, for all u ∈ H1

0 (Ω). In this ase, we write w-limnvn = v∞. Reall also that inthe ase in whih the sequene onverges strongly, e.g., when ‖vn − v∞‖1 → 0, then it alsoonverges weakly and v∞ = w-limnvn. In other words, when both the strong and the weaklimit of a sequene exist they must be equal.
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0 (Ω) × H1

0 (Ω) be an eigentriple of (2.5). Moreover,let the operator A satisfy ondition S. Suppose we have a sequene of triplets (λ̂ν , ψ̂ν , ψ̂
⋆
ν) ∈

R × H1
0 (Ω) × H1

0 (Ω) suh that ‖ψ̂ν‖1 = ‖ψ̂⋆
ν‖1 = 1, (ψ̂ν , ψ̂

⋆
ν) 6= 0, λ̂ν = B(ψ̂ν , ψ̂

⋆
ν)/(ψ̂ν , ψ̂

⋆
ν)and(3.7) |λ̂ν − λ|√

λ̂νλ

= min
ξ∈Spec(A)

|λ̂ν − ξ|√
λ̂νξfor eah ν ∈ N. Assume that ∥∥r(λ̂ν)[ψ̂ν , ·]

∥∥
−1

→ 0 and ∥∥r(λ̂ν)[·, ψ̂⋆
ν ]
∥∥
−1

→ 0. Then for νlarge enough we have the reliability estimate
|λ̂ν − λ| ≤ Ĉ

(ψ̂ν , ψ̂⋆
ν)

∥∥r(λ̂ν)[ψ̂ν , ·]
∥∥
−1

∥∥r(λ̂ν)[·, ψ̂⋆
ν ]
∥∥
−1

+ o(
∥∥r(λ̂ν)[ψ̂ν , ·]

∥∥
−1

∥∥r(λ̂ν)[·, ψ̂⋆
ν ]
∥∥
−1
).The onstant Ĉ depends solely on the distane of λ to the rest of the spetrum, the onditionnumber κ(X ) and the equivalene onstants from Kato's square root theorem.Proof. Let S∗ and S⋆

∗ be the H1
0 (Ω)-orthogonal projetions onto the subspaes S and S⋆whih are spanned by all right and left eigenvetors belonging to λ. Following Theorem 3.1and Lemma 3.5 the assumptions ∥∥r(λ̂ν)[ψ̂ν , ·]

∥∥
−1

→ 0 and ∥∥r(λ̂ν)[·, ψ̂⋆
ν ]
∥∥
−1

→ 0 imply that
‖(I − S∗)ψ̂ν‖1 → 0 and ‖(I − S

⋆
∗)ψ̂

⋆
ν‖1 → 0 .We will now present the argument for the onvergene of right eigenvetors. The argumentfor left eigenvetors is analogous.Sine ‖ψ̂ν‖1 = 1, there exists an H1

0 (Ω) weakly onvergent subsequene whih we denoteagain by ψ̂ν . Let now w-limνψ̂ν = ψ, then it follows thatw-limνS∗ψ̂ν = S∗ψ,sine S∗ is a bounded operator. Furthermore, we onlude thatw-limν(ψ̂ν − S∗ψ̂ν) = ψ − S∗ψ.If both the weak and strong limits exist then they are equal. Therefore limν(ψ̂ν − S∗ψ̂ν) = 0implies that ψ = S∗ψ. Subsequently, we onlude that ψ ∈ S, i.e., it is an eigenvetorassoiated with λ. Sine S is of �nite dimension and ‖S∗ψ̂ν‖1 ≤ 1, it follows that there is asubsequene of ψ̂ν , whih we denote again by ψ̂ν , suh that S∗ψ̂ν onverges strongly. Nowthe estimate
‖ψ̂ν − ψ‖1 ≤ ‖ψ̂ν − S∗ψ̂ν‖1 + ‖S∗ψ̂ν − ψ‖1implies that limν ψ̂ν = ψ. Reall the elementary inequalities arcsin x ≤ x + x3, 0 ≤ x ≤ 1and x ≤ arcsin x, 0 ≤ x ≤ 1/2. For eah ν, we an now apply Lemma 3.6 and the estimateof Theorem 3.1. Note that ‖(I − S∗)ψ̂ν‖1 < 1/2 and ψν ∈ Ran(S∗) imply(3.8) ‖ψν − ψ̂ν‖1 ≤ arcsin ‖(I − S∗)ψ̂ν‖1 ≤ ‖(I − S∗)ψ̂ν‖1 + ‖(I − S∗)ψ̂ν‖31for the eigenvetor ψν = S∗ψ̂ν/‖S∗ψ̂ν‖1. Lemma 3.5 and equality (3.7) imply

|λ̂ν − λ| ≤ κ(X )

c∗K

√
λ‖r(λ̂ν)[ψ̂ν , ·]‖−1



12 STEFANO GIANI, LUKA GRUBI�I�, AGNIESZKA MI�DLAR, AND JEFFREY S. OVALLand the estimate of Theorem 3.1 now reads(3.9) ‖(I − S∗)ψ̂ν‖1 ≤
C∗

K

cK
κ(X )gap(λ)

(
‖r(λ̂ν)[ψ̂ν , ·]‖−1 +

κ(X )

c∗K

√
λ‖r(λ̂ν)[ψ̂ν , ·]‖−1

)An analogous estimate holds for left eigenvetors. An appliation of (3.8), (3.9) and Lemma3.6 establishes the laim.Remark 3.8. Note that this theorem does not say anything about eigenvetor approximations,sine ψν ∈ Ran(S∗) is possibly di�erent for every ν. For the eigenvetor onvergene resultsee Appendix A. To obtain an eigenvetor estimate, one would have to hoose a subsequeneof ψ̂ν whih onverges to a �xed hosen eigenvetor.4. Finite Element Error BoundsLet us now disretize our model problem (2.5) using hp-�nite element spaes. Let T = Thbe a triangulation of Ω with the pieewise onstant mesh funtion h : Th → (0, 1), h(T ) =diam(T ) for T ∈ Th. We impliitly assume that Th is subordinate to the polygonal partitionof Ω disussed in (A3) of De�nition 2.1; in other words, eah T ∈ Th is ontained in preiselyone of the polygons Ωk. Given a pieewise onstant distribution of polynomial degrees,
p : Th → N, we de�ne the spae

V = V p
h = {v ∈ H1

0 (Ω) ∩ C(Ω) : v
∣∣
T
∈ Pp(T ) for eah T ∈ Th} ,where Pp(T ) is the olletion of polynomials of total degree not greater than p on a givenelement T ∈ Th. Suppressing the mesh parameter h for onveniene, we also de�ne the setof interior edges E in T . Additionally, we let T (e) denote the two triangles having e ∈ Eas an edge, and we extend p to E by p(e) = maxT∈T (e) p(T ). Without loss of generality, weassume that the family of spaes satisfy the following standard regularity properties on Tand p: There exists a onstant γ > 0 for whih

(C1) γ−1h(T ) ≤ h(T ′) ≤ γh(T ) for adjaent T, T ′ ∈ T , T ∩ T ′ 6= ∅. In other words, thediameters of adjaent elements are omparable.
(C2) γ−1(p(T )+1) ≤ p(T ′)+1 ≤ γ(p(T )+1) for adjaent T, T ′ ∈ T , T ∩T ′ 6= ∅. In otherwords, the polynomial degrees assoiated with adjaent elements are omparable.As a matter of notational onveniene we use the same onstant γ for (C1) and (C2).Using a Galerkin approah we onsider the following eigenvalue problem:Find an eigentriple (λ̂, ψ̂, ψ̂⋆) ∈ R× V × V suh that

B(ψ̂, φ) = λ̂(ψ̂, φ) and B(φ, ψ̂⋆) = λ̂(ψ̂⋆, φ) for all φ ∈ V,(4.1)with ‖ψ̂‖ = ‖ψ̂⋆‖ = 1.With a basis {v1, v2, . . . , vN} of V , we get the algebrai eigenvalue problems
Bx = λ̂Mx and BT

y = λ̂My with x
TMx = y

TMy = 1,(4.2)where Bij = B(vj , vi), Mij = (vj , vi) = (vi, vj). The vetors x and y are the oe�ientvetors of ψ̂ and ψ̂⋆, respetively, i.e., ψ̂ =
N∑
i=1

xivi and ψ̂⋆ =
N∑
i=1

yivi.We also have the disrete analogues of (2.6) and (2.7). In partiular, for f ∈ L2(Ω), wede�ne û(f), û⋆(f) ∈ V as the solutions of
B(û(f), v) = (f, v) and B(v, û⋆(f)) = (f, v) for all v ∈ V.(4.3)



ROBUST ESTIMATES FOR hp-ADAPTIVE EIGENVALUE APPROXIMATIONS 13With these de�nitions, it is lear that û(ψ̂) = λ̂−1ψ̂ and û⋆(ψ̂⋆) = λ̂−1ψ̂⋆ or, equivalently,
û(λ̂ψ̂) = ψ̂ and û⋆(λ̂ψ̂⋆) = ψ̂⋆. Using these fats, together with the Galerkin orthogonality,we obtain the following expressions for the H−1(Ω)-norms of the left and right residuals:

‖r(λ̂)[ψ̂, ·]‖−1 = inf
w∈V

sup
v∈H1

0 (Ω)\{0}

λ̂|B(û(ψ̂)− u(ψ̂), v − w)|
‖v‖1

,(4.4)
‖r(λ̂)[·, ψ̂⋆]‖−1 = inf

w∈V
sup

v∈H1
0 (Ω)\{0}

λ̂|B(v − w, û⋆(ψ̂⋆)− u⋆(ψ̂⋆))|
‖v‖1

.(4.5)Remark 4.1. We note that the numerator in (4.4) is equivalent to |B(û(λ̂ψ̂)−u(λ̂ψ̂), v−w)|,and the numerator in (4.5) is equivalent to |B(v − w, û(λ̂ψ̂⋆)− u(λ̂ψ̂⋆)|.We now fous on expressions suh as those in the numerators in (4.4) and (4.5), anddevelop residual-type hp-�nite element bounds. Let f ∈ L2(Ω), v ∈ H1
0 (Ω) and w ∈ V . Weset u = u(f), û = û(f) and get

B(u− û, v − w) =

∫

Ω

(f − cû− b · ∇û)(v − w)− A∇û · ∇(v − w) dx

=
∑

T∈T

(∫

T

RT (f)(v − w) dx−
∫

∂T

A∇û · n(v − w) ds

)

=
∑

T∈T

∫

T

RT (f)(v − w) dx+
∑

ε∈E

∫

ε

Rε(f)(v − w) ds .(4.6)Here we have de�ned the element residual, RT (f), and edge residual, Rε(f), by
RT (f) := f − (−∇ · A∇û+ b · ∇û+ cû) ,(4.7)
Rε(f) := −(A∇û)|T · nT − (A∇û)|T ′ · nT ′ ,(4.8)where T and T ′ are the two adjaent elements of ε ∈ E , having outward unit normal vetors

nT and nT ′ , respetively. Similarly, for u⋆ = u⋆(f) and û⋆ = û⋆(f), we have
B(v − w, u⋆ − û⋆) =

∫

Ω

(f − cû⋆)(v − w)− b · ∇(v − w) û⋆ − A∇(v − w) · ∇û⋆ dx

=

∫

Ω

(f − cû⋆ +∇ · (bû⋆)(v − w)− A∇(v − w) · ∇û⋆ dx

=
∑

T∈T

∫

T

R⋆
T (f)(v − w) dx+

∑

ε∈E

∫

ε

R⋆
ε(f)(v − w) ds ,(4.9)where

R⋆
T (f) := f − (−∇ · A∇û⋆ −∇ · (bû⋆) + cû⋆) ,(4.10)
R⋆

ε(f) := −(A∇û⋆)|T · nT − (A∇û⋆)|T ′ · nT ′ .(4.11)The forms of the expressions (4.6) and (4.9) motivate estimates based on a Clément-typeinterpolation result of [26, Theorem 2.2, Remark 2.3℄. For ompleteness, we state this resulthere.



14 STEFANO GIANI, LUKA GRUBI�I�, AGNIESZKA MI�DLAR, AND JEFFREY S. OVALLTheorem 4.2 ([26℄). There is a linear operator I : H1
0 (Ω) → V and a onstant C dependingonly on the shape-regularity parameter γ, suh that: For any vertex z and any edge ε having

z as a vertex,
‖v − Iv‖0,ωz

+
hz
pz

|Iv|1,ωz
+

√
hz
pz

‖v − Iv‖0,ε ≤ C
hz
pz

|v|1,Ωz
.Here, ωz is the path of triangles having z as a vertex, hz is the largest of the diameters ofthese triangles, pz − 1 is the largest of the polynomial degrees assoiated with these triangles,and Ωz ⊃ ωz is a larger, but still loalized, path of triangles.Remark 4.3. The preise de�nition of Ωz is not essential here. It only matters that, if mz isthe number of triangles in Ωz andM is the total number of triangles in T , then∑zmz ≤ δMfor some δ whih depends only on the shape-regularity parameter γ. This is a onsequeneof the shape-regularity assumption (C1) (f. [26℄).Lemma 4.4. Given f ∈ L2(Ω), let u, u⋆ ∈ H1

0 (Ω) and û, û⋆ ∈ V be de�ned as in (2.6), (2.7)and (4.3). There exists a onstant C depending only on γ suh that, for any v ∈ H1
0 (Ω),

inf
w∈V

|B(u− û, v − w)| ≤ C

(
∑

T∈T

(
h(T )

p(T )

)2

‖RT (f)‖20,T +
∑

ε∈E

h(ε)

p(ε)
‖Rε(f)‖20,ε

)1/2

|v|1 ,

inf
w∈V

|B(v − w, u⋆ − û⋆)| ≤ C

(
∑

T∈T

(
h(T )

p(T )

)2

‖R⋆
T (f)‖20,T +

∑

ε∈E

h(ε)

p(ε)
‖R⋆

ε(f)‖20,ε

)1/2

|v|1 .Proof. Sine the argument for the seond result is the same as for the �rst, we only prove theformer. As a notational onveniene we use the ommon shorthand X . Y when X ≤ cYfor some onstant c depending only on γ. It holds that
inf
w∈V

|B(u− û, v − w)| ≤
∑

T∈T
‖RT (f)‖0,T‖v − Iv‖0,T +

∑

ε∈E
‖Rε(f)‖0,ε‖v − Iv‖0,ε

.
∑

T∈T
‖RT (f)‖0,T

hz(T )

pz(T )

|v|1,Ωz(T )
+
∑

ε∈E
‖Rε(f)‖0,ε

√
hz(ε)
pz(ε)

|v|1,Ωz(ε)
,where z(T ) is a vertex of T and z(ε) is a vertex of ε. The ontrolled overlap of pathes(Remark 4.3) guarantees that

∑

T∈T
|v|21,Ωz(T )

. |v|21 ,
∑

ε∈E
|v|21,Ωz(ε)

. |v|21 .Now using the disrete Cauhy-Shwarz inequality and the fat that triangle diameters andpolynomial degrees are omparable for nearby elements and edges, we see that
inf
w∈V

|B(u− û, v − w)| .
(
∑

T∈T

(
h(T )

p(T )

)2

‖RT (f)‖20,T +
∑

ε∈E

h(ε)

p(ε)
‖Rε(f)‖20,ε

)1/2

|v|1 .This ompletes the proof.



ROBUST ESTIMATES FOR hp-ADAPTIVE EIGENVALUE APPROXIMATIONS 15For a given triangle T , we de�ne E(T ) to be the set of interior edges of T (those not on
∂Ω). We also de�ne the (non-negative) loal error indiators, ηT (f) and η⋆T (f), and globalerror estimates, η(f) and η⋆(f), by

ηT (f)
2 :=

(
h(T )

p(T )

)2

‖RT (f)‖20,T +
1

2

∑

ε∈E(T )

h(ε)

p(ε)
‖Rε(f)‖20,ε ,(4.12)

η⋆T (f)
2 :=

(
h(T )

p(T )

)2

‖R⋆
T (f)‖20,T +

1

2

∑

ε∈E(T )

h(ε)

p(ε)
‖R⋆

ε(ε)‖20,ε ,(4.13)
η(f)2 =

∑

T∈T
ηT (f)

2 =
∑

T∈T

(
h(T )

p(T )

)2

‖RT (f)‖20,T +
∑

ε∈E

h(ε)

p(ε)
‖Rε(f)‖20,ε ,(4.14)

η⋆(f)2 :=
∑

T∈T
η⋆T (f)

2 =
∑

T∈T

(
h(T )

p(T )

)2

‖R⋆
T (f)‖20,T +

∑

ε∈E

h(ε)

p(ε)
‖R⋆

ε(f)‖20,ε .(4.15)With these de�nitions in hand, the result below immediately follows from equalities (4.4),(4.5) and Lemma 4.4.Theorem 4.5. Let (λ̂, ψ̂, ψ̂⋆) ∈ R× V p
h × V p

h be an eigentriple of (4.1). There is a onstant
C depending only on shape-regularity parameter γ for whih

‖r(λ̂)[ψ̂, ·]‖−1 ≤ Cλ̂η(ψ̂) and ‖r(λ̂)[·, ψ̂⋆]‖−1 ≤ Cλ̂η⋆(ψ̂⋆) .We �nally obtain our key a posteriori error estimation results in the �nite element ontext,whih follow immediately from Theorems 3.7 and 4.5.Theorem 4.6. Let the operator A de�ned by the variational form B(·, ·) satisfy ondition
S and let (λ̂, ψ̂, ψ̂⋆) ∈ R × V p

h × V p
h be an eigentriple of (4.1) suh that (ψ̂, ψ̂⋆) 6= 0. Thenthere exists an eigenvalue λ of A suh that(4.16) |λ̂− λ|

λ̂
≤ Cλ̂η(ψ̂)η⋆(ψ̂⋆) + o

(
λ̂η(ψ̂)η⋆(ψ̂⋆)

)
.The onstant C depends solely on the shape-regularity parameter γ, the relative distaneof λ from the rest of the Spec(A) (measured by gap(λ)), the ondition number κ(X ) forthe Ritz basis of eigenvetors of A, the osine of the angle between the left and the rightomputed eigenvetor (ψ̂, ψ̂⋆) and the equivalene onstants from Kato's square root theorem.Furthermore, we may hoose assoiated right and left eigenvetors ψ and ψ⋆ for λ suh thatthe �owing estimates hold

‖ψ − ψ̂‖1 ≤ Cλ̂ η(ψ̂), ‖ψ⋆ − ψ̂⋆‖1 ≤ Cλ̂ η⋆(ψ̂⋆) .(4.17)Remark 4.7. Following through the arguments above, with Remark 4.1 in mind, we see thatthe key results in Theorem 4.6 may be re-written as:
|λ̂− λ| ≤ Cη(f)η⋆(f ⋆) + o

(
η(f)η⋆(f ⋆)

)
, ‖ψ − ψ̂‖1 ≤ Cη(f) , ‖ψ⋆ − ψ̂⋆‖1 ≤ Cη⋆(f ⋆) ,where f = λ̂ψ̂ and f ⋆ = λ̂ψ̂⋆.Remark 4.8. The seond order eigenvalue estimate (4.16) holds under the assumptions ofTheorem 3.7. For a fully a posteriori result, we would need a pratial means of establishing



16 STEFANO GIANI, LUKA GRUBI�I�, AGNIESZKA MI�DLAR, AND JEFFREY S. OVALLthe requirements of that theorem, in partiular, the onvergene of our Galerkin eigenvalueapproximations. On the other hand, the onvergene of residual estimates to zero doesguarantee the �rst order onvergene of eigenvalues in the sense of Lemma 3.5. This estimateis a diret orollary of Theorem 4.5 and Lemma 3.5 and the statement reads:For eah ν, there exists an eigenvalue λ suh that
|λ̂ν − λ| ≤ κ(X )

c∗K
C

√
λ λ̂νη(ψ̂ν) .Here the onstant C depends solely on the shape regularity-parameter γ and it is the same asin Theorem 4.5. We also have the onvergene of eigenvetors to the assoiated eigenspaesin the sense of estimate (3.9). 5. Numerial examplesIn this setion we provide several numerial results whih illustrate the e�ieny of oura posteriori error estimators and the exponential onvergene of the error on a sequene of

hp-adapted meshes. Following [6℄, we assume an eigenvalue error model of the form
λ̂ = λ+ Ce−2α

√
#DOFs ,(5.1)for problems with smooth eigenvetors, and

λ̂ = λ+ Ce−2α 3
√
#DOFs ,(5.2)for problems de�ned on non-onvex polygonal domains and/or possessing disontinuous oef-�ients, whih are expeted to have eigenvetors with isolated singularities. The onstants Cand α are determined by least-squares �tting [27℄, the value of α is reported for eah problemand in all onvergene plots a straight line of slope α is added for omparison. Although allonvergene rates in the experiments are seen to be exponential, with one of the two errormodels above, we will abuse terminology slightly in the experiments by referring to α as theonvergene rate; the ontext will make it lear if α is to be assoiated with the model (5.1)or (5.2). With this terminology, theory predits that the onvergene rate of the left andright eigenvetors is half of that for the eigenvalues, and we see in eah of the experimentsthat this is essentially the ase.As in Remark 4.7, for a given approximate eigentriple (λ̂, ψ̂, ψ̂⋆), we de�ne f = λ̂ψ̂ and

f ⋆ = λ̂ψ̂⋆. Throughout this setion we are interested in the following quantities: the rela-tive eigenvalue error, its a posteriori estimate and the assoiated e�etivity index, shown,respetively, below:
|λ̂− λ|
λ̂

,
η(f)η⋆(f ⋆)

λ̂
,

|λ̂− λ|
η(f)η⋆(f ⋆)

.Similarly for eigenvetors we analyse the eigenvetor errors, their a posteriori estimates, andthe assoiated e�etivity indies, shown, respetively, below:
‖ψ − ψ̂‖1, η(f), ‖ψ − ψ̂‖1/η(f),

‖ψ⋆ − ψ̂⋆‖1, η⋆(f ⋆), ‖ψ⋆ − ψ̂⋆‖1/η⋆(f ⋆).For the problems with given exat eigenvalues, we use these in our error analysis. In otherases, we use highly aurate omputations on very �ne grids and adapted �nite element
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Figure 1. Convergene of the �rst eigenvalue on the unit square. Estimatedonvergene rate 0.1516.spaes generated by the method desribed below to produe �exat eigenvalues� for ouromparisons. However, in order to ompute the errors for eigenvetors, we use refereneeigenvetors omputed on very �ne grids and with adapted �nite element spaes for allproblems.All the experiments have been arried out using theAptoFEM pakage (www.aptofem.om)on a single proessor desktop mahine. In partiular, we have used ARPACK [21℄ to solvethe algebrai eigenvalue problems, employing MUMPS [1℄ to solve the neessary linear sys-tems.Let us shortly summarize the adaptive algorithm used in our simulations. At �rst wehoose the indies i of the eigenvalues of interest. On the initial oarse mesh we omputethe eigenpairs (λ̂i,hp, ψ̂i,hp) and the a posteriori error estimators. We determine the elements
T ∈ T for re�nement using a simple �xed-fration strategy based on the values of theloal error estimators ηT (ψ̂i), with di�erent perentages for re�nement and de-re�nement.The hoie between re�ning the marked elements in h or p is based on an estimation ofthe loal analytiity of the exat eigenvetors using the omputed ones, see [16℄ for moredetails. Finally, a re�ned spae is generated and the proess is restarted by taking previouslyalulated eigenpairs (λ̂i,hp, ψ̂i,hp) as initial values for the omputations in the re�ned spae.5.1. Unit Square. As a simple problem for whih the exat eigenvalues and eigenvetorsare expliitly known, we onsider the operator A = −∆ + b · ∇, where b = (2, 2) and
Ω = (0, 1) × (0, 1). This is just a ase of Example 2.3, so we see that the eigentriples aregiven as
λj,k = 2 + π2(j2 + k2) , ψj,k = ex+y sin(jπx) sin(kπy) , ψ⋆

j,k = e−(x+y) sin(jπx) sin(kπy),for j, k ∈ N.In Figure 1 we present the relative eigenvalue errors and the error estimates for the �rsteigenvalue using our hp-adaptive sheme with 15% for re�nement and 2% for de-re�nement
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Figure 2. E�etivity index of the �rst eigenvalue on the unit square.

10 20 30 40 50 60 70 80 90
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

DOFs1/2

 

 

‖ψ − ψ̂‖1

‖ψ ⋆
− ψ̂ ⋆‖1

η (f )
η ⋆(f ⋆)
conv. rate α l eft
conv. rate α right

Figure 3. Convergene of the left and right eigenvetors (eigenfuntions)orresponding to the �rst eigenvalue on the unit square. Estimated onver-gene rates for the left and right eigenvetors (eigenfuntions) are respetively:0.0829 and 0.0836.in the �xed-fration marking strategy. In this ase we have that the onvergene rate for theeigenvalue estimated with least-squares �tting is α = 0.1516. The orresponding e�etivityindies are shown in Figure 2.Similarly, the right and left eigenvetor errors orresponding to the �rst eigenvalue with theassoiated error estimates are depited in Figure 3. Here the onvergene rate for the rightand left eigenvetors estimated with least-squares �tting are α = 0.0829, 0.0836, respetively.



ROBUST ESTIMATES FOR hp-ADAPTIVE EIGENVALUE APPROXIMATIONS 19

0 5 10 15 20 25
0.16

0.18

0.2

0.22

0.24

0.26

0.28

Mesh number

E
ffe

ct
iv

ity

 

 

‖ψ − ψ̂‖1/η (f )

‖ψ ⋆
− ψ̂ ⋆‖1/η

⋆(f ⋆)

Figure 4. E�etivity indies of the left and right eigenvetors (eigenfun-tions) orresponding to the �rst eigenvalue on the unit square.

Figure 5. Final hp-adapted mesh for the unit square problem with the order
p of polynomials expressed on the olor sale.Figure 4 presents the e�etivity indies for eigenvetors. The �nal hp-adapted mesh isdisplayed in Figure 5.5.2. L-Shape. We onsider the operator A = −∆ + b · ∇, where b = (2, 2) and Ω is theL-shaped domain pitured in Figure 10. Although there are no expliit formulas for most of
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Figure 6. Convergene of the �rst eigenvalue on the L-shaped domain. Es-timated onvergene rate 0.5126.
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Figure 7. E�etivity index of the �rst eigenvalue on the L-shaped domain.the eigentriples for A, the �rst several eigenvalues of −∆ are known to very high preision(f. [29℄), and those for A are readily obtained by adding 2, as disussed in Example 2.3.Figure 6 illustrates the relative eigenvalue errors and the error estimates for the �rsteigenvalue using our hp-adaptive sheme with 25% for re�nement and 5% for de-re�nementin the �xed-fration marking strategy [15℄. In this ase we have that the onvergene rate forthe eigenvalue estimated with least-squares �tting is α = 0.5126. For the e�etivity indiessee Figure 7. Moreover, Figure 8 shows the right and left eigenvetor errors orrespondingto the �rst eigenvalue and the assoiated error estimates. The onvergene rate for the rightand left eigenvetors estimated with least-squares �tting are α = 0.2697, 0.2671, respetively.
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Figure 8. Convergene of the left and right eigenvetors (eigenfuntions) or-responding to the �rst eigenvalue on the L-shaped domain. Estimated onver-gene rates for the left and right eigenvetors (eigenfuntions) are respetively:0.2697 and 0.2671.
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Figure 9. E�etivity indies of the left and right eigenvetors (eigenfun-tions) orresponding to the �rst eigenvalue on the L-shaped domain.Corresponding e�etivity indies are displayed in Figure 9. The �nal hp-adapted mesh isgiven in Figure 10, and we see that the singularities of the left and right eigenvetors atthe origin (the reentrant orner) have been reognized by our adaptive sheme, whih doesheavy h-re�nement near the origin.5.3. Kellogg Problem. For this example we onsider the eigenvalue version of a Kelloggproblem [19℄: Ω is the square domain Ω = (−1, 1)× (−1, 1), and Av = −∇ · (a∇v) + b · ∇v,
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Figure 10. Final hp-adapted mesh for the L-shaped domain, the order ofpolynomials in eah element is expressed in the olor sheme.
a = 10

a = 10

a = 1

a = 1

Figure 11. The domain and di�usion oe�ients for the Kellogg problem.
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Figure 12. Convergene of the �rst eigenvalue for the Kellogg problem. Es-timated onvergene rate 0.2757.
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Figure 13. E�etivity index of the �rst eigenvalue for the Kellogg problem.where b = (2, 2) and a = 10 in quadrants I and III, and a = 1 in quadrants II and IV,see Figure 11. Although we have no proof that this operator �ts into the framework ofthe error theory presented here�it is ertainly not diagonalized in the manner disussed inExample 2.3�we o�er numerial results whih suggest that our approah works very wellfor the �rst eigenvalue, whih is known to be real and simple, but whose left and righteigenvetors have strong singularities at the origin. The relative eigenvalue error and theerror estimate for the �rst eigenvalue obtained using our hp-adaptive sheme with 15% forre�nement and 4% for de-re�nement are presented in Figure 12. The value of the onvergenerate for the eigenvalue estimated with least-squares �tting is α = 0.2757 and the referene
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Figure 14. Convergene of the left and right eigenvetors (eigenfuntions)orresponding to the �rst eigenvalue for the Kellogg problem. Estimated on-vergene rates for the left and right eigenvetors (eigenfuntions) are respe-tively: 0.1834 and 0.1813.
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Figure 15. E�etivity indies of the left and right eigenvetors (eigenfun-tions) orresponding to the �rst eigenvalue for the Kellogg problem.value for the eigenvalue is 17.714316 with an auray of 10−6. In Figure 13 the orrespondinge�etivity indies are displayed. The right and left eigenvetor errors together with theassoiated error estimates, and the e�etivity indies are given in Figure 14 and Figure 15,respetively. The onvergene rate for the right and left eigenvetors estimated with least-squares �tting are α = 0.1834, 0.1813. The �nal hp-adapted mesh is presented in Figure 16.
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Figure 16. Final hp-adapted mesh for the Kellogg problem, the order ofpolynomials in eah element is expressed in the olor sheme.As expeted, the h-adaptivity is onentrated around the singularity in the enter of thedomain. 6. ConlusionsIn this paper we have presented new relative estimates for the eigenvalue/funtion approx-imation error for a lass of onvetion�di�usion�reation operators. The main ingredientsof our analysis have been Kato's square root theorem, whih holds for the whole lass ofonvetion�di�usion�reation type operators with bounded oe�ients, and a generaliza-tion of a Bauer-Fike type theorem (f. disussion on [30, p. 95℄), whih holds only in thease when the eigenfuntions of the operator onstitute a Riesz basis of the entire Hilbertspae where the problem is posed. The ondition number of the Riesz basis of eigenvetorsmeasures the global sensitivity of all eigenvalues, and appears in our upper estimates ofapproximation errors. In the ase of onvetion�di�usion�reation operators whih satisfythe onditions from Example 2.3, this global quantity is a good measure of the sensitivity ofindividual eigenvalues as well. AknowledgmentL. Grubi²i¢ was supported by the Croatian MZOS Grant Nr. 037-0372783-2750 �Spetraldeompositions � numerial methods and appliations�. A. Mi�dlar was supported by theDFG Researh Center Matheon. J. Ovall was supported by the National Siene Founda-tion under ontrat DMS-1216672.The authors would also like to thank Prof. Dr. V. Mehrmann, TU Berlin, for very helpfulomments on the manusript.



26 STEFANO GIANI, LUKA GRUBI�I�, AGNIESZKA MI�DLAR, AND JEFFREY S. OVALLAppendix A. Cluster robust eigenvetor approximationsIn this appendix we prove a luster robust eigenvetor approximation estimate. Namely,we establish a subspae approximation estimate whih depends only on the distane betweenthe Ritz values from the given approximation subspae to the unwanted omponents of thespetrum.Before we formulate the main result, let us de�ne a measure of the spetral separation. Let
Λ := {λi : i = 1, . . . , n} be an isolated subset of Spec(A). Let {ψ̂i : i = 1, . . . , n} ⊂ H1

0 (Ω)and {ψ̂⋆
i : i = 1, . . . , n} ⊂ H1

0 (Ω) denote independent sets of vetors and let Ξ := {µ̂i, i =
1, . . . , n} ⊂ R. Then we de�ne

gap2(Ξ) := min
{ |µ̂i − ξ|√

µ̂iξ
: ξ ∈ Spec(A) \ Λ

}
.Note that this gap is di�erent from the relative gap we used in (1.2). For more information onthe topologial properties of various relative distane funtions see [22℄. Also, for a boundedoperator X with a bounded inverse we de�ne σmin = ‖X−1‖−1. It plays the role of thesmallest singular value from matrix analysis.Let fi = X ei, i ∈ N, be a Riesz basis. Then qi = X (X ∗X )−1/2ei, i ∈ N, is an orthonormalbasis for whih we have(A.1) |(qi, v)| = |(X (X ∗X )−1/2ei, v)| ≤ ‖X−1‖ |(ei, v)|, i ∈ N.Reall that an operator A is a Hilbert-Shmidt operator providing the trae tr(A∗A) is �nite.For a given Hilbert�Shmidt operator A we de�ne the Hilbert-Shmidt norm by the formula

‖A‖HS =
√
tr(A∗A).Theorem A.1. Assume that the eigenvalues Λ = {λi, i = 1, . . . , n} and their approximations

Ξ are given suh that gap2(Ξ) > 0. Furthermore, let P be the L2-orthogonal projetion onto
P := span{ψ̂i : i = 1, . . . , n} and Q be the L2-orthogonal projetion onto Q = span{ψ :
ψ ∈ Ker(A− λI), λ ∈ Spec(A) \ Λ}. Then

‖(I −Q)P‖HS ≤ κ(X )

c⋆Kλmin(G)1/2

√∑n
i=1 ‖r(µ̂i)[ψ̂i, ·]‖2−1

gap2(Ξ)
.Here Gij = (ψ̂i, ψ̂j), i, j = 1, . . . , n is the Gram matrix of the set {ψ̂i : i = 1, . . . , n} ⊂ H1

0 (Ω)and λmin(G) denotes its smallest positive eigenvalue. An equivalent result, involving dualquantities, holds for left eigenvetors.Remark A.2. In the ase when ‖P −Q‖ < 1, where ‖ · ‖ denotes the operator norm, we havethe estimate
‖Q− P‖HS ≤ κ(X )

c∗Kλmin(G)1/2

√∑n
i=1 ‖r(µ̂i)[ψ̂i, ·]‖2−1

gap2(Ξ)
,and its analogue for the left eigenvetors.Proof. Let now P and Q be the orthogonal projetions as in the statement of the theorem.Obviously, ‖(I −Q)P‖HS <∞, sine Ran(P ) is of �nite dimension.



ROBUST ESTIMATES FOR hp-ADAPTIVE EIGENVALUE APPROXIMATIONS 27Let pi, i = 1, . . . , n be an orthonormal basis for P whih is obtained from {ψ̂i : i = 1, . . . , n}by the Gram-Shmidt orthogonalization proedure. It follows that
‖(I −Q)P‖2HS =

n∑

i=1

‖(I −Q)Ppi‖2 ≤
1

λmin(G)

n∑

i=1

‖(I −Q)Pψ̂i‖2.Let now qj , j = 1, · · · ,∞ be an orthonormal basis for Q. Analogously, we onlude that foreah ψ̂i, i = 1, . . . , n we have the estimate
‖(I −Q)Pψ̂i‖2 =

∞∑

j=1

|(qj , (I −Q)Pψ̂i|2

≤ ‖X−1‖2
∞∑

j=1

|(fj, (I −Q)Pψ̂i)|2

≤ ‖X−1‖2
∞∑

j=1,λj 6∈Λ
|(fj , ψ̂i)|2 .In this we have used the identity (A.1) and the fat that (I − Q)fj = 0 for j suh that

λj ∈ Λ. On the other hand, for a �xed i we ompute
‖r(µ̂i)[ψ̂i, ·]‖−1 = sup

φ∈H1
0 (Ω)\{0}

|r(µ̂i)[ψ̂i, φ]|
‖φ‖1

≥ c∗K sup
φ∈H1

0 (Ω)\{0}

|r(µ̂i)[ψ̂i, φ]|
‖A∗ 1/2φ‖

= c∗K‖A1/2ψ̂i − µ̂iA−1/2ψ̂i‖.We now estimate
‖A1/2ψ̂i − µ̂iA−1/2ψ̂i‖2L2(Ω) =

∞∑

j=1

|(ej,A1/2ψ̂i − µ̂iA−1/2ψ̂i)|2

=

∞∑

j=1

|(X−1X ej ,A1/2ψ̂i − µ̂iA−1/2ψ̂i)|2

≥ σmin(X−1)2
∞∑

j=1

|(X ej,A1/2ψ̂i − µ̂iA−1/2ψ̂i)|2

= σmin(X−1)2
∞∑

j=1

|(fj,A1/2ψ̂i − µ̂iA−1/2ψ̂i)|2

= σmin(X−1)2µ̂i

∞∑

j=1

|λj − µ̂i|2
λjµ̂i

|(fj , ψ̂i)|2

≥ σmin(X−1)2µ̂igap2(Ξ)
∞∑

i=1,λi 6∈Λ
|(fi, ψ̂i)|2 .The onlusion of the theorem now readily follows when we note that, for a bounded X witha bounded inverse, it holds σmin(X−1) = ‖X‖−1.
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