Deriving numerical techniques with zero phase-lag and derivatives for initial value problems of second order

  • In the present we investigate the advantages of the phase lag analysis for the derivation of phase-fitted techniques on several numerical schemes. Relying on the main characteristics of the phase lag we evaluate the parameters needed firstly for Runge-Kutta methods and secondly for high order variational integration methods, so that the phase lag and its derivatives are zero. The proposed methods are tested for the solution of initial value problems on ordinary differential equations of second order, like the Hénon-Heiles model.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:D. F. Papadopoulos, Odysseas T. Kosmas, T. E. Simos
URN:urn:nbn:de:bvb:29-opus-38443
Document Type:Article
Language:English
Date of Publication (online):2012/11/08
Publishing Institution:Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Release Date:2012/11/08
Tag:Runge-Kutta methods; differential equations; initial value problems; integration; variational techniques
SWD-Keyword:-
Original publication:AIP Conference Proceedings 1479 (2012): S. 1407-1410. 07.11.2012 <http://proceedings.aip.org/resource/2/apcpcs/1479/1/1407_1>
Institutes:Naturwissenschaftliche Fakultät / Naturwissenschaftliche Fakultät -ohne weitere Spezifikation-
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 50 Naturwissenschaften / 500 Naturwissenschaften und Mathematik
PACS-Classification:00.00.00 GENERAL / 02.00.00 Mathematical methods in physics / 02.30.-f Function theory, analysis / 02.30.Hq Ordinary differential equations
00.00.00 GENERAL / 02.00.00 Mathematical methods in physics / 02.30.-f Function theory, analysis / 02.30.Xx Calculus of variations
00.00.00 GENERAL / 02.00.00 Mathematical methods in physics / 02.60.-x Numerical approximation and analysis / 02.60.Jh Numerical differentiation and integration
00.00.00 GENERAL / 02.00.00 Mathematical methods in physics / 02.60.-x Numerical approximation and analysis / 02.60.Lj Ordinary and partial differential equations; boundary value problems
Collections:Universität Erlangen-Nürnberg / Allianzlizenzen / Allianzlizenzen 2012

$Rev: 13581 $