Fabrication, charge carrier transport, and application of printable nanocomposites based on indium tin oxide nanoparticles and conducting polymer 3,4-ethylenedioxythiophene/polystyrene sulfonic acid

  • Printable transparent hybrid composites consisting of indium tin oxide (In2O3:Sn; ITO) nanoparticles and conducting polymer 3,4-polyethylenedioxythiophene (PEDOT) as matrix material were developed. The basic idea is to fill up the pores of the highly porous nanoparticulate ITO network to improve the interparticle contact and hence the conductivity of printed ITO thin films. Ready-to-use and stable aqueous dispersions were fabricated starting from ITO nanoparticles and aqueous formulation of conducting PEDOT and polystyrene sulfonic acid (PSS). This report presents and discusses key factors to obtain stable ITO-PEDOT dispersions with different mixing ratios and their application for printablePrintable transparent hybrid composites consisting of indium tin oxide (In2O3:Sn; ITO) nanoparticles and conducting polymer 3,4-polyethylenedioxythiophene (PEDOT) as matrix material were developed. The basic idea is to fill up the pores of the highly porous nanoparticulate ITO network to improve the interparticle contact and hence the conductivity of printed ITO thin films. Ready-to-use and stable aqueous dispersions were fabricated starting from ITO nanoparticles and aqueous formulation of conducting PEDOT and polystyrene sulfonic acid (PSS). This report presents and discusses key factors to obtain stable ITO-PEDOT dispersions with different mixing ratios and their application for printable devices as transparent electrode material. It was found that the ζ-potential value is crucial for preparation of stable dispersions. Electrical and optical properties of the hybrid ITO-PEDOT coatings were analyzed. Temperature dependent resistivity measurements reveal that conduction occurs by fluctuation induced tunneling. Transparent and conducting nanocomposite layers with a conductivity as high as 132 Ω−1cm−1 were fabricated by a low-temperature (T = 130 °C) and entirely vacuum-free process. An all-printed electroluminescent lamp on a flexible substrate was realized as a demonstrator showing the applicability of such coatings for voltage-driven optoelectronic devices.show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ilja Maksimenko, Daniel Kilian, Christian Mehringer, Michael Voigt, Wolfgang Peukert, Peter J. Wellmann
URN:urn:nbn:de:bvb:29-opus-38061
Document Type:Article
Language:English
Date of Publication (online):2012/11/07
Publishing Institution:Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Release Date:2012/11/07
Tag:coatings; conducting polymers; electrical conductivity; electrical resistivity; electrodes
SWD-Keyword:-
Original publication:Journal of Applied Physics 110.10 (2011): 06.11.2012 <http://jap.aip.org/resource/1/japiau/v110/i10/p104301_s1>
Institutes:Technische Fakultät / Technische Fakultät -ohne weitere Spezifikation-
Dewey Decimal Classification:6 Technik, Medizin, angewandte Wissenschaften / 60 Technik / 600 Technik, Technologie
PACS-Classification:70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 72.00.00 Electronic transport in condensed matter (for electronic transport in surfaces, interfaces, and thin films, see section 73; for electrical properties related to treatment conditions, see 81.40.Rs; for transport properties of superconductors, see 74.25.Fy; / 72.20.-i Conductivity phenomena in semiconductors and insulators (see also 66.70.-f Nonelectronic thermal conduction and heat-pulse propagation in solids; thermal waves) / 72.20.Jv Charge carriers: generation, recombination, lifetime, and trapping
70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 73.00.00 Electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures (for electronic structure and electrical properties of superconducting films and low-dimensional structures, see 74.78.-w; for computational / 73.40.-c Electronic transport in interface structures / 73.40.Gk Tunneling (for tunneling in quantum Hall effects, see 73.43.Jn)
70.00.00 CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES / 73.00.00 Electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures (for electronic structure and electrical properties of superconducting films and low-dimensional structures, see 74.78.-w; for computational / 73.61.-r Electrical properties of specific thin films (for optical properties of thin films, see 78.20.-e and 78.66.-w; for magnetic properties of thin films, see 75.70.-i)
80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 81.00.00 Materials science / 81.07.-b Nanoscale materials and structures: fabrication and characterization (for structure of nanoscale materials, see 61.46.-w; for nanostructured materials in electrochemistry, see 82.45.Yz; for nanoparticles in polymers, see 82.35.Np in physical chemistry and / 81.07.Pr Organic-inorganic hybrid nanostructures
80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY / 85.00.00 Electronic and magnetic devices; microelectronics; Vacuum tubes, see 84.47.+w; Microwave tubes, see 84.40.Fe; Phototubes, see 85.60.Ha; Conductors, resistors, and inductors, see 84.32.Ff, Hh / 85.60.-q Optoelectronic devices (see also 42.79.-e Optical elements, devices and systems) / 85.60.Jb Light-emitting devices
Collections:Universität Erlangen-Nürnberg / Allianzlizenzen / Allianzlizenzen 2011

$Rev: 13581 $