Deriving numerical techniques with zero phase-lag and derivatives for initial value problems of second order

  • In the present we investigate the advantages of the phase lag analysis for the derivation of phase-fitted techniques on several numerical schemes. Relying on the main characteristics of the phase lag we evaluate the parameters needed firstly for Runge-Kutta methods and secondly for high order variational integration methods, so that the phase lag and its derivatives are zero. The proposed methods are tested for the solution of initial value problems on ordinary differential equations of second order, like the Hénon-Heiles model.

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:D. F. Papadopoulos, Odysseas T. Kosmas, T. E. Simos
URN:urn:nbn:de:bvb:29-opus-38443
Document Type:Article
Language:English
Date of Publication (online):2012/11/08
Publishing Institution:Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Release Date:2012/11/08
Tag:Runge-Kutta methods; differential equations; initial value problems; integration; variational techniques
SWD-Keyword:-
Original publication:AIP Conference Proceedings 1479 (2012): S. 1407-1410. 07.11.2012 <http://proceedings.aip.org/resource/2/apcpcs/1479/1/1407_1>
Institutes:Naturwissenschaftliche Fakultät -ohne weitere Spezifikation-
Dewey Decimal Classification:500 Naturwissenschaften und Mathematik
PACS-Classification:02.30.Hq Ordinary differential equations
02.30.Xx Calculus of variations
02.60.Jh Numerical differentiation and integration
02.60.Lj Ordinary and partial differential equations; boundary value problems
Collections:Allianzlizenzen 2012

$Rev: 12793 $