Entanglement and Superradiance in the Light of Non-Classical and Classical Photon Sources

Verschränkung und Superradiance im Licht nicht-klassischer und klassischer Photonenquellen

  • In the present thesis we investigate spatial and temporal intensity correlations which are created by statistically independent or by entangled light sources. Even though this classification may appear quite technical, the diverseness of the statistical properties of the considered photon sources naturally brings into our focus two different lines of research. In the first part of this thesis we will quantitatively study the non-classical and potentially entangled character of light fields which originate from a variety of different statistically independent light sources. To this end quantum correlations between light fields are analyzed which either stem from non-classical single-photon emIn the present thesis we investigate spatial and temporal intensity correlations which are created by statistically independent or by entangled light sources. Even though this classification may appear quite technical, the diverseness of the statistical properties of the considered photon sources naturally brings into our focus two different lines of research. In the first part of this thesis we will quantitatively study the non-classical and potentially entangled character of light fields which originate from a variety of different statistically independent light sources. To this end quantum correlations between light fields are analyzed which either stem from non-classical single-photon emitters (like ensembles of uncorrelated atoms) or from a mixture of non-classical and classical photon sources (like lasers with uncorrelated fluctuating initial phase). In the second part of this thesis we study correlations between initially entangled lightsources, namely localized atoms which share an entangled state. In the course of the investigations we physically reinterpret in particular the so called superradiance effect in a quantum-path formalism: superradiance denotes an enhanced mean radiated intensity in a particular direction, i.e., a focussing of the photons scattered by an atomic gas. This effect is commonly explained by a successive synchronization of the dipole moments of all participating atoms leading to a photon emission predominantly in one direction. For more than 60 years this focussing has been physically interpreted as a cooperative effect depending on the dipole-dipole interaction between the atoms. In contrast, we will show that it is rather a quantum-interference effect which is caused by non-synchronized and potentially widely separated entangled atoms.show moreshow less
  • In dieser Arbeit wird die Nicht-Klassizität und potentielle Verschränkung von Lichtfeldern quantitativ untersucht, die von einer Vielzahl unterschiedlicher statistisch unabhängiger Lichtquellen entstammen. Hierfür werden Quantenkorrelationen zwischen Lichtfeldern analysiert, die von rein nicht-klassischen Einzelphotonenemittern (wie Ensembles unkorrelierter Atome) sowie von einer Mischung aus nicht-klassischen und klassischen Photonenquellen (wie Lasern mit unkorrelierter fluktuierender Phase) erzeugt werden. Daran anschließend werden Korrelationen zwischen originär verschränkten Lichtquellen, in diesem Fall gespeicherten Atomen, die sich in einem verschränkten Zustand befinden, untersucht. In dieser Arbeit wird die Nicht-Klassizität und potentielle Verschränkung von Lichtfeldern quantitativ untersucht, die von einer Vielzahl unterschiedlicher statistisch unabhängiger Lichtquellen entstammen. Hierfür werden Quantenkorrelationen zwischen Lichtfeldern analysiert, die von rein nicht-klassischen Einzelphotonenemittern (wie Ensembles unkorrelierter Atome) sowie von einer Mischung aus nicht-klassischen und klassischen Photonenquellen (wie Lasern mit unkorrelierter fluktuierender Phase) erzeugt werden. Daran anschließend werden Korrelationen zwischen originär verschränkten Lichtquellen, in diesem Fall gespeicherten Atomen, die sich in einem verschränkten Zustand befinden, untersucht. Dabei wird das sogenannte superradiance-Verhalten physikalisch neu interpretiert: im Gegensatz zu der seit über 60 Jahren verbreiteten Meinung, superradiance sei ein kooperativer Effekt, der von Wechselwirkungen zwischen den beteiligten Atomen abhängt, wird in dieser Arbeit gezeigt, dass es sich vielmehr um einen Quanteninterferenzeffekt handelt, der von nicht synchronisierten und sogar potentiell weit entfernten verschränkten Atomen erzeugt wird.show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Ralph Wiegner
URN:urn:nbn:de:bvb:29-opus-33228
Advisor:Joachim von Zanthier
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2012/06/13
Publishing Institution:Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)
Granting Institution:Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Naturwissenschaftliche Fakultät
Date of final exam:2012/05/31
Release Date:2012/06/13
Tag:Superradiance; Verschränkung; räumliche Korrelationen; statistisch unabhängige Photonenquellen
Superradiance; entanglement; spatial correlation functions; statistically independent photon sources
SWD-Keyword:Bell-Ungleichungen; Korrelationsfunktion; Quantenoptik
Institutes:Naturwissenschaftliche Fakultät / Naturwissenschaftliche Fakultät -ohne weitere Spezifikation-
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
PACS-Classification:00.00.00 GENERAL / 03.00.00 Quantum mechanics, field theories, and special relativity (see also section 11 General theory of fields and particles) / 03.65.-w Quantum mechanics [see also 03.67.-a Quantum information; 05.30.-d Quantum statistical mechanics; 31.30.J- Relativistic and quantum electrodynamics (QED) effects in atoms, molecules, and ions in atomic physics] / 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell`s inequalities, GHZ states, etc.) (for entanglement production and manipulation, see 03.67.Bg; for entanglement measures, witnesses etc., see 03.67.Mn; for entanglement in Bose-Einstein condensa
40.00.00 ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS / 42.00.00 Optics (for optical properties of gases, see 51.70.+f; for optical properties of bulk materials and thin films, see 78.20.-e; for x-ray optics, see 41.50.+h) / 42.50.-p Quantum optics (for lasers, see 42.55.-f and 42.60.-v; see also 42.65.-k Nonlinear optics; 03.65.-w Quantum mechanics) / 42.50.Dv Quantum state engineering and measurements (see also 03.65.Ud Entanglement and quantum nonlocality, e.g., EPR paradox, Bells inequalities, GHZ states, etc.)
40.00.00 ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS / 42.00.00 Optics (for optical properties of gases, see 51.70.+f; for optical properties of bulk materials and thin films, see 78.20.-e; for x-ray optics, see 41.50.+h) / 42.50.-p Quantum optics (for lasers, see 42.55.-f and 42.60.-v; see also 42.65.-k Nonlinear optics; 03.65.-w Quantum mechanics) / 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps
40.00.00 ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS / 42.00.00 Optics (for optical properties of gases, see 51.70.+f; for optical properties of bulk materials and thin films, see 78.20.-e; for x-ray optics, see 41.50.+h) / 42.50.-p Quantum optics (for lasers, see 42.55.-f and 42.60.-v; see also 42.65.-k Nonlinear optics; 03.65.-w Quantum mechanics) / 42.50.Nn Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems
40.00.00 ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS / 42.00.00 Optics (for optical properties of gases, see 51.70.+f; for optical properties of bulk materials and thin films, see 78.20.-e; for x-ray optics, see 41.50.+h) / 42.50.-p Quantum optics (for lasers, see 42.55.-f and 42.60.-v; see also 42.65.-k Nonlinear optics; 03.65.-w Quantum mechanics) / 42.50.St Nonclassical interferometry, subwavelength lithography

$Rev: 13581 $