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Abstract

We present a time-dependent finite element model of the human knee
joint of full 3D geometric complexity together with advanced numerical
algorithms needed for its simulation. The model comprises bones, carti-
lage and the major ligaments, while patella and menisci are still missing.
Bones are modeled by linear elastic materials, cartilage by linear viscoelas-
tic materials, and ligaments by one-dimensional nonlinear Cosserat rods.
In order to capture the dynamical contact problems correctly, we solve
the full PDEs of elasticity with strict contact inequalities. The spatio–
temporal discretization follows a time layers approach (first time, then
space discretization). For the time discretization of the elastic and vis-
coelastic parts we use a new contact-stabilized Newmark method, while
for the Cosserat rods we choose an energy–momentum method. For the
space discretization, we use linear finite elements for the elastic and vis-
coelastic parts and novel geodesic finite elements for the Cosserat rods.
The coupled system is solved by a Dirichlet–Neumann method. The large
algebraic systems of the bone–cartilage contact problems are solved effi-
ciently by the truncated non-smooth Newton multigrid method.

Introduction

It is an old dream of virtual medicine to accompany orthopaedic surgery by
numerical simulations with the aim of finding optimal surgical strategies, in
particular before a challenging intervention. To be of real help in practical
surgery, detailed mathematical models are required. Such models have to in-
clude the full 3D geometry of individual patients as well as a full description
of the dynamics of joint motion. The present paper attacks this challenging
class of problems, focusing on the knee joint motion. Once this can be treated
successfully, other joints will follow.

As early as 1986, simple models for the patello–femoral joint were suggested
by van Eijden et al. [43] on the computational basis of multibody kinetics.
These models, however, were insufficient in view of the above-mentioned medical
purpose. Improved 2D multibody models were suggested by Abdel-Rahman and

∗Supported by the DFG Research Center Matheon, “Mathematics for key technologies”,
Berlin

1



Hefzy [2] in 1999 and by Machado et al. [29] in 2010. Such models may certainly
supply basic insight, but will not be reliable tools for backing patient-specific
surgical decisions. For this reason, more complex 3D finite element (FE) models
have been developed. In 2002, a static FE knee model was published by Donahue
et al. [11], who performed a careful analysis based on three nested uniform FE
meshes, the finest of which consisting of 14 050 hexahedral elements. As a
substitute for a dynamical model, they studied a purely linear elastic model,
ignoring the viscoelastic nature of the cartilage, under 10 steps of incremental
boundary load going up to 800 N. In the same year, Penrose et al. [31] presented
an FE knee model, which integrated the dynamics numerically by means of
an explicit time integrator combined with a penalty function formulation, thus
weakening the non-penetration condition at contact.

In one or the other way, these models failed to reliably model the dynamics.
Furthermore, large computing times were needed despite the imposed simplifica-
tions (for example, 12–24 hours on an SGI Origin 2000 were reported in Penrose
et al. [31]). That is probably why some later models used the computationally
less challenging multibody framework again (see McLean et al. [30], who applied
an explicit RK4 integrator, but did not include any contact model at all). In
2001, Piazza and Delp [32] presented a rather simple six-body segment model
to capture the dynamics of the knee joint, but reported a rather poor consis-
tency with measured data. In 2004, Bei and Fregly [7] suggested a combination
of a multibody dynamics model with a spring model, a popular simplification
for elasticity. For the arising differential equations of motion they applied the
well-reputed implicit stiff integrator DASSL1. They presented a methodology for
incorporating deformable contact models of the tibio–femoral joint into a multi-
body dynamics framework, which included the articular surface geometry, the
calculation of distances between these surfaces, and a contact solver. However,
such contact models within multibody approaches ignore the PDE structure of
the problem. On the other hand, in [23, 24] numerical methods were introduced
that allowed the solution of small-strain contact problems as efficiently as linear
problems and without any regularization parameters.

This is the general situation where the present paper starts off. The model
we present aims at a patient-specific stress analysis, spatially resolved in full de-
tail and including the dynamics of the time-dependent knee joint motion. The
geometric model comprises the distal femur as well as the proximal tibia and
fibula bones, with the articular surfaces being covered by layers of cartilage.
Moreover, it contains cruciate and collateral ligaments. We model bones as lin-
early elastic materials and cartilage as thin, but nevertheless three-dimensional
layers of linearly viscoelastic Kelvin–Voigt materials. The contact between fe-
mur and tibia is formulated as a Signorini-type contact problem between two
Kelvin–Voigt materials, where strict non-penetration is imposed. We assume a
complete absence of friction.

The model here is an extension of the much simpler knee model presented
earlier in [25]. While that model already incorporated fully dynamic bone–bone
contact, the new model adds ligaments and viscoelastic articular cartilage. To
emphasize the progression beyond [25], the numerical experiment to be shown
at the end of this article is close to the one given there.

In its current state our model poses quite a few numerical challenges. We

1http://www.netlib.org/ode/ddassl.f
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Figure 1: Left: anatomy of a human knee joint (illustration taken from [44]).
Right: heterogeneous mathematical model. Note that the model includes carti-
lage layers, but not the menisci.

present a number of algorithms that have recently been developed and have
separately been shown to be efficient on simpler test examples. We verify here
that they work together efficiently when properly combined. On the discretiza-
tion side, these new methods include a contact-stabilized Newmark method
for the stable and reliable time discretization of dynamical contact problems,
and geodesic finite elements for the intrinsic, frame-invariant discretization of
Cosserat rod problems. For solving the discrete problems we combine a non-
linear Dirichlet–Neumann method for the coupled problem with the Truncated
Nonsmooth Newton Multigrid (TNNMG) method for the contact problems.

The paper is organized as follows. In Section 1, we define the complete
continuous, time-dependent, and heterogeneous knee model as a non-smooth
PDE problem with strict inequalities and coupling constraints. In Section 2, we
introduce time discretizations for the two different submodels. For bones and
cartilage we apply the contact-stabilized Newmark integrator [19, 22], whereas
for Cosserat rods we select an energy–momentum method [42]. In Section 3,
space discretizations for the various parts of the model are given. Bones and
cartilage are discretized using first-order Lagrangian finite elements, and the
contact conditions are treated with the mortar method. For the Cosserat rods,
geodesic finite elements are used, which greatly simplify the overall discrete rod
formulation, when compared to [42]. A fast solution algorithm for the coupled
spatial problems is given in Section 4. This combines a Dirichlet–Neumann
approach with a truncated non-smooth Newton multigrid methods [23, 24]. Fi-
nally, in Section 5, we test our algorithms by repeating the numerical experiment
from [25] now with our improved model.

1 Continuous Time-Dependent Knee Model

We begin by introducing the time- and space-continuous knee model. The dy-
namics of the joint is modeled as a heterogeneous time-dependent contact pro-
blem. First we describe the mathematical model for bones and cartilage. Then
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ΩFeB distal femur bone
ΩFeC cartilage on femur
ΩFe := ΩFeB ∪ ΩFeC distal femur + cartilage
ΩTiB proximal tibia bone
ΩTiC cartilage on tibia
ΩTi := ΩTiB ∪ ΩTiC proximal tibia + cartilage
ΩFi proximal fibula
ΩBo := ΩFeB ∪ ΩTiB ∪ ΩFiB femur, tibia, and fibula bone
ΩCa := ΩFeC ∪ ΩTiC cartilage on femur and tibia
Ω := ΩBo ∪ ΩCa bones and cartilages of femur, tibia, and fibula
ΓD := ΓFe,D ∪ ΓTi,D ∪ ΓFi,D Dirichlet boundaries of femur, tibia, and fibula
ΓN := ΓFe,N ∪ ΓTi,N ∪ ΓFi,N Neumann boundaries of femur, tibia, and fibula
ΓFe,C, ΓTi,C contact boundaries of femur and tibia

Table 1: Notation for bones and cartilage

we present a model for ligaments, and show how the two can be combined.

1.1 Bones and Cartilage

We consider a mechanical system consisting of three deformable continua, which
model the distal femur, and the proximal tibia and fibula (Figure 1). With each
of them we identify the closure of an open, connected domain in R3. These
domains are supposed to be disjoint. The femur and tibia domains are further
supposed to be partitioned into two subdomains each, one for the bone proper,
and one for the articular cartilage. The detailed notation for these domains is
collected in Table 1.

We assume the domain boundaries to be piecewise once differentiable. Then
an outward unit normal vector ν exists almost everywhere. The femur and tibia
boundaries consist of three disjoint parts each, on which we will prescribe con-
tact, Dirichlet, or Neumann conditions. In particular, the contact boundaries
of femur and tibia are those parts of the cartilage boundaries without intersec-
tion with the bone boundaries. The fibula boundary is only partitioned into
Dirichlet and Neumann boundaries. In Section 1.3, additional patches for the
ligament insertions will be introduced.

We want to describe the time evolution of a knee model in a time interval
[0, T ]. The deformation of the ensemble of bones and cartilage is denoted by
a time-dependent displacement function u : Ω × [0, T ] → R3. We assume the
bones and cartilage to undergo small strains and small rotations only. Hence,
strain can be measured by the linearized second-order strain tensor ε(u) :=
1
2

(
∇u + (∇u)T

)
. The corresponding stress tensor is denoted by σ. We model

the bones by a linear elastic material law

σB(u, x) := E(x) : ε(u) , x ∈ ΩBo,

and the cartilage layers by a linear viscoelastic Kelvin–Voigt law

σV(u, u̇, x) := E(x) : ε(u) + V(x) : ε(u̇) , x ∈ ΩCa,

where a superposed dot denotes the derivative with respect to time. The elastic-
ity and viscosity tensors E and V may implement anisotropic and x-dependent
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Figure 2: The geometry of the contact problem

behavior, as long as they are sufficiently smooth, bounded, uniformly positive
definite in x, and show the usual symmetry properties. The ‘:’-symbol denotes
the contraction of two tensors.

Using conservation of linear momentum we obtain the standard strong for-
mulation of the equations of motion

ρü− divσ = −ρgz, in Ω, t ∈ [0, T ], (1)

where ρ is the material density, g is the gravitational acceleration, and z a unit
vector pointing in the direction of negative gravity. To obtain a well-posed
problem we need to prescribe initial conditions

u(x, 0) = u0(x) and u̇(x, 0) = u̇0(x) for all x ∈ Ω,

and boundary conditions

u(x, t) = uD(x, t) x ∈ ΓD, t ∈ [0, T ] (2a)

∂u

∂ν
(x, t) = uN (x, t) x ∈ ΓN , t ∈ [0, T ]. (2b)

In our context, prescribed surface tractions uN may model, e.g., the interaction
of muscle forces with the joint.

Finally, we need to specify the relation between femur and tibia. We model
this as a contact problem, i.e., femur and tibia are allowed to move freely with
respect to each other, but they may not interpenetrate. Note that, since the
relevant parts of femur and tibia are covered with cartilage layers, we are actually
dealing with a contact problem for these layers.

For the mathematical modeling we exploit the simplifying assumption that
strains are small. Additionally we assume that there is little tangential motion
at the contact boundaries. This leads to the well-known Signorini conditions for
contact problems [12, 18]. On the contact boundaries ΓFe,C and ΓTi,C of femur
and tibia cartilage, let there be a bijective and smooth mapping

φ : ΓFe,C → ΓTi,C ,

which identifies a priori the two contact boundaries with each other (Figure 2).
We call φ a contact mapping. With respect to this contact mapping we define
the reference gap function between the cartilage

g : ΓFe,C → R , g(x) := |x− φ(x)| ,
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and the relative displacement in normal direction

[u(x, t) · ν]φ :=
(
uFe(x, t)− uTi(φ(x), t)

)
· ν(x) , x ∈ ΓFe,C, t ∈ [0, T ] . (3)

The linearized non-penetration condition is then

[u(x, t) · ν]φ ≤ g(x) , x ∈ ΓFe,C , t ∈ [0, T ] . (4)

We now write the strong time-dependent contact problem in a variational
form. For any open subset U of R3 let L2(U) be the space of square-integrable
functions on U and we define L2(U) := (L2(U))3. The usual first order Sobolev
space is denoted by H1. Its dual space is (H1)∗, and for the dual pairing the
notation 〈·, ·〉H1 is used. We denote by H1

D the set of H1-functions that satisfy
the Dirichlet conditions in the sense of traces.

Let the bilinear form

a(v,w) :=

∫
Ω

ε(v) : E(x) : ε(w) dx , v,w ∈ H1(Ω)

define the elastic energy of the bones and cartilage and

b(v,w) :=

∫
ΩCa

ε(v) : V(x) : ε(w) dx , v,w ∈ H1(ΩCa) (5)

the viscous contribution in the cartilage. Both bilinear forms are bounded in
H1. We extend b(·, ·) to functions defined on Ω by integrating over all of Ω in
(5) and setting V(x) = 0 in Ω \ ΩCa.

If uN (·, t) ∈ (H1/2)∗(ΓN ) for almost every t ∈ [0, T ], the external forces are
represented by the linear functional

fext(v) := −
∫

Ω

ρgzv dx+ 〈uN ,v〉H1/2(ΓN ) , v ∈ H1(Ω) , (6)

where the dual pairing is to be understood in the sense of traces. The external
forces consist of gravity in form of a volume force, and of Neumann data uN ,
which can be used, e.g., to model the soft tissue influence.

To the combined elastic and external forces we associate an operator F :
H1(Ω)→ (H1)∗(Ω), defined by

〈F(w),v〉H1 := a(w,v)− fext(v) , v,w ∈ H1(Ω) .

Likewise, we associate an operator G : H1(Ω) → (H1)∗(Ω) to the viscoelastic
forces by setting

〈G(w),v〉H1 := b(w,v) , v,w ∈ H1(Ω) .

Both operators F and G are continuous.
The linearized nonpenetration condition (4) restricts the set of possible solu-

tions. For a given gap function g ∈ H1/2(ΓFe,C) we define the set of admissible
displacements

K :=
{
v ∈ H1

D(Ω)
∣∣ [v · ν]φ ≤ g a.e. on ΓFe,C

}
⊂ H1(Ω). (7)

6



Figure 3: Kinematics of a Cosserat rod

The set K is closed and convex, and has the characteristic functional

IK : H1(Ω)→ R ∪ {∞}, IK(u) =

{
0 if u ∈ K
∞ else .

With this additional notation, the time-dependent contact problem (1), (2), (4)
can be formulated as the variational inclusion

0 ∈ ρü + F(u) + G(u̇) + ∂IK(u), (8)

where ∂IK is the subdifferential of IK (see, e.g., [13]).
As shown, for instance, in [3], the unilateral contact problem between a

viscoelastic body and a rigid foundation has at least one weak solution. However,
uniqueness of solutions for general dynamical contact problems is still an open
question.

Remark 1.1. Note that we can intersect K with more sets of similar construction,
to model further contact conditions or rigid couplings.

1.2 Ligaments as Cosserat Rods

Our model of the human knee contains four major ligaments, namely the ante-
rior and posterior cruciate ligaments (ACL and PCL, resp.), and the lateral and
medial collateral ligaments (LCL and MCL, resp.) (Figure 1). These are mod-
eled by one-dimensional Cosserat materials (see, e.g., [42]), in order to reduce
the model complexity and avoid meshing problems later on. This approach was
first used in [35].

A Cosserat rod is a three-dimensional body that can be described by a con-
tinuous curve and a collection of two-dimensional planar cross-sections. Under
load, the cross-sections remain unchanged in shape, but not necessarily normal
to the deformed curve (Figure 3). Hence the motion of a rod in a time interval
[0, T ] is described by a function

ϕ : [0, l]× [0, T ]→ R3 × SO(3)

ϕ(s, t) = (r(s, t), R(s, t)),

where SO(3) is the special orthogonal group, i.e., the group of all matricesR with
RT = R−1 and positive determinant. For a simpler notation we additionally
introduce the space SE(3) := R3 × SO(3) of orientation-preserving rigid-body
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motions in R3 (the special Euclidean group). Elements of SE(3) will be written
as (r, R).

We single out one static configuration ϕ0 : [0, l] → SE(3) and call it the
reference configuration. For simplicity we assume that in the reference configu-
ration ϕ0 the centerline is parametrized by arc length. We do not assume that
the reference configuration is identical to the rod configuration at time t = 0.

It is customary to interpret the columns of the matrix R(s, t) as an orthog-
onal frame of unit vectors d1, d2, d3, of which the first two span the plane of
the cross section. The orientation R0(s) = (d0

1|d0
2|d0

3) in the reference config-
uration is chosen such that d0

1 and d0
2 are directed along the principal axes of

the cross-section.
We assume that the reference configuration ϕ0 is provided with a positive

mass density function Aρ(s) > 0, which we interpret as the three-dimensional
mass density integrated over the cross-sections. We also postulate the existence
of a field of positive definite (uniformly in s) 3×3 rotatory inertia tensors I0(s) in
the reference configuration. From this results a time-dependent rotatory inertia
field

iρ(s, t) = R(s, t)Iρ(s)R
T (s, t)

=

2∑
α,β=1

Iαβρ (s)dα ⊗ dβ + I33
ρ (s)d3 ⊗ d3

of the rod. The coefficients Iαβρ (s), 1 ≤ α, β ≤ 2 correspond to the moments
of inertia of the cross-section located at s relative to the axes {d0

1,d
0
2} of the

body frame. Similarly, the coefficient I33
ρ (s) is interpreted as the polar moment

of inertia of the cross-section, relative to the body axis d0
3 [42].

The spatial velocity fields are given by

v = ṙ and Ṙ = ŵR = RŴ .

Here, a superposed hat denotes the skew-symmetric matrix ŵ associated to a
vector w ∈ R3 by the relation ŵc = w × c for all c ∈ R3. The vectors w and
W are the spatial and body angular velocities, respectively. Together with the
density function Aρ and the inertia tensors we can express the linear and angular
momenta as

p = Aρv and π = iρw = RIρW

via the Legendre transform.
A suitable strain measure for the rods is

(Γ, Ω̂) ∈ R3 × so(3) (Γ, Ω̂) = (R−1r′, R−1R′)− (R−1
0 r′0, R

−1
0 R′0),

where a prime denotes derivation with respect to s. It is easily verified that
rigid body transformations leave (Γ, Ω̂) invariant. The components of Γ and Ω
can be interpreted physically. The components Γ1 and Γ2 are the shear strains,
while Γ3 is the stretching strain. The components Ω1 and Ω2 are the bending
strains, and Ω3 the strain related to torsion.

The stress quantities dual to Γ and Ω are the total forces n : [0, l]→ R3 and
total moments (about r) m : [0, l] → R3 across each cross section. The strong
equations of motion of a dynamic Cosserat rod in a constant gravitational field
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can then be derived from the balance laws of linear and angular momentum
(see [42])

n′ −Aρgz = ṗ

m′ + r′ × n = π̇.
(9)

Here, z is again the unit vector in the direction of negative gravity. The equa-
tions can be supplemented with the usual Dirichlet- and Neumann-type bound-
ary conditions. However, in our knee model the rod boundaries are not true
boundaries but instead couple with the bones. We discuss suitable coupling
conditions in the next section.

As in standard continuum mechanics a material law links the internal forces
and moments to the strains. A Cosserat rod is called hyperelastic if there exists
an energy functional W (Γ,Ω) such that

n =
∂W

∂Γ
(Γ,Ω), m =

∂W

∂Ω
(Γ,Ω).

We use a diagonal linear elastic material, where

W (w, z) =
1

2

(
w
z

)T
W

(
w
z

)
, W = diag(A1, A2, A3,K1,K2,K3), (10)

with positive parameters Ai,Ki, i = 1, 2, 3. These parameters can be interpreted
as follows [17]. Let |A(s)| be the surface area of the cross-section at s. Then

A1 = A2 =
E

(2 + 2ν)
|A|, A3 = E|A|

with Young’s modulus E and the Poisson ratio ν ∈ (0, 1
2 ). Further,

K1 = EJ1, K2 = EJ2, K3 =
E

(2 + 2ν)
J3,

where J1 and J2 are the second moments of area of the cross-section and J3 =
J1 + J2 is the polar moment of inertia. These moments describe how the shape
of the cross-section influences the deformation behavior of the rod.

The equilibrium equations (9) have a weak formulation. LetQ := H1([0, l],R3×
SO(3)) denote the (nonlinear) set of rod configurations. We introduce the linear
space Y of test functions

Y := H1([0, l],R3 × so(3)).

Admissible variations to a configuration ϕ = (r, R) ∈ Q span the tangent space
TϕQ in the sense that

TϕQ := {(r + u, θ̂R) : (u, θ) ∈ Y }.

Formally, the dynamic weak formulation of the momentum equations is con-
structed by taking the dot product of (9) with a test function in Y , integrating
over [0, l] and using the divergence theorem [42]. The result is∫ l

0

[π̇ · µ+ ṗ · η] ds+

∫ l

0

[n · (η′ − µ× r′) + m · µ′] ds = −
∫ l

0

Aρgzη ds (11)

for any test function (η, µ̂) ∈ Y .
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Figure 4: The model of the medial collateral ligament (MCL) and the femur
and tibia bones in the initial configuration. Shown is a discretization with fairly
coarse finite element grids.

1.3 Coupled Bone–Ligament System

In the previous section we have hardly mentioned the boundary conditions for
the rod problems. In our model, they appear in the form of coupling conditions
that connect the rods to the bone models. The coupling conditions result from
a heuristic dimensional reduction of the corresponding conditions for two three-
dimensional object [35, 37]. A more rigorous analysis is given in [39].

In the following, let L stand for any one of the four ligaments in our knee
model, viz. L ∈ {ACL,PCL,MCL,LCL}. The corresponding Cosserat rod is
described by a configuration function

ϕL : [0, lL]× [0, T ]→ SE(3).

Each ligament connects two bones. In particular, the ACL, PCL, and MCL
connect the femur to the tibia, and the LCL connects the femur to the fibula.
Therefore, on the femur we mark four (relatively) open disjoint subsets of the
boundary, and call them ΓFe,L, with L ∈ {ACL,PCL,MCL,LCL}. Similarly,
we mark three coupling patches on the tibia boundary and one on the fibula
boundary. These patches are not expected to be flat, even though they will be
coupled to the Cosserat rods, whose ends are modeled by flat cross-sections.

For each of the four rods ϕL let the left boundary {0} of its parameter
domain [0, lL] be the proximal end, and the right boundary {lL} the distal end.
If ϕL connects bone A to bone B we set the initial configuration ϕL(·, 0) =
(rL(·, 0), RL(·, 0)) as

rL(s, 0) =
1− s
|ΓA,L|

∫
ΓA,L

x dx+
s

|ΓB,L|

∫
ΓB,L

x dx

(with |ΓA,L|, |ΓB,L| the areas of the patches ΓA,L, ΓB,L, resp.), and RL(s, 0) con-
stant and such that d3(s, 0) is parallel to the line segment traced out by rL(·, 0).
This is illustrated in Figure 4. For each rod we set a reference configuration

ϕ0,L = (r0,L, R0,L), r0,L(s) = (0, 0, s)T , R0,L(s) = Id.
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This is the state where the rod is stress-free. It cannot be realized anatomically,
i.e., without detaching the ligament from the bone. In general, the ligament
length in the stress-free reference configuration is shorter than in the initial
configuration

lL <

∣∣∣∣ 1

|ΓA,L|

∫
ΓA,L

x dx− 1

|ΓB,L|

∫
ΓB,L

x dx

∣∣∣∣.
This length difference is the so-called pre-strain, which is a model parameter.
It leads to a constant tensile stress in the direction of d3 in the rods at t = 0.

It is known from general domain decomposition theory that a coupling prob-
lem for two second-order equations requires coupling conditions for the primal
and the dual variables [34]. In our case the primal variables are the displace-
ments u of the continua, and the position r and orientation R of the rod cross-
sections. The dual variables are the stresses σ in the continua and force and
torque vectors n,m of the rods.

We begin with the conditions for the primal variables. Let Γ be one of the
ligament insertion patches, u the deformation function of the corresponding
bone, and ϕ the configuration of the rod attached at Γ. Without loss of gen-
erality we assume that ϕ attaches to Γ at the proximal end, i.e., at s = 0. We
first require that the position of the center line be the average position of the
deformed coupling boundary Γ for all t ∈ [0, T ]

r(0, t) =
1

|Γ|

∫
Γ

(u(x, t) + x) dx. (12)

To derive a coupling condition for the cross-section orientations we first define
the average deformation of the interface Γ at time t

F(u, t) :=
1

|Γ|

∫
Γ

∇(u(x, t) + x) dx.

In the regime of linear elasticity this is a regular matrix. We can use the polar
decomposition to split the average deformation into a rotation and a stretching
part

F(u, t) = polar(F(u, t))H(u, t),

and we call the orthogonal matrix polar(F(u, t)) the average orientation of the
interface under u. If the bones are in the initial configuration, i.e., u ≡ 0, then
polar(F(u)) = Id. At the same time, the orientation of the corresponding rod
cross section is R(0, 0). Having a rigid junction means that this relative orien-
tation is preserved for all times. Hence we postulate the orientation coupling
conditions

polar(F(u, t))R(0, 0) = R(0, t) (13)

for all t ∈ [0, T ].
To get a well-defined system of equations we also need to find coupling

conditions for the dual variables σ,n,m. These can be derived by requiring
that the total force and moment transmitted across the interface be preserved.
We obtain ∫

Γ

σ(u)ν ds = −n(0)ν0∫
Γ

(x− r(0))× (σ(u)ν) ds = −m(0)ν0,

(14)
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where ν denotes the unit outer normal of the interface Γ, and ν0 = −1 is the
unit outer normal of the rod parameter domain [0, lL] at s = 0 [35, 37].

2 Time Discretizations

In this section, we describe the time discretization for the dynamic coupled
problem. As the two submodels show very different features we use different
time integrators for each of them. The result is a sequence of coupled continuous
problems. Hence we are in the framework of the method of time layers, also
known as Rothe’s method [9]. The discretization in space will be dealt with in
Chapter 3.

2.1 Contact-Stabilized Newmark Method for Bones and
Cartilage

When constructing a time-stepping method for the dynamic contact problem (8),
the challenges are to maintain energy conservation or at least dissipativity, and
to avoid numerical artifacts such as the flutter observed in [10, 19]. We achieve
both by a Newmark method enhanced with a contact-stabilization step.

Let the time interval [0, T ] be subdivided by N4 + 1 discrete time points
0 = t0 < t1 < · · · < tN4 = T . We call τ the time step size, and assume that it
is constant purely for simplicity of notation.2

Let n ∈ N be the iteration number. The discrete quantities un and u̇n are
assumed to be algorithmic approximations of the displacement u(tn) and the
velocity u̇(tn), respectively. The underlying concept of the contact-stabilized
Newmark discretization are Taylor expansions of displacements and velocities,
and a fully implicit treatment of the contact forces. Algorithmically, we ob-
tain a predictor–corrector-type method where a single predictor step for the
displacements un+1

pred is followed by corrector steps for the displacements un+1

and velocities u̇n+1

0 ∈ un+1
pred −

(
un + τ u̇n

)
+ ∂IK

(
un+1

pred

)
(15a)

0 ∈ un+1 − un+1
pred +

τ2

2

(
F
(un + un+1

2

)
+ G

(un+1 − un

τ

)
+ ∂IK

(
un+1

))
(15b)

u̇n+1 =
un+1

pred − un

τ
− τ
(
F
(un + un+1

2

)
+ G

(un+1 − un

τ

)
− Fcon

(
un+1

))
.

The contact forces Fcon(un+1) are defined by

τ2

2

〈
Fcon(un+1),v

〉
H1 :=

〈
un+1 − un+1

pred +
τ2

2

[
F
(un + un+1

2

)
+ G

(un+1 − un

τ

)]
,v
〉
H1
, v ∈ H1 .

In each time step, the method requires the solution of the nonlinear varia-
tional inclusion (15b), which is equivalent to a constrained, quadratic, convex
minimization problem.

2An adaptive time step control for the contact-stabilized Newmark method has been pre-
sented in [19, 22].
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Theorem 2.1. The variational inclusion (15b) is equivalent to the minimiza-
tion problem

un+1 = arg min
v∈K

[1

2
g(v,v)− τ2fext(u

n + v)
]

(16)

where

g(v,v) =
∥∥v−un+1

pred

∥∥2

L2
+τ2a

(un + v

2
,
un + v

2

)
+
τ

2
b
(v − un

τ
,
v − un

τ

)
, (17)

and K is given by (7).

The proof is based on the theory of [13, Chap. 5]. The constrained mini-
mization problem (16) has the same structure as a static contact problem in
linear elasticity [46, 47]. Its solution is the most expensive part of the Newmark
scheme.

The term ∂IK
(
un+1

pred

)
in the predictor step (15a) is the aforementioned con-

tact stabilization. It turns out that the variational inclusion (15a) can equiva-
lently be written as the convex minimization problem

un+1
pred = arg min

v∈K

1

2

∥∥v − (un + τ u̇n)
∥∥2

L2
. (18)

As K only restricts values on the contact boundary, un + τ u̇n and its L2-
projection onto K only differ on a set of measure zero. Hence, in a Lebesgue-
space setting, the projection (18) is void. However, the same projection in a
finite element space will be the key factor in avoiding numerical oscillations [10,
19].

Compared to classical Newmark schemes for contact problems, the contact-
stabilized variant has various advantages concerning momentum conservation
and energy behavior. First of all, the linear momentum of the system is pre-
served by the discretized system.

Theorem 2.2 (Linear momentum conservation [19]). The contact-stabilized
Newmark method conserves the linear momentum if fext = 0 and ΓD = ∅.

Conservation of the angular momentum cannot be expected, because, due to
the linearized contact conditions, not even the continuous contact problem (8)
conserves the angular momentum [19, 28].

The implicit handling of the non-penetration constraints leads to energy
dissipativity of the discrete evolution in the presence of contact. In the absence
of contact, the algorithm is even energy conserving, if the viscous energy is taken
into account.

Theorem 2.3 (Energy dissipativity [19]). Assume that fext = 0. If un+1
pred and

un+1 are not in contact, i.e., if [un+1
pred ·ν]φ < g and [un+1 ·ν]φ < g a.e. on ΓFe,C,

then the contact-stabilized Newmark method is energy conserving (including the
viscous energy). If un+1

pred and un+1 are only in contact where un has already

been in contact, i.e., if [un+1
pred · ν]φ = [un+1 · ν]φ = g a.e. on Γ̃ ⊂ ΓFe,C where

[un · ν]φ = g a.e., then the algorithm is also energy conserving. Otherwise, the
algorithm is energy dissipative.
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In the unconstrained case, the Newmark scheme is well-known to be second-
order consistent (see, e.g., [16]). In the case of contact constraints, however, the
question of consistency requires a novel regularity assumption on the solution
and its derivatives because of the discontinuities at contact interfaces. For a
function tuple (v, v̇) : [t, t + τ ] → H1 × L2 with v̇ ∈ L2((t, t + τ),H1), define
the physical energy norm [20]

‖(v, v̇)‖2E(t,τ) :=
1

2

∥∥v̇(t+ τ)
∥∥2

L2
+

1

2
a
(
v(t+ τ),v(t+ τ)

)
+

t+τ∫
t

b
(
v̇(s), v̇(s)

)
ds .

It may be interpreted as the sum of the kinetic energy, the potential energy, and
a viscoelastic part. In the following theorem, the continuous evolution operator
Φ̄ = (Φ, Φ̇) represents the state of a continuous solution (u, u̇) and Ψ̄ = (Ψ, Ψ̇)
denotes the discrete evolution operator. TV(v, [t0, T ],V) is the variation of a
function v : [t0, T ]→ V, and BV([t0, T ],V) means the set of all functions from
[t0, T ] into V that have bounded variation [40].

Theorem 2.4 (Consistency error [19]). Let u̇ ∈ BV
(
[t, t + τ ],H1

)
and ü ∈

BV
(
[t, t + τ ], (H1)∗

)
. Then, for initial values un = u(t) and u̇n = u̇(t), the

consistency error of the contact-stabilized Newmark method satisfies∥∥Ψ̄− Φ̄
∥∥
E(t,τ)

= R(u, [t, t+ τ ]) ·O
(
τ1/2

)
,

where

R(u, [t, t+ τ ]) := TV
(
u, [t, t+ τ ],H1

)
+ TV

(
u̇, [t, t+ τ ],H1

)
+ TV

(
ü, [t, t+ τ ], (H1)∗

)
.

A detailed analysis of the contact-stabilized Newmark method can be found
in [10, 19, 21].

2.2 Energy–Momentum Method for Cosserat Rods

For the time-dependent Cosserat rod problems, the main difficulty is the non-
linearity of the configuration space Q. We use the Energy–Momentum Method
originally introduced by Simo and Tarnow for nonlinear elastodynamics [41],
and applied to Cosserat rods in Simo et al. [42]. In this section we review only
the actual time discretization. Our space discretization, which is quite different
from the one used by Simo et al., is presented in Chapter 3.3.

Let again the time interval [0, T ] be subdivided by the points 0 = t0 < t1 <
· · · < tN4 = T and let τ denote the time step size, for simplicity assumed to
be constant. Let ϕn = (rn, Rn) and ϕn+1 = (rn+1, Rn+1) denote the configu-
rations of the rod at times tn and tn+1, respectively.

To discretize the weak time-dependent rod problem (11) we first replace r
by its average over two time steps rn+1/2 := 1

2 (rn+1 + rn), and the stresses
n and m by suitable algorithmic approximations ñ and m̃, respectively, to be
specified later. Plugging these into (11), and replacing the time derivatives by
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forward differences, we obtain the following semi-discrete weak problem

1

τ

∫ l

0

(πn+1 − πn) · µ+ (pn+1 − pn) · η ds

+

∫ l

0

ñ · (η′ − µ× r′n+1/2) + m̃ · µ′ ds = −
∫ l

0

Aρgzη ds, (19)

which must hold for all test functions (η, µ̂) ∈ Y .
This system is now reformulated as an equation for two update variables δ :

[0, l]→ R3 and θ : [0, l]→ so(3) for the positions and orientations, respectively.
The dependencies of δ and θ on the iteration number n is omitted for simplicity
of notation. We introduce the Cayley transform cay : so(3)→ SO(3) given by

cay θ̂ = Id +
1

1 + 1
4‖θ‖2

[
θ̂ +

1

2
θ̂2
]
,

and note for later use that its inverse is given by

cay−1R = 2(R+ Id)−1(R− Id). (20)

We then define the increments as

δ :=
τ

2
(vn+1 + vn) and θ :=

τ

2
(wn+1 + cay[θ]wn). (21)

The implicit definition of the rotation update θ results from the midpoint ap-
proximation of the body angular velocities θ = RnΘ = Rn τ2 (Wn+1 − Wn).
Given increments δ and θ and a configuration at time step n, a new configura-
tion at time step n+ 1 can be computed by

rn+1 = rn + δ and Rn+1 = cay[θ]Rn. (22)

This time discretization scheme conserves the linear and angular momenta
if the external forces vanish [42, Prop. 3.1]. Energy is conserved exactly if the
algorithmic stresses ñ and m̃ are chosen properly. For the following theorem
denote by WΓ and WΩ the upper and lower 3 × 3 diagonal blocks of the rod
material matrix W defined in (10).

Theorem 2.5 (Energy conservation [42]). Let the material law be linear elastic
in the sense that there are matrices WΓ and WΩ such that N = WΓΓ and M =
WΩΩ, and let the external loading be independent of ϕ. Then the algorithmic
system (19) and (21) conserves the energy if the algorithmic spatial stresses are
given by

Ñ =
1

2
WΓ(Γn+1 − Γn), M̃ =

1

2
WΩ(Ωn+1 −Ωn),

and the algorithmic body stresses are linked to the spatial ones by

ñ = Rn+1/2Ñ, m̃ = det[Rn+1/2]R−Tn+1/2M̃, Rn+1/2 :=
1

2

(
Rn+1 +Rn

)
.

A construction for nonlinear material laws can be found in [42].
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To make the method applicable, we will now reformulate the semi-discrete
system (19) in terms of the displacement and rotation increments (δ, θ̂) ∈ Y .
Introduce the helper function

H(θ) :=
1

1 + 1
4‖θ‖2

(
Id +

1

2
θ̂
)

and note the relations (see [42])

det[Rn+1/2]R−Tn+1/2 = H(θ)Rn, Ωn+1 −Ωn = RTnH(θ)Tθ′.

Then, the dynamic part of (19) can be reformulated as

1

τ

∫ l

0

(πn+1 − πn) · µ+ (pn+1 − pn) · η ds

=
1

τ

∫ l

0

(
cay[θ]inρ cay[θ]T

(2

τ
θ − cay[θ]wn

)
− inρw

n
)
· µ ds

+
1

τ

∫ l

0

Aρ

(2

τ
δ − 2vn

)
· η ds

=: dynϕn [(δ,θ); (η,µ)]. (23)

Similarly, the potential part can be rewritten as∫ l

0

ñ · (η′ − µ× r′n+1/2) + m̃ · µ′ ds

=

∫ l

0

1

4
(cay[θ]Rn +Rn)WΓ

·
[
RTn cay[θ]T (δ′ + r′n)−RT0 r′0 + Γn

]
·
(
η′ − µ× 1

2
(δ′ + 2r′n)

)
ds

+

∫ l

0

H(θ)Rn
1

2
WΩ

[
RTnH(θ)Tθ′ + 2Ωn

]
· µ′ ds

=: potϕn [(δ,θ); (η,µ)]. (24)

For each configuration ϕn : [0, l] → R3 × SO(3), the forms dynϕn [ · ; · ] and
potϕn [ · ; · ] are nonlinear in their first arguments, and linear in the second ones.
The resulting system

1

τ
dynϕn [(δ,θ); (η,µ)] + potϕn [(δ,θ); (η,µ)] = −

∫ l

0

Aρgzη ds ∀(η, µ̂) ∈ Y

(25)

is a nonlinear equation for the variables (δ, θ̂) in the linear space Y , given
in a weak formulation. Implementation of the energy–momentum method for
Cosserat rods means solving (25) for each time step n, and using the update
formulas (22) to obtain the configuration at the next time step.

3 Finite Element Discretizations

The next step are the spatial discretizations of the different submodels. We
will start with finite elements on mixed simplex–prism grids for the bones and
cartilage, and then describe a mortar technique for the discretization of the
contact constraints. Geodesic finite elements will be used for the discretization
of the Cosserat rod equations.
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Figure 5: Combined simplex–prism grid for the tibia and its articular cartilage,
after one step of refinement

3.1 Discretization of Bones and Cartilage

The two domains ΩFe and ΩTi both model linear elastic bones together with
linear viscoelastic cartilage layers. To properly capture the distinct material
behaviors we have to resolve the bone–cartilage interface with the grids. This
problem needs special treatment, because the cartilage layers can be very thin.

In the following we focus on the femur and its cartilage layer only. The tibia
is treated analogously, while the fibula, which in our model does not have a
cartilage layer, will simply be discretized by a standard simplicial grid.

Let ΩFe = ΩFeB ∪ ΩFeC be the domain of the femur grid and its cartilage
layer. We construct a grid for ΩFe by first building a simplicial conforming
grid GFeB for ΩFeB. The curved boundaries are approximated by triangular
surfaces, and we assume that these surfaces resolve the Dirichlet and Neumann
boundaries.

The grid GFeB induces a two-dimensional simplicial trace grid GΓFe on the
bone–cartilage interface ΓFe. To construct a grid for the cartilage domain ΩFeC,
we first compute the average outer normals of ΓFe at the vertices of GFe. We
then create a copy of GΓFe

by moving it along the normals onto the outer bound-
ary of ΩFeC. The two two-dimensional grids are connected by edges along the
normal direction. The result is a three-dimensional grid for the cartilage layer,
consisting of a single layer of prism elements (Figure 5, and Figure 6, left).

Remark 3.1. It is still a difficult problem to properly segment cartilage layers
from medical images, and hence to obtain accurate geometries for the carti-
lage layers ΩFeC and ΩTiC. It is easier to work with a cartilage layer thickness
function, which may be measured or taken from the literature. Then, algorith-
mically, the cartilage domains (and not just the grids) are constructed by the
above procedure, using the layer thickness to construct the outer copy of GΓFe .

The grids thus constructed should be fairly coarse, because for a good multi-
grid hierarchy we want to perform several steps of uniform and/or adaptive re-
finement to obtain the grids used to actually discretize the PDEs. Creating the
final grids by successive steps of refinement of a coarse grid leads to problems
with the boundary approximation, however. Bone geometry taken from medical
image data is usually available in much more detail than what can be resolved
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Figure 6: Improving the quality of the cartilage grid after refinement with
a boundary parametrization. Left: coarse prism grid with parametrizations
(dashed lines) at the outer boundary and at the bone–cartilage interface. Cen-
ter: refining the cartilage grid and using the parametrization to place the new
boundary vertices produces a low-quality grid. Right: placing the interior ver-
tices at uniform distances along their respective “columns” repairs the grid.

by the coarsest grid. To keep all the geometric information we use the simplifi-
cation algorithm described in [26] to obtain boundary parametrizations. These
are then used to move new boundary vertices created during refinement onto the
original high-resolution surface obtained from image segmentation. The result
is a piecewise linear grid boundary that approaches a high-resolution boundary
as it is refined.

While the use of parametrized boundaries leads to big improvements in the
approximation of the geometry, it also leads to problems with the mesh qual-
ity. In particular, the grids of the thin cartilage layers get corrupted easily when
displacing vertices on the cartilage boundary (Figure 6). To cope with the situa-
tion we have implemented the following grid improvement algorithm. First note
that we have a boundary parametrization only on the grid–cartilage interface
(see Remark 3.1). We first create a properly scaled copy of this parametrization
on the opposite boundary of the cartilage layer. This will make the cartilage
boundaries “move in parallel” during refinement. To preserve the quality of
the grid elements we use the prism structure of the cartilage grid. Since the
grid vertices form columns over boundary vertices of the bone grid, we can
reposition all cartilage inner vertices to be at uniform distances within their
respective columns. This restores the grid quality from before the refinement
step (Figure 6, right).

After this rather involved treatment of the grids, the actual discretization
of the continuum mechanics equations (15) is straightforward. For each of the
three grids GFe = GFeB ∪GFeC, GTi = GTiB ∪GTiC, and GFi we use the first-order
Lagrange space Sh on that grid. If Dirichlet conditions are prescribed we denote
by Sh,D the affine subspace of Sh that fulfills these conditions.

3.2 Mortar Elements for Cartilage–Cartilage Contact

The discretization of the continuum problems is complicated by the nonpenetra-
tion condition (4). It is well known that a straightforward pointwise discretiza-
tion will lead to instabilities. Instead, mortar methods fulfill optimal discretiza-
tion error bounds and produce very satisfying results in practice [27, 46]. Mortar
methods for contact problems have been described in detail elsewhere [47]. Here
we only revisit them briefly for comprehensiveness.

Remember from Section 1.1 that we modeled the nonpenetration of the femur
and tibia bones and corresponding cartilage layers by conditions on the coupling
boundaries ΓFe,C and ΓTi,C. These were identified by a homeomorphism φ :
ΓFe,C → ΓTi,C, and the relative normal displacement [·]φ was defined in (3).
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Nonpenetration was then modeled by requiring that [u · ν]φ < g, where g :
ΓFe,C → R was a reference gap function.

The idea of the mortar method is to enforce the non-penetration constraint
in a weak form ∫

ΓFe,C

[u · ν]φ µds ≤
∫

ΓFe,C

gµ ds ∀µ ∈M, (26)

where the mortar space M is defined by

M :=
{
µ ∈ H−1/2(ΓFe,C)

∣∣∣ ∫
ΓFe,C

µv ds ≥ 0 ∀v ∈ H1/2(ΓFe,C)+
}
,

and H1/2(ΓFe,C)+ denotes the space of all traces on ΓFe,C that are positive
almost everywhere.

We first discretize the geometric objects in (26). A continuous discrete outer
unit normal field νh can be constructed by averaging over the incident triangle
normals to obtain vertex normals and then extending those linearly on the
boundary triangles. The discrete contact mapping φh is chosen to be the normal
projection of ΓFe,C onto ΓTi,C. Details on the efficient implementation of such
piecewise affine homeomorphisms can be found in [35, 38].

Finally, we discretize the mortar space M . We use dual mortar basis func-
tions for the discretization of the mortar space as proposed in [45]. These piece-
wise linear functions are discontinuous and fulfill the following biorthogonality
relation: Let T be a simplex, and let θq and ψp denote the dual and nodal basis
function of the corners p, q ∈ T , then∫

T

θqψpdx = δpq

∫
T

ψp dx. (27)

The discrete mortar space Mh is the positive cone spanned by the biorthogonal
basis functions θ

Mh :=
{
µh ∈ span

p∈ΓFe,C

θp

∣∣∣∣ ∫
ΓFe,C

µhvh ds ≥ 0 ∀vh ∈ Sh(ΓFe,C)+
}
,

where Sh(ΓFe,C)+ is the space of all first-order Lagrangian finite element func-
tions on ΓFe,C with positive coefficients. On the discretized domains, the weak
contact constraints therefore read∫

ΓFe,C

[vh · νh]φh
µh ds ≤

∫
ΓFe,C

ghµh ds ∀µh ∈Mh, (28)

with a suitable approximation gh of the reference gap function g. Consequently,
we obtain the set of discrete weakly admissible displacements

Kh :=
{

vh ∈ Sh,D

∣∣∣∣ ∫
ΓFe,C

[vh · νh]φh
µh ds ≤

∫
ΓFe,C

gh µh ds ∀µh ∈Mh

}
. (29)

Overall, the discrete spatial problem of the contact-stabilized Newmark inte-
grator then is: Given displacements unh and velocities u̇nh at time step n, find
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displacements un+1
h,pred, un+1

h and velocities u̇n+1
h such that

0 ∈ un+1
h,pred −

(
unh + τ u̇nh

)
+ ∂IKh

(
un+1
h,pred

)
(30a)

0 ∈ un+1
h − un+1

h,pred (30b)

+
τ2

2

(
F
(unh + un+1

h

2

)
+ G

(un+1
h − unh

τ

)
+ ∂IKh

(
un+1
h

))
u̇n+1
h =

un+1
h,pred − unh

τ
(30c)

− τ
(
F
(unh + un+1

h

2

)
+ G

(un+1
h − unh

τ

)
− Fcon

(
un+1
h

))
.

Remark 3.2. Note again that we can intersect Kh with more sets of similar
construction, to model further contact conditions or rigid couplings.

3.3 Geodesic Finite Elements for Cosserat Rods

The last ingredient is the space discretization of the weak spatial Cosserat rod
problem (25). Our discretization differs from the one given by Simo et al. [42].
In particular, it is much simpler and does not involve history variables.

To discretize the weak formulation (25), we need finite-dimensional approx-
imations for two spaces. Let [0, l] be the domain of a Cosserat rod. Both
the solution function and the test functions of (25) live in the linear space
Y = H1([0, l], R3 × so(3)). However, for the evaluation of the integrals in the
two forms ‘dyn’ (23) and ‘pot’ (24) we also need discrete approximations of the
current rod configuration ϕn : [0, l]→ R3 × SO(3).

Let G be a grid of [0, l], i.e., a set of points 0 = s0 < s1 < · · · < sn = l. The
elements of G are the intervals [si+1, si], i = 1, . . . , n − 1. Discretizing the test
function space Y is straightforward, since Y is a linear space. We use the space
of first-order finite elements

Yh =
{

(ηh, µ̂h) ∈ C([0, l],R3 × so(3)) | (ηh, µ̂h) linear on each [si+1, si]
}
.

Discretizing the space Q of rod configurations is more challenging, because the
space is nonlinear. Indeed, it has the structure of a nonlinear manifold. For
the discretization of such spaces, geodesic finite elements have been introduced
in [36].

Definition 3.1 (Geodesic finite elements). Let G be a grid on [0, l] and M a
Riemannian manifold. We call ϕh : [0, l]→M a geodesic finite element function
for M if it is continuous and, for each element [si, si+1] of G, ϕh|[si,si+1] is a
minimizing geodesic on M .

Geodesic finite elements for a manifold M are conforming in the sense that
they are contained in the Sobolev space H1([0, l],M). For M = R3 × SO(3),
the interpolation along geodesics, along with the necessary derivatives, can be
evaluated explicitly. Details are given in [36].

Using the new finite element spaces we can state the discrete problem. Let

V
SE(3)
h be the space of first-order SE(3)-valued geodesic finite elements with

respect to G, and let ϕnh ∈ V
SE(3)
h be the discrete rod configuration at time step
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n. The spatial discrete rod problem is then to find an increment (δh,θh) ∈ Yh
such that

1

τ
dynϕn

h
[(δh,θh); (ηh,µh)] + potϕn

h
[(δh,θh); (ηh,µh)] = −

∫ l

0

Aρgzηh ds (31)

for all test functions (ηh,µh) ∈ Yh. This problem is well-defined, because

V
SE(3)
h ⊂ H1([0, l],SE(3)). Note that the discretization retains all invariance

properties contained in the continuous model [36, Lem. 4.4].

4 Domain Decomposition Solvers

We have seen that after time discretization the spatial problem of the hetero-
geneous model consists of the variational inclusions (30) for the bone–cartilage
compounds, and variational equations (31) for each Cosserat rod. These prob-
lems are coupled by the contact condition (28), and the bone–ligament coupling
conditions (12)–(14). We now first present a domain decomposition algorithm
that solves the overall problem. Then we briefly comment on how to solve the
subdomain problems.

4.1 Dirichlet–Neumann Algorithm for the Bone–Ligament
System

The algorithm used to solve the coupled spatial bone–ligament problems is based
on a Steklov–Poincaré formulation. This means that we view only the interface
configurations as the independent variables, and we use an iterative method to
find the correct values for these interface variables. The overall solution then
follows from solving individual subdomain problems with the interface variables
as boundary conditions [34].

Since the bone–ligament coupling involves two different types of models there
is some choice for the interface variables. We pick the configurations of the rods
at their terminal cross sections. For each ligament L ∈ {ACL,MCL,PCL,LCL}
let λL,prox, λL,dist ∈ SE(3) denote the configurations of the proximal and the dis-
tal end, respectively. The Dirichlet–Neumann algorithm can then be interpreted
as a fixed-point iteration for the set of λL,prox, λL,dist, L ∈ {ACL,MCL,PCL,LCL}
in the space SE(3)

8
, the eight-fold Cartesian product of SE(3).

Each iteration of the Dirichlet–Neumann loop consists of three steps: a
Dirichlet problem for each of the rods, a contact problem for the three bones and
cartilage, with Neumann conditions at the coupling boundaries, and a damped
update along geodesics on SE(3)

8
. For each L, let λ0

L,prox, λ
0
L,dist ∈ SE(3) be

the initial interface values, k ≥ 0 the Dirichlet–Neumann iteration number and
n the time step number. In more detail, the steps are as follows.

1. Dirichlet problems for the Cosserat rods
Let λkL,prox, λ

k
L,dist ∈ SE(3), L ∈ {ACL,MCL,PCL,LCL} be the current inter-

face values. For each of the rods L solve the problem

1

τ
dynϕn

L,h

[
(δn,k+1

L,h ,θn,k+1
L,h ); (ηh,µh)

]
+ potϕn

L,h

[
(δn,k+1

L,h ,θn,k+1
L,h ); (ηh,µh)

]
= −

∫ lL

0

Aρgzηh ds (32)
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for all test function

(ηh, µ̂h) ∈ YL;h,0 := {yh ∈ YL;h | yh(0) = yh(lL) = 0}

with Dirichlet boundary conditions

δn,k+1
L,h (0) = (λkL,prox)r − rnL,h(0)

and
θn,k+1

L,h (0) = cay−1
[
(λkL,prox)R · (RnL,h(0))−1

]
,

and analogously for δn,k+1
L,h (lL) and θn,k+1

L,h (lL) coupling with λkL,dist. We have

used (λkL,prox)r and (λkL,prox)R to denote the translational and rotational parts

of λkL,prox ∈ SE(3). The definition of the inverse Cayley transform is given in
(20). The boundary conditions are chosen such that after applying the energy–
momentum update formulas (22) we get

ϕn,k+1
L,h (0) = λkL,prox and ϕn,k+1

L,h (lL) = λkL,dist.

2. Neumann problems for the continua
The new rod iterates ϕn,k+1

L,h exert resultant forces and moments across their
proximal and distal cross-sections onto the bones. Let L be one of the rods,
and let ΓFe,L be the coupling boundary corresponding to its proximal end on

the femur boundary. The resultant forces are nn,k+1
L (0)νL,prox and the resultant

moments are mn,k+1
L (0)νL,prox. The construction for the distal ligament ends

proceeds analogously. To be able to apply these resultant forces and moments
as a boundary condition on the continuum we construct a Neumann data field
τ k+1

Fe,L : ΓFe,L → R3 such that ∫
ΓFe,L

τ k+1
Fe,L dx = −nn,k+1

L (0)νL,prox

and ∫
ΓFe,L

(x− rn,k+1
L,h (0))× τ k+1

Fe,L(x) dx = −mn,k+1
L (0)νL,prox.

These are just the dual coupling conditions (14). The fields τ k+1
Fe,L are constructed

to be “as constant as possible”, by solving small constrained minimization prob-
lems (see [35, 37] for details).

We construct Neumann data fields τFe, τTi, τFi for the femur, tibia, and fibula
bones by superposition of the separate Neumann fields for the individual rods.
With the Neumann data fields available, we solve the three-dimensional linear
elastic contact problem (30) for resulting new displacements un,k+1

h and veloci-

ties u̇n,k+1
h , with Neumann data τFe, τTi, τFi.

3. Damped geodesic update
From the configuration un,k+1

h of the bones and cartilage computed in the pre-
vious step we can compute average displacements and orientations of the cou-
pling boundaries. Let Γ be any one of the ligament insertion patches. Using
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the primal coupling conditions (12) and (13) we compute the average interface
displacement and orientation

AvΓ(un,k+1
h ) :=

(
1

|Γ|

∫
Γ

(un,k+1
h (x) + x) dx, polarΓ(un,k+1

h )R0

)
,

where we have used R0 to denote the reference orientation of the rod at the
corresponding end.

It is well known even for the linear case that Dirichlet–Neumann methods will
only converge if properly damped [34]. However, the usual damping using an
affine combination between old and new iterates cannot be used here, because
the interface space is nonlinear. Instead, we damp along geodesics in SE(3). Let
θ > 0 be a damping parameter. The new interface values λk+1

L are then com-

puted as geodesic combinations in SE(3) of the old value λkL and AvΓ(un,k+1
h ),

λk+1
L = expλk

L
θ
[

exp−1
λk
L

AvΓ(un,k+1
h )

]
.

Fixed points of the Dirichlet–Neumann iteration solve the coupling condi-
tions (12)–(14) and the subdomain equations. Given such a fixed point Λ ∈
SE(3)

8
with associated subdomain solutions ũh and ϕ̃h, we set

un+1
h = ũh and ϕn+1

h = ϕ̃h

to obtain the solution of the coupled system at the next time step.

4.2 Subdomain Solvers

The expensive parts of the fixed-point loop of the previous section are the so-
lutions of the different subdomain problems. Of the two, the rod problems are
simpler to solve. After choosing a basis for the space Yh, each rod problem (32)
becomes a nonlinear algebraic system of equations not associated to a minimiza-
tion problem. Such a problem can be solved with a standard damped Newton
solver. Due to the one-dimensional nature of the rod grids, the Newton matrices
have a block-tridiagonal structure. Hence the linear correction problems can be
solved directly in linear time using the Thomas algorithm.

Solving the contact problems (30) is more involved. We first note that of
the three steps, the third one is straightforward, as it does not involve solving
an equation. Similarly to the space continuous case treated in Section 2.1, we
can show that the other two steps correspond to minimization problems

un,k+1
h,pred = arg min

vh∈Kh

1

2

∥∥vh − (unh + τ u̇nh)
∥∥2

L2
, (33)

and

un,k+1
h = arg min

vh∈Kh

[1

2
g(vh,vh)− τ2fext(u

n
h + vh)

]
, (34)

with g(·, ·) and fext given by (17) and (6), respectively. To efficiently solve the
first one we lump the mass matrix occurring in the algebraic formulation of
(33). Then, (33) decouples into individual 3× 3 convex quadratic minimization
problems with at most one linear inequality constraint each. In this form, (33)
can be solved exactly with a single block-Jacobi iteration.

23



Figure 7: Initial configuration of the numerical experiment

The second minimization problem (34) involves the energy norm g(·, ·).
We have shown in [15, 35] how the Truncated Nonsmooth Newton Multigrid
(TNNMG) method can be used to solve problems with this structure robustly
and efficiently. Key ingredient is a special transformation of the finite element
basis originally introduced in [47]. In this new basis, the constraints that form
the admissible set Kh decouple and we obtain a set of box constraints. The
basis transformation can be constructed cheaply by exploiting the biorthogonal-
ity (27) of the mortar basis functions. In the transformed basis, the TNNMG
method takes the following form:

1. Nonlinear Gauß–Seidel presmoothing,

2. one linear multigrid step restricted to the degrees of freedom not in con-
tact,

3. projection of the correction onto the admissible set,

4. line search.

For strictly convex, quadratic problem, the TNNMG method converges globally:

Theorem 4.1 ([14, Thm. 6.4]). Let J be a strictly convex, quadratic functional.
For any initial iterate, the Truncated Nonsmooth Newton Multigrid algorithm
converges to the unique minimizer of J in Kh.

After a finite number of steps the method degenerates to a linear multigrid
method, and hence converges with multigrid speed. That finite number of steps
is usually very low. A discussion and numerical experiments can be found in
[15, 35].

5 Numerical Experiment

In this section we want to demonstrate the performance of the discretizations
and solvers numerically. For this we revisit the benchmark problem of [25] with
our more elaborate model.
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In [25], we considered the motion of a knee model consisting only of proximal
femur and distal tibia bones. The model was subjected to an initial constant
downward velocity, and made to impact a rigid obstacle. The numerical results
of [25] showed how the tibia bone bounces off the obstacle and into the femur.
Simulations over longer times were not possible using that model, because the
bones, not being attached to each other at all, would fly apart after the first
impact. With our improved model this is no longer the case.

Model specification. Geometry data of the femur, tibia, and fibula bones
was taken from the Visible Human Data Set [1]. From the segmented image
data, high-resolution boundary surfaces of the bones were extracted. These
boundary surfaces were coarsened to a resolution suitable for multigrid coarse
grids. Together with the coarsening, we constructed parametrizations of the
original boundary surfaces over the coarse surfaces using the algorithm from [26,
38]. From the coarse boundary surfaces, tetrahedral grids were constructed
using the Amira3 grid generator. The resulting grids for femur, tibia, and fibula
bone had 3 787, 2 550, and 1 253 elements, respectively. The actual computations
were done on a hierarchy of grids obtained by two steps of uniform refinement.
The finest grids then had 242 368, 163 200, and 80 192 elements, respectively.

Using data from an anatomy book [33], we manually marked the areas on the
femur and tibia covered by articular cartilage. On these areas we then created
cartilage layers consisting of prism elements using the construction technique
introduced in Section 3.1. We used a constant layer thickness of 1.5 mm [48].
The cartilage grids on the femur and tibia contained 171 and 129 prism elements,
respectively. They were also twice uniformly refined, resulting in fine grids of
10 944 and 8 256 prism elements. All in all the bone and cartilage computational
grids consisted of 504 960 elements and 105 247 vertices.

Ligament insertion sites were also marked manually using generic data [33].
The initial ligament configurations were defined as in Section 1.3. We did not set
a pre-strain, to allow for a more visible movement of the knee joint. Ligaments
were modelled as to have a circular cross section with a radius of 5 mm. Each
ligament was discretized with a uniform grid with 20 elements.

As in [25], a rigid obstacle was placed 1 mm below tibia and fibula. Math-
ematically, this obstacle was modelled as an additional pointwise inequality
constraint on the vertices at the bottom of the model (cf. Remarks 1.1 and 3.2).
A set of weak equality constraints was added to couple the bottom ends of the
tibia and fibula together.

The entire initial configuration is illustrated in Figure 7. Initially, the entire
model moved downward with a constant velocity vector of (0, 0,−1) m/s. Out-
side of the contact and ligament insertion patches, we assumed homogeneous
Neumann boundary conditions everywhere. Additionally, all bones, cartilage,
and ligaments were subject to gravity.

Material parameters were taken from the literature. Realistic values for
the elasticity parameters of human bones can be found in [8]. Corresponding
values for ligaments and articular cartilage have been chosen on the basis of [44]
and [11], respectively. Unfortunately, no values for the viscosity parameters of
cartilage could be found in the literature; we use the same values as [19]. All
material parameters are summarized in Table 2.

3www.amira.com
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parameter symbol bone cartilage ligament
Young’s modulus E 17 GPa 10 MPa 330 MPa
Poisson ratio ν 0.3 0.4 0.3
shear/bulk viscosity µ — 10 MPa·s —

mass density ρ 2 g/cm
3

1 g/cm
3

1 g/cm
3

Table 2: Material parameters for bone, cartilage, and ligaments

Algorithmic specification. The implementation of the numerical solvers
was based on the Dune libraries4 [5]. Within Dune, the UG grid manager [4]
was used to handle the bone and cartilage grids. The module dune-grid-glue

[6] allowed for convenient coupling of the contact boundaries.
We simulated the evolution of the model over a time interval [0 s, 10−3 s].

This is long enough to include both the first impact onto the foundation and
the subsequent contact between femur and tibia. We split the interval into
100 time steps. The resulting time step size τ = 10−5 s was small enough such
that each contact phase was well resolved.

We set the Dirichlet–Neumann damping parameter θ to 0.6, which has been
found to be the optimal value for the corresponding static problem [37]. The
Dirichlet–Neumann algorithm was set to iterate until the infinity norms of the
relative ligament and bone corrections dropped below 10−4. In each iteration
the algebraic contact problem was solved using the TNNMG method with a
multigrid V (3, 3)-cycle as linear correction. The TNNMG solver was set to
iterate until the relative correction was less than 10−5 in the energy norm. This
was the largest value that could be used without noticeably changing the energy
behavior of the overall knee model. The cheap ligament problems were solved
up to machine precision with a damped Newton solver.

Numerical findings. Figure 8 illustrates the evolution of the displacements
and the distribution of the von Mises stresses in the bones and cartilage at
various points in time. The first stresses arise when the fibula and tibia hit the
rigid obstacle at time step n = 11 and one can observe the resulting shock wave
traveling through the lower bones. As the femur approaches the tibia small
stresses at the ligament insertion sites emerge (n = 30). At time step n = 48
first contact of the cartilages occurs, which causes a second shock wave that
runs through the femur (n = 59). The knee joint separates again at time step
n = 66. However, as expected, the ligaments keep the joint from coming apart.

Figure 9 shows the total energy, including the viscous energy, of the bodies
and the ligaments over time. From Theorems 2.3 and 2.5, we expect the system
to be energy conserving as long as there are no changes of the contact zone, and
dissipative otherwise. We observe that the coupled system is indeed dissipative,
and that the vast majority of energy loss occurs during femur–tibia contact.
However, we also see a small additional energy loss in the periods without con-
tact, which must be attributed to the coupling. A precise analysis of alternative
coupling conditions is the subject of current work [39].

Figure 10 presents the number of active contact nodes as a function of time.
No numerical oscillations appear (see Figures 2.5–2.7 in [19] for an illustration

4www.dune-project.org
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n = 1 n = 12 n = 30

n = 48 n = 59 n = 66

n = 75 n = 94 n = 100

Figure 8: Time evolution of the spatial distribution of von Mises stresses
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Figure 9: Total energy of the system. Shaded areas denote the phases of contact
with the rigid obstacle (left), and of cartilage–cartilage contact (right)
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Figure 10: Left: Number of contact nodes with rigid plane. Right: Number of
contact nodes on the femur cartilage

of these oscillations). Note that the small increase of active nodes at the end of
the contact phase with the rigid obstacle is not artificial.

In Figure 11, left, the total number of Dirichlet–Neumann iterations per
time step is represented. No more than 5 iterations are needed for the required
accuracy. This translates to an average convergence rate of 0.12. Figure 11,
right, shows the average number of iterations for the solution of one contact
problem involving the three bones and their cartilage layers. The TNNMG
solver shows an excellent average convergence rate of 0.3. During the contact
phases with the rigid obstacle and the cartilage the convergence rates rise slightly
to an average of 0.35.

The computational time for the solution of the contact problem, again aver-
aged over the Dirichlet–Neumann iterations for each time step, is illustrated in
Figure 12 together with the overall time for each time step. All computations
were done on an Intel Xeon processor clocked at 2.6 GHz. The plots show that
the main CPU time is needed for the solution of the contact problems. The
excellent performance of the TNNMG enables the solution of these obstacle
constrained systems of over 315 000 degrees of freedom in an averaged time of
70 s. The average computation time for the ligament problems is less than 1 s
and therefore negligible.
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Figure 11: Left: Number of Dirichlet–Neumann iterations per time step. Right:
Average number of TNNMG iterations for the contact problem
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Figure 12: CPU time in minutes. Left: Average time for the solution of one
contact problem, plotted for each time step. Right: Overall time per time step.

Conclusion

We have presented a heterogeneous time-dependent model for the spatially re-
solved stress analysis of a knee joint. Incorporating articular cartilage and
ligaments, it is a definite improvement over our previous model [25]. Together
with the model we have proposed discretizations and solution algorithms that
were shown to be robust and efficient for this challenging problem.

Nevertheless, many tasks remain. From the modeling point of view, the
patella and the two menisci are still missing, and so are muscles and tendons.
Moreover, sooner or later our present linearized viscoelastic cartilage model may
have to be replaced by a biphasic model. Simulating actual gait cycles of the
knee requires a geometrically nonlinear theory for the bones and cartilage. For
this, our Newmark time integrator will have to be extended. CPU times can be
lowered significantly using adaptive mesh refinement. Summarizing, there is a
lot left to do until a realistic knee model is established that can be used as a
basis for surgical decisions.
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