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Abstract

Particulate systems can be statistically described by a number density function

(NDF) that maps an 𝑁-dimensional vector of internal coordinates, which repre-

sent relevant particle properties such as size and velocity, to a number density.

The evolution of the NDF is governed by a partial integro-differential equa-

tion, referred to as population balance equation (PBE). In the general case of

transient and spatially inhomogeneous systems where additional dependencies

on time and three-dimensional physical space must be considered, the PBE is

(𝑁 + 4)-dimensional. Thus, numerically solving the PBE using common dis-

cretization methods requires a vast amount of computational resources and is,

in many cases, practically impossible. Whenever only macroscopic quantities

are of interest, a common approach to reduce the dimensionality of the problem

is to eliminate the dependence on the 𝑁-dimensional internal-coordinate vec-

tor by solving not for the NDF but only for a set of its moments. The governing

system of moment equations can be derived directly from the underlying PBE.

This moment transformation, however, results in unclosed integral terms where

the unknown NDF still appears in the integrand. One way to close the system

of moment equations is to approximate the unclosed integral terms using an

𝑛-point Gaussian quadrature formula whose nodes and weights can be com-

puted from 2𝑛 moments. The procedure of taking a set of moments to compute

a Gaussian quadrature rule, which is, in turn, used to close the moment equa-

tions, is known as the quadrature method of moments (QMOM). It gave rise

to an entire family of derived methods, the quadrature-based moment methods

(QBMMs). The objective of this thesis is to contribute to the advancement of

QBMMs, which includes the formulation of quadrature-based moment models

for different physical phenomena and, in particular, the investigation and de-

velopment of numerical methods. The research presented in this thesis can be

divided into three major parts.
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The first part involves the formulation of an established Lagrangianmodel for

the breakup of droplets for QBMMs with droplet diameter as the only internal

coordinate, and the numerical investigation with the QMOM as well as the ex-

tended QMOM (EQMOM), a QBMM that combines the idea of the QMOM with

the reconstruction of a continuous NDF. The numerical tests include two sim-

ple configurations characterized by initially monodisperse populations, which

can theoretically be exactly represented by the QMOM, and a more realistic

configuration with initially log-normally distributed diameters. The results in-

dicate that the approximations are reasonably accurate when the solved system

consists of at least six moment equations, with the EQMOM providing no ad-

vantages for the specific configurations investigated.

In the second part, a quadrature-based moment model for the effects of fluid

turbulence on particle velocities is formulated based on a simplified microscopic

model and the derived PBE, which takes the form of a Fokker-Planck equation

with nonlinear and non-smooth terms. The corresponding integrals in the de-

rived moment equations are the source of large errors when using the QMOM

with an 𝑛-point Gaussian quadrature, with the sign depending on the parity of

𝑛. Based on this information, the Gauss/anti-Gauss QMOM (GaG-QMOM) is

proposed that uses an alternative quadrature formed by the average of an or-

dinary Gaussian and an anti-Gaussian quadrature. The conducted numerical

studies of univariate test cases with analytical reference solutions show that the

GaG-QMOM is able to significantly reduce the errors compared to the QMOM

and the EQMOM. In addition to the GaG-QMOM, another novelty is the modi-

fication of the second-order strong-stability preserving Runge-Kutta method to

guarantee the preservation of moment realizability, which is the property of a

moment sequence to correspond to at least one valid non-negative NDF, in the

presence of phase-space diffusion. The numerical results show that it can serve

as a suitable alternative scheme in cases where moment realizability is expected

to be critical.

The third part is concerned with the numerical exploration of the core algo-

rithm of most QBMMs in terms of performance and accuracy. The algorithm

consists of, first, computing 𝑛 pairs of recurrence coefficients of the associated

orthogonal polynomials from 2𝑛moments, second, solving a symmetric tridiag-

onal eigenvalue problem of size 𝑛 to obtain 𝑛 quadrature nodes and weights, and
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third, evaluating the integral terms in 2𝑛moment equations. The results indicate

that the contribution of the first step to compute the recurrence coefficients from

moments to the overall computational costs is negligible. Instead, the primary

focus should be on the fast solution of the eigenvalue problem and, possibly,

on the efficient implementation of the moment source term evaluation, which

becomes important when second-order processes, i.e. processes with particle-

particle interactions, are involved.

The derived models and the conducted numerical investigations summarized

above as well as the software implemented in the course of this work provide a

solid foundation for future research tasks like the extension and application of

the developed methods to multivariate problems.
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Kurzfassung

Teilchensysteme können statistisch durch eine Anzahldichtefunktion (number

density function, NDF) beschrieben werden, die einen 𝑁-dimensionalen Vektor

von internen Koordinaten, welche relevante Teilcheneigenschaften wie Grö-

ße und Geschwindigkeit darstellen, auf eine Anzahldichte abbildet. Die Än-

derung der NDF folgt einer partiellen Integro-Differentialgleichung, die Popu-

lationsbilanzgleichung (population balance equation, PBE) genannt wird. In

dem allgemeinen Fall eines transienten, räumlich inhomogenen Systems, bei

dem Abhängigkeiten von der Zeit und vom dreidimensionalen physikalischen

Raum zu berücksichtigen sind, ist die PBE (𝑁 + 4)-dimensional. Daher erfor-

dert die numerische Lösung der PBE mit üblichen Diskretisierungsmethoden

enorme Rechenressourcen and ist in vielen Fällen praktisch nicht durchführ-

bar. Ist man nur an makroskopischen Größen interessiert, so ist ein üblicher

Ansatz zur Reduktion der Dimensionalität die Eliminierung der Abhängigkei-

ten vom Vektor der internen Koordinaten durch Lösung nicht etwa nach der

NDF selbst, sondern lediglich nach einigen ihrer Momente. Das entsprechende

System vonMomentengleichungen kann direkt aus der zugrundeliegenden PBE

hergeleitet werden. Diese Momententransformation hat jedoch ungeschlossene

Integralterme zur Folge, welche die NDF noch immer im Integranden enthal-

ten. Ein Mittel das Gleichungssystem zu schließen ist, die Integrale durch eine

𝑛-Punkt-Gauß-Quadraturformel anzunähern, deren Stützstellen und Gewichte

aus 2𝑛Momenten berechnet werden können. Dieses Vorgehen, aus einerMenge

von Momenten eine Gauß-Quadratur zu berechnen und diese wiederum zu ver-

wenden, um die Gleichungen für selbige Momente zu schließen, ist als QMOM

(quadrature method of moments) bekannt. Aus dieser Methode entstand ei-

ne ganze Familie von Verfahren: die quadraturbasierten Momentenmethoden

(quadrature-based moment methods, QBMMs). Das Ziel dieser Arbeit ist es,

einen Beitrag zur Weiterentwicklung von QBMMs zu leisten, der die Formulie-
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rung von Modellen für verschiedene physikalische Vorgänge und insbesondere

auch die Untersuchung und Entwicklung numerischer Methoden umfasst. Die

vorgestellte Forschungsarbeit lässt sich im Wesentlichen in drei Teile gliedern.

Der erste Teil befasst sich mit der Formulierung eines weit verbreiteten La-

grange’schenModells für den Zerfall von Tropfen für QBMMs, wobei die einzige

interne Koordinate der Tropfendurchmesser ist, sowie der numerischen Unter-

suchung mit QMOM und EQMOM (extended QMOM), einer Quadraturmetho-

de, die die grundlegende Idee von QMOM mit der Rekonstruktion einer steti-

gen NDF verbindet. Die numerischen Untersuchungen umfassen zwei einfache

Konfigurationen mit anfangs monodispersen Teilchenpopulationen, die theore-

tisch exakt durch QMOM dargestellt werden können, sowie eine realistischere

Konfiguration mit zu Beginn log-normal verteilten Teilchendurchmessern. Die

Ergebnisse zeigen, dass eine relativ hohe Genauigkeit der Näherungslösung er-

reichbar ist, sofern das gelöste Gleichungssystem ausmindestens sechsMomen-

tengleichungen besteht, wobei EQMOM speziell für die hier untersuchten Fälle

keinerlei Vorteile bringt.

Im zweiten Teil wird ein quadraturbasiertes Momentenmodell für die Effek-

te von Turbulenz in einem umgebenden Fluid auf die Teilchengeschwindig-

keit hergeleitet, das auf einem vereinfachten Mikroskalenmodell und der dar-

aus abgeleiteten PBE beruht, die die Form einer Fokker-Planck-Gleichung mit

nicht-linearen und nicht-glatten Termen annimmt. Die entsprechenden Inte-

grale in den daraus folgenden Momentengleichungen sind die Ursache großer

Fehler, wenn QMOM mit einer 𝑛-Punkt-Gauß-Quadratur verwendet wird, wo-

bei die Parität von 𝑛 deren Vorzeichen bestimmt. Darauf basierend wird eine

neue Methode, die sogenannte Gauss/anti-Gauss-QMOM (GaG-QMOM), vor-

gestellt, die eine alternative Quadraturformel, nämlich das Mittel aus einer ge-

wöhnlichen Gauß-Quadratur und einer Anti-Gauß-Quadratur verwendet. Die

durchgeführten numerischen Untersuchungen von univariaten Testfällen mit

analytischen Referenzlösungen zeigen, dass GaG-QMOM die Fehler verglichen

mit QMOM und EQMOM in signifikantem Maß verringern kann. Eine weitere

Neuheit neben GaG-QMOM ist eine Modifikation des stark stabilitätserhalten-

den Runge-Kutta-Verfahrens zweiter Ordnung (RK2SSP), die die bedingungslose

Erhaltung der Momentenrealisierbarkeit (die Eigenschaft einer Menge von Mo-

menten, mindestens einer nicht-negativen NDF zu entsprechen) in Anwesen-
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heit von Phasenraumdiffusion sicherstellt. Die Berechnungsergebnisse weisen

darauf hin, dass das Verfahren eine geeignete Alternative für Anwendungen

darstellt, in denen Probleme in Zusammenhang mit Momentenrealisierbarkeit

zu erwarten sind.

Der dritte Teil beschäftigt sich mit der numerischen Untersuchung des Kern-

algorithmus der meisten QBMMs in Hinblick auf Rechenkosten und Genauig-

keit. ImWesentlichen besteht der Algorithmus erstens aus der Berechnung von

𝑛 Paaren von Rekursionskoeffizienten der zugehörigen orthogonalen Polyno-

me aus 2𝑛 Momenten, zweitens der Lösung eines tridiagonalen symmetrischen

Eigenwertproblems der Größe 𝑛, um die Quadraturknoten und -gewichte zu

erhalten, und drittens der Auswertung der Integralterme in den 2𝑛 Momen-

tengleichungen. Die Ergebnisse weisen darauf hin, dass der Beitrag des ersten

Schrittes zur Berechnung der Rekursionskoeffizienten bezogen auf die gesam-

ten Rechenkosten vernachlässigbar ist. Stattdessen sollte die schnelle Lösung

des Eigenwertproblems im Vordergrund stehen und gegebenenfalls die effizien-

te Auswertung der Momentenquellterme, die bei Vorgängen zweiter Ordnung,

also Vorgängen mit Teilchen-Teilchen-Interaktionen, bedeutend werden.

Die hergeleiteten Modelle sowie die durchgeführten numerischen Untersu-

chungen und die im Rahmen dieser Arbeit implementierte Software bilden eine

solide Grundlage für weiterführende Forschungsarbeiten wie zum Beispiel die

Erweiterung und Anwendung der entwickelten Verfahren auf multivariate Pro-

bleme.

vii





Acknowledgements /
Danksagungen

Ich möchte nun die Gelegenheit nutzen, um jenen meinen Dank auszusprechen,

ohne deren wertvolle Unterstützung die Fertigstellung dieser Arbeit kaummög-

lich gewesen wäre. Auch wenn es viele Dinge und vor allem Menschen gibt,

denen Dankbarkeit gebührt, werde ich mich an dieser Stelle namentlich auf

diejenigen beschränken, die direkt zur Fertigstellung dieser Dissertation beige-

tragen haben.

Zuallererst gilt mein Dank Prof. Dr.-Ing. Michael Oevermann, der meine Ar-

beit über sieben Jahre lang betreut hat, mir die Freiheit ließ, wissenschaftliche

Aufgabenstellungen eigenständig auszuwählen und zu bearbeiten, mir jedoch

bei Bedarf immer mit Rat und Tat zur Seite stand. Seine hervorragende Betreu-

ung, aber auch das gute private Verhältnis und die angenehme Arbeitsatmo-

sphäre, die er geschaffen hat, haben dafür gesorgt, dass die zahlreichen Tiefen

währendmeiner Promotionszeit fast immer durch die Freude an der Arbeit über-

wogen wurden.

Außerdem möchte ich mich besonders bei Dr.-Ing. Martin Pollack bedanken,

der mir die ganze Thematik durch seine ausführlichen Erklärungen erst zugäng-

lich gemacht hat und auch im weiteren Verlauf durch den interessanten Aus-

tausch eine wertvolle Unterstützung war.

Des Weiteren danke ich dem Vorsitzenden der Promotionskommission Prof.

Dr. rer. nat. habil. Michael Breuß sowie den Gutachtern Prof. Dr. rer. nat.

Carsten Hartmann und Prof. Dr. rer. nat. habil. Volker John, die ihre wertvolle

Zeit für die Begutachtung meiner Arbeit geopfert haben.

Neben den Personen, die ich nun namentlich genannt habe, möchte ich mich

auch bei den Institutionen und den entsprechenden verantwortlichen Personen

bedanken, die mir durch Zurverfügungstellung eines geeigneten Arbeitsum-

ix



Acknowledgements / Danksagungen

feldes und/oder Finanzierung meine Promotion ermöglicht haben. Das betrifft

die Chalmers University of Technology in Göteborg, bei der ich 2016 meine wis-

sentschaftlicheArbeit als Doktorand begann, und die schwedische Energieagen-

tur (Energimyndigheten) für die Finanzierung dieser Stelle, das Fachgebiet STFS

der TUDarmstadt für die Ermöglichungmeiner dortigen Forschungsaufenthalte

und selbstverständlich die BTU Cottbus-Senftenberg, an der ich von 2019 bis

2023 als wissenschaftlicher Mitarbeiter tätig war und letztendlich meine Pro-

motion abschließen konnte.

Zu guter Letzt gilt mein Dank natürlich auch meiner Familie und Freun-

den, die ein wertvoller Rückhalt waren und mich auch während der von Frust

geplagten Phasen ertragen haben. Vielen Dank.

x



Notation

To improve readability of the presented mathematical relationships, some nota-

tional conventions used throughout this thesis are clarified below.

Scalars, vectors and matrices

The notation of scalar, vector and matrix variables will, if not explicitly stated

otherwise, follow some general conventions:

• Scalar variables are denoted by italic letters (Latin or Greek), e.g. 𝑥.

• Vector variables are written as bold italic letters, e.g. 𝒙.

• Random and Lagrangian scalar or vector variables are indicated by upper

case, e.g. 𝑋 or 𝑿, respectively.

• Matrices are denoted by upright bold letters, e.g. X.

• Besides bold type, vectors and matrices may be denoted in terms of their

elements in parentheses, i.e. 𝒙 = (𝑥𝑖) and X =
(︁
𝑥𝑖 𝑗

)︁
.

Einstein summation notation

Some of the mathematical relationships in this thesis, in particular those in-

volving multivariate calculus, will make use of the Einstein summation conven-

tion, where repeated indices imply summation. For example, consider a matrix

A =
(︁
𝑎𝑖 𝑗

)︁
∈ B𝑚×𝑛 and a vector 𝒃 =

(︁
𝑏 𝑗

)︁
∈ B𝑛 for some field B. Then the

matrix-vector product 𝒄 = (𝑐𝑖) = A𝒙 can be written as

𝑐𝑖 =

𝑛∑︂
𝑗=1

𝑎𝑖 𝑗𝑏 𝑗 = 𝑎𝑖 𝑗𝑏 𝑗 , 𝑖 = 1, . . . , 𝑚. (1)

Similarly, multiple repeated indices imply multiple sums.
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Notation

Integration with respect to vectors

Let 𝒚 = (𝑦𝑖) ∈ B be an 𝑛-dimensional vector and 𝑔 : B → R an arbitrary

integrable function. Then, for brevity, the definite integral over B is written as∫
B
𝑔(𝒚) d𝒚 ≔

∬
· · ·

∫
B
𝑔(𝒚) d𝑦1 d𝑦2 · · · d𝑦𝑛. (2)

Probability theory

Consider an 𝑛-dimensional random variable 𝒀 ∈ B with the distribution P,
which is denoted by

𝒀 ∼ P . (3)

Then, if P has probability density 𝑝(𝒚), the expectation of a general expression

𝑔(𝒀) is denoted by

⟨𝑔(𝒀)⟩ ≔ E

[︁
𝑔(𝒀)

]︁
=

∫
B
𝑔(𝒚)𝑝(𝒚) d𝒚. (4)

The explicit labeling as a random variable is not necessarily employed here as it

is clearly evident from the context, i.e. ⟨𝑔(𝒀)⟩ = ⟨𝑔(𝒚)⟩. Moreover, the definition

in (4) is extended to not only PDFs but any non-negative weight or density

function 𝑝.

The probability of an event 𝐴 is denoted by Pr {𝐴}. For example, the prob-

ability of finding the value of the random variable 𝑌 on the interval (𝑎, 𝑏) is
expressed as

Pr {𝑎 < 𝑌 < 𝑏} =
∫ 𝑏

𝑎

𝑝(𝑦) d𝑦. (5)
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1. Introduction

1.1. Motivation: Some Physical Problems

A population balance equation (PBE) provides a statistical description of a par-

ticulate system. Technically, considering that matter is composed of atoms and

molecules, everything can be thought of as a particulate system. For example,

single-phase flows can be statistically described by a form of the well-known

Boltzmann equation, which governs the behavior of a collection of molecu-

lar entities (particles) constituting a non-equilibrium gas and is mathematically

very similar to a generalized PBE. However, in many of the interesting particu-

late systems, the relevant length scales are significantly larger than the molecu-

lar scale and particles interact with a surrounding fluid. In that case, the system

is referred to as dispersed multiphase flow. More precisely, dispersed multi-

phase flows are dynamic systems comprising two or more phases, at least one of

which consists of fine particles in any state of matter—solid, liquid or gaseous—

dispersed in a fluid. They are ubiquitous in nature and technology, which has led

to tremendous research efforts to gain a thorough understanding of the under-

lying physics and the ability to accurately predict the evolution of such systems.

For that purpose, numerical simulation is an important tool besides theoretical

and experimental work.

Sprays are an example of liquid droplets dispersed in gas. They play a ma-

jor role in numerous industrial applications, e.g. spray drying, a widely used

technology to produce powders for foods, detergents and pharmaceuticals [102,

110]. Understanding and improving the technology is crucial since inadequate

design of the spray dryer significantly affects the efficiency of the process as

well as product quality and may, in the case of foods and pharmaceutical prod-

ucts, even be hazardous to human health. Therefore, considerable research has

been carried out into the proper numerical modeling and simulation of the pro-

1



1. Introduction

cess [11, 163]. Another example of droplet-gas flows that has recently received

increased attention over the course of the COVID-19 pandemic is the airborne

transmission of infectious diseases, where numerical simulation has been used

to predict the concentration of virus-laden droplets and the associated risk of

infection in various situations [168, 174, 176].

Solid-gas flows are very common in a wide range of technical systems, e.g.

fluidized-bed reactors [109, 169], which are used for many chemical processes.

One application of fluidized-bed reactors is biomass gasification [68], a process

that has gained significance due to the need of renewable energy resources and

has been the subject of countless numerical studies in recent years, e.g. [118,

175]. Solid-gas systems also appear inmany natural phenomena, e.g. avalanches

and landslides, where accurate numerical models may predict the extent of such

disasters and thus help reduce the damage [128].

Bubbly flows, i.e. flows involving dispersed gaseous particles in liquid, are

also common in technical applications. An example is the flow of water occur-

ring in the coolant systems of nuclear reactors, where the absorption of heat

from nuclear fuel rods results in boiling and the formation of bubbles [39]. It

is well known that a failure of the coolant system may lead to a catastrophic

accident. To prevent that, different tools are employed for safety analysis, one

of which is numerical simulation [39, 79].

The examples above are only a few
1
highlighting the importance of dispersed

multiphase flows and the need to develop accurate mathematical models and

adequate methods for the efficient numerical solution.

1.2. Current State of Research

Owing to their omnipresence in nature and technology, particulate systems and

dispersed multiphase flows have been topics of research for centuries. With

the rapid growth in computing power over the past decades, the development

of suitable models for the numerical simulation of such systems has become

1
Several of the mentioned examples, in particular those of industrial applications, were taken

from Refs. [109] and [110], where the interested reader can find more detailed descriptions accom-

panied by explanatory illustrations as well as further examples.
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1.2. Current State of Research

increasingly important. Two fundamental criteria for the classification of those

models are, first, the distinction between Eulerian and Lagrangian descriptions

of the particulate system, and second, the considered range of length scales and

the corresponding physical phenomena that must be taken into account. Based

on the latter, models can be classified as microscale, mesoscale or macroscale

model, which is illustrated in Figure 1.1.

Microscale models aim to capture physics on the particle or sub-particle scale.

Examples of microscale models are the volume of fluid method [69], the level-

set method [117] and the immersed boundary method with direct forcing [162].

While the former two are commonly applied to problems involving deformable

(typically liquid or gaseous) particles, the latter is suitable when the dispersed
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Figure 1.1.: Schematic illustration of different modeling length scales for dis-

persed systems. Microscale models (left) are illustrated by a sin-

gle particle in a turbulent flow field, mesoscale models (center)

by a bivariate number density function for size and velocity, and

macroscale models (right) by a qualitative visualization of the

(3,1)th-order moment of the size-velocity distribution, which is pro-

portional to the total local momentum.
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1. Introduction

phase consists of solid particles. All mentioned examples have in common that

the dispersed particles are resolved on the spatial numerical grid while other

methods treat particles as discrete entities, e.g. the discrete element method

(DEM), a Lagrangian approach that is primarily employed for the simulation

of granular flows, i.e. systems of solid particles [25, 66]. Naturally, microscale

models provide the highest level of detail, though at the price of computational

requirements that may be prohibitive in many physical applications.

Mesoscale models contain no information on the state of individual particles

but, instead, provide a statistical description of a particle population in the form

of some distribution function. One such distribution function is given by the

number density function (NDF) 𝑓 (𝝃, 𝒙; 𝑡) that maps a vector of internal coordi-

nates 𝝃 , representing relevant particle properties such as size and velocity, to a

number concentration at position 𝒙 and time 𝑡. For probabilistic systems, a prob-

ability density function (PDF) may be a more suitable and intuitive mesoscopic

description. However, it is important to note that, even though the physical in-

terpretations may differ, the only mathematical difference between the two is a

normalization constant. Thus, the methods suitable for the numerical solution

are practically identical. Here it will be assumed that the particulate system of

interest is described by a NDF. The evolution of the particle population is then

governed by a transport equation for the NDF referred to as population balance

equation (PBE). In a very general form, it can be expressed as

𝜕 𝑓 (𝝃, 𝒙; 𝑡)
𝜕𝑡

= D 𝑓 (𝝃, 𝒙; 𝑡) + S( 𝑓 , 𝝃, 𝒙), (1.1)

where D is a linear differential operator with respect to 𝒙 and 𝝃 , and S is a

functional representing the source term due to discrete events such as collisions.

Various numerical techniques exist to approximate mesoscale solutions, one

of which is the direct numerical solution of the PBE. This can and has been done

using well-established methods for the solution of partial differential equations

(PDEs), e.g. finite difference methods [103, 104], finite volume methods [15, 41,

43] and finite elementmethods [52, 75, 95]. Techniques referred to as classmeth-

ods or sectional methods [70, 92] are also based on a discretization of the PBE

in internal-coordinate space (phase space). They are mostly equivalent to finite

difference methods with additional considerations regarding the treatment of

the source term S. The recent review article by Singh et al. [151] gives a com-

4
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prehensive summary of different methods for the solution of PBEs focusing on

breakage-aggregation problems with size as the only internal coordinate. Most

of those methods can be easily transferred to the multivariate case. However, as

a consequence of the exponential complexity with respect to dimensionality, the

solution quickly becomes computationally intractable with a growing number

of internal coordinates.

In contrast to the mentioned deterministic methods of discretization, Monte-

Carlo methods [56, 153] are an approach to approximate a solution to the PBE

by simulating the physical behavior of a particulate system using random sam-

ples of the NDF. They are similar to Lagrangian microscale models like the DEM

in that they solve the governing equations for individual particles, though only

for representative samples of the distribution instead of actual physical parti-

cles. Most of the popular Eulerian-Lagrangian methods for dispersed multi-

phase flows can be regarded as Monte-Carlo methods. They are based on an

Eulerian description of the continuous fluid and Lagrangian tracking of repre-

sentative computational particles, so-called parcels, to describe the evolution of

the dispersed phase. Eulerian-Lagrangian methods have been used in countless

numerical studies related to dispersed multiphase flows, e.g. [65, 84, 163, 168].

Despite their widespread use, however, Eulerian-Lagrangian methods have ma-

jor drawbacks: First, in polydisperse inhomogeneous systems, a large number

of Lagrangian samples is needed to sufficiently resolve the NDF and obtain an

accurate solution, which implies high computational costs. Second, coupling of

the continuous and the dispersed phase is complicated by different reference

frames and requires additional cell search and interpolation algorithms. Third,

spatial inhomogeneities in the particle concentration cause a load imbalance

in parallel simulations on distributed-memory systems where parallelization

is usually based on spatial domain decomposition. Although there are algo-

rithms to control the particle number density and mitigate that problem [45,

157], the difficulties implicated by the Lagrangian frame of reference make Eu-

lerian methods generally preferable in terms of the numerical treatment.

Macroscale models only capture macroscopic quantities, e.g. the total local

number concentration, mass, momentum or kinetic energy. As such quantities

are often the desired primary results of numerical simulations and microscale

and mesoscale models generally require a large amount of computational re-

5



1. Introduction

sources, macroscale models are, in many cases, the preferred approach. Macro-

scopic quantities like those mentioned above correspond to integral properties

of the particle distribution function and can be expressed in terms of its integer

moments. The transport equations governing the evolution of moments can be

derived from the PBE (1.1) by integration, e.g. for the 𝑘th-order moment with

respect to a single internal coordinate 𝜉 ∈ Ω,
𝜕𝑚𝑘 (𝒙; 𝑡)

𝜕𝑡
=

∫
Ω

𝜉𝑘D 𝑓 (𝜉, 𝒙; 𝑡) d𝜉 +
∫
Ω

𝜉𝑘S( 𝑓 , 𝜉, 𝒙) d𝜉, 𝑘 = 0, 1, . . . (1.2)

Evidently, the NDF still appears in the resulting set of equations, and additional

methods are needed to solve this closure problem.

A simple method to close the moment equations is the method of moments

with interpolative closure (MOMIC) [51], which is suitable for cases where the

RHS of (1.2) can be expressed in terms of the known integer moments as well

as fractional moments, so that the latter can be approximated by interpolation

from the former. Whenever this is possible MOMIC is a very efficient approach

to close the moment equations. However, many, if not most PBEs correspond-

ing to realistic physical problems are more complex and cannot be expressed

by fractional moments, see e.g. [96, Sec. 7.3.1]. Among the numerous closure

methods developed for such cases, two main classes can be distinguished: first,

presumed-NDF methods, and second, quadrature-based moment methods (QB-

MMs).

Presumed-NDF methods are, as the name implies, based on a presumed func-

tional form of the NDF. The simplest presumption would be that of uniform

particle properties (monodisperse population), see e.g. [80] for an application

involving coagulation and sintering. In that case, the NDF is merely a Dirac

delta function located at the mean𝑚1/𝑚0, that is, only two moments are needed

to construct a NDF of the presumed form. In general, however, this is not only

a very crude approximation but also fails to capture the effects of physical phe-

nomena that introduce statistical dispersion to the NDF, such as all diffusive

processes. To account for non-negligible variance in the distribution, known

families of probability distributions have been frequently used to construct a

NDF from given moments. Popular choices are common two-parameter distri-

butions such as the log-normal distribution for univariate NDFs with size as

the only internal coordinate [8, 16] or the multivariate normal distribution for

6
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velocity-based NDFs [142, 165]. Although such methods allow for the efficient

reconstruction of a NDF from a few given moments, it is important to high-

light that their applicability is limited to the rare cases where the shape of the

NDF is known a priori [96, Sec. 4.4]. Various methods attempt to mitigate that

problem using spline-based reconstruction [29, 74], linear combinations of basis

functions [37] or a functional expansion for the NDF (see e.g. [62], [96, Sec. 4.4]).

The latter is also the basic idea behind the finite-size domain complete set of trial

functions method of moments (FCMOM) [154–156]. Another approach to over-

come the limitations of presumed-NDF methods is to reconstruct the NDF that

maximizes the differential entropy [106, 108], which is, according to the princi-

ple of maximum entropy [73], always the best representation of the given infor-

mation. However, finding the maximum-entropy distribution is a constrained

optimization problem [1, 3] whose solution quickly becomes prohibitively ex-

pensive when dealing with a larger number of (possibly multivariate) moments.

QBMMs are a family of methods to close the moment equations derived from

PBEs using quadrature rules. The quadrature method of moments (QMOM) in-

troduced by McGraw [107] was the first QBMM and the basis of many derived

methods. It employs an 𝑛-point Gaussian quadrature to approximate the un-

closed integral terms in the first 2𝑛 moment equations making use of the fact

that the nodes and weights of the Gaussian quadrature rule can be calculated

from the same set of 2𝑛 moments without knowledge of the NDF, so that the

RHS of (1.2) is a function of the moments, or in other words, the system of mo-

ment equations is closed. Since the theory behind Gaussian quadrature rules is

limited to univariate weight functions (the weight function corresponds to the

NDF), the QMOM is inherently one-dimensional in internal-coordinate space.

It has been applied to various physical processes, e.g. crystallization and pre-

cipitation [99, 100], mixing of fluidized powders [105], bubbly flows in stirred

tank reactors [124], the sedimentation of raindrops [114] and kinetic problems

in plasma physics [158].

Though not explicitly designed as such, the QMOM can be, and often is, in-

terpreted as an approximation of the NDF by a weighted sum of Dirac delta

functions located at the quadrature nodes [96, 98, 178], i.e. a discontinuous rep-

resentation of the NDF. However, to model problems involving fluxes across

phase space boundaries, such as the disappearance of droplets as a result of

7
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complete evaporation, pointwise values and thus continuous reconstructions of

the NDF are needed for an accurate solution. For this purpose, several meth-

ods have been developed to combine the idea of NDF-reconstruction with that

of the QMOM, e.g. the combination of the QMOM with the maximum-entropy

approach [14, 101]. Another method is the multi-Gaussian QMOM [20] that

reconstructs the NDF as a weighted sum of (scaled) normal PDFs centered on

the Gaussian quadrature nodes. The extended QMOM (EQMOM) [179] general-

izes that approach to further kernel density functions (KDFs) incorporating the

idea of the kernel density element method (KDEM) [5]. In the original work on

EQMOM, beta- and gamma-PDFs were used as KDFs, of which the shape pa-

rameter was determined using an additional transported moment. The method

was later extended to further types of KDFs and improved in terms of finding

the KDF-parameter [126]. The EQMOM has been shown to yield accurate re-

sults for various types of problems [125, 130, 145, 158]. As an alternative to an

explicit continuous reconstruction of the NDF, Fox et al. [49] recently proposed

the so-called generalized QMOM, a QBMM that adopts the basic idea of the EQ-

MOM but directly computes, based on assumptions regarding the shape of the

NDF, an arbitrary number of quadrature nodes. The results of its application to

breakup and aggregation problems were promising.

The above-mentionedQBMMs are all limited to one-dimensional phase space.

However, most physical applications are only adequately described by a multi-

variate NDF. Several multivariate QBMMs making use of additional techniques

and assumptions have been developed, e.g. the tensor-product QMOM (see [44,

177], [96, Sec. 3.3.4]), the conditional QMOM (CQMOM) [178] and several de-

rived methods such as the hyperbolic version of the CQMOM [50, 122] and com-

binations with the EQMOM for continuous multivariate NDF-reconstructions

(see [21, 130, 133], [96, Sec. 3.3.4]).

As demonstrated by the (incomplete) summary above, a good deal of research

work on QBMMs has been done since the QMOM was first introduced in 1997.

However, several challenges are yet to be addressed to establish QBMMs as a

general practical alternative to conventional methods for the numerical simu-

lation of particulate systems and dispersed multiphase flows. Some of those

challenges are:

• Moment realizability: A challenge that is very specific tomomentmethods

8
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is the difficult preservation of moment realizability, which is, in short, the

property of a set of moments to represent at least one valid NDF. Several

methods have been proposed to tackle that problem, mostly focusing on

the transport in physical space 𝒙 [23, 77, 85, 147, 166, 167], which is the

most problematic process in terms of moment realizability. However, re-

alizability issues related to other physical phenomena in the PBE have not

received asmuch attention. Moreover, there is, to the author’s best knowl-

edge, no multivariate QBMM that guarantees the preservation of moment

realizability in terms of the quadrature for higher-order moments.

• Physical models: Even though QBMMs have been applied to many dif-

ferent physical processes, the used models are often derived from meso-

scopic models that have nice mathematical forms well-suited to QBMMs

but are not consistent with common microscale descriptions, which are

often more difficult, non-smooth or even discontinuous. Extending the

physical models and finding ways of the appropriate numerical treatment

is another major challenge to make QBMMs practically applicable to a

wide range of physical problems.

• Computational efficiency: It is often highlighted as one of the key fea-

tures of QBMMs that they are numerically efficient [32, 99, 179], yet pub-

lished research concerning the computational performance of QBMMs is

limited to reported CPU times without detailed information on the im-

plementation of the algorithm [75, 99]. Detailed investigations into the

performance of QBMMs and, if need be, performance optimizations are

still open issues.

The purpose of the research conducted as part of this work is to help address

some of these challenges, which is detailed in the following section.

1.3. Objectives and Thesis Structure

Based on the challenges formulated in the previous section, this work is in-

tended to contribute to the further development of QBMMs for particulate sys-

tems and dispersed multiphase flows that can be statistically described by PBEs.

This includes the formulation of physical models for QBMMs, the thorough in-

9
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vestigation of existing methods from a numerical point of view, and the exten-

sion of the family of QBMMs by developing newmethods. To this end, the thesis

is structured as described below.

The theoretical basis of this work is described in the following two chapters,

starting with the mesoscopic modeling of particulate and dispersed multiphase

systems by population balances and the macroscopic description, i.e. moment

equations, derived therefrom in Chapter 2. Following that, Chapter 3 deals with

the theoretical foundation and important types of QBMMs for the closure of

those moment equations and provides, in combination with Chapter 2, a justi-

fication for the reduction to univariate, spatially homogeneous systems for the

development of new numerical methods.

The scientific novelties of this thesis are presented in Chapters 4–6. In Chap-

ter 4, a widely used simple Lagrangian model for the breakup of liquid droplets

is formulated for QBMMs, applied to a series of univariate and spatially ho-

mogeneous test configurations with increasing complexity, and compared to a

reference solution obtained from a Monte-Carlo simulation using the original

model.

Chapter 5 is concerned with the effect of fluid turbulence on particle veloc-

ities as well as the development and application of suitable numerical meth-

ods to solve the corresponding model equations. Based on common microscale

models, fluid turbulence is taken into account by a phase-space diffusion term

in the PBE that is non-smooth and thus numerically problematic for QBMMs.

As an attempt to reduce the large errors associated to such problems, a novel

QBMM referred to as the Gauss/anti-Gauss QMOM is developed. Moreover, a

modified strong-stability preserving Runge-Kutta method for the unconditional

preservation of moment realizability in the presence of phase-space diffusion is

proposed. The new methods are evaluated in a series of numerical tests using

simple one-dimensional configurations with analytical reference solutions.

Chapter 6 presents a detailed numerical investigation of the basic quadrature-

based moment closure algorithm, which is the basis of all common QBMMs,

with respect to performance and accuracy. The main objective is to compare

different configurations and identify bottlenecks and potentials of optimization

to help make QBMMs as efficient as possible.

Chapter 7 concludes this dissertation with a summary focusing on its scien-
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tific contributions and, finally, suggestions for future research topics.

1.4. Summary of Contributions

The scientific contribution of this work can be summarized by the following

novelties:

• Formulation and / or validation of physical models for QBMMs:

– formulation of an established Lagrangian model for the breakup of

liquid droplets in the QBMM-context and validation against Monte-

Carlo simulations (Chapter 4),
2

– formulation of a model for the effect of fluid-phase turbulence on

particle velocities for QBMMs and numerical investigation in one

phase-space dimension in comparison to analytical reference solu-

tions (Chapter 5, in particular Sections 5.1 and 5.4).
3

• Development and application of new numerical methods:

– development of the Gauss/anti-Gauss QMOM, a novel QBMM to

mitigate the errors due to non-smooth integrands in the moment

equations, as well as the application to turbulence-induced phase-

space diffusion (Chapter 5, in particular Sections 5.2 and 5.4),
4

– development and numerical investigation of a new strong-stability

preserving Runge-Kuttamethod for the realizability-preserving tem-

poral integration of moment equations with phase-space diffusion

(Chapter 5, in particular Sections 5.3 and 5.4).
5

2
Most of the theoretical work has been published as part of the pre-doctoral thesis (licentiate

thesis) “Numerical Modeling of Atomization in Spray Systems” (2019) in the course of the author’s

research activities at Chalmers University of Technology, Gothenburg, Sweden.

3
Parts of this work have been published in: M. Pütz, M. Pollack, C. Hasse and M. Oevermann.

“A Gauss/anti-Gauss quadrature method of moments applied to population balance equations with
turbulence-induced nonlinear phase-space diffusion”. Journal of Computational Physics 466 (2022),
111363. https://doi.org/10.1016/ j.jcp.2022.111363

4
See footnote 3.

5
See footnote 3.
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• In-depth numerical investigation of the quadrature-based closure algo-

rithm, which is an essential part of virtually every QBMM, with respect to

performance, accuracy and sensitivity to input moment sequences (Chap-

ter 6).
6

6
Parts of this work have been published in: M. Pütz and M. Oevermann. “Performance and accu-

racy of the basic closure algorithm of quadrature-based moment methods”. Journal of Computational
Physics 494 (2023), 112514. https://doi.org/10.1016/ j.jcp.2023.112514

12
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2. Statistical Description of
Dispersed Systems

This chapter is intended to provide the foundation for the statistical descrip-

tion of particulate flows at the mesoscale and macroscale. For this purpose, the

basis of the mesoscopic description, the number density function (NDF), will

be presented first. Then the population balance equation (PBE), which is the

differential equation governing the change of the NDF in time, physical space

and phase space, will be introduced, before addressing general aspects of the

macroscopic model derived therefrom in terms of moment transport equations.

Finally, the mathematical representation of the carrier fluid in dispersed multi-

phase flows will be briefly discussed, with a focus on turbulence modeling.

2.1. Mesoscale Description of Particulate
Systems

2.1.1. The Number Density Function

Let 𝒙 ∈ R3 be a position in physical space and let 𝝃 ∈ Ω be a point in 𝑁-

dimensional internal-coordinate space, whichmay represent any set of quantifi-

able particle properties, e.g. some measure of particle size, velocity components,

temperature, or the material composition in terms of volume or mass fractions.

Then the NDF, denoted by 𝑓 (𝝃, 𝒙; 𝑡), is defined such that

d𝑁𝑝 = 𝑓 (𝝃, 𝒙; 𝑡) d𝝃 d𝒙 (2.1)

is the expected number of particles in the physical volume (𝒙, 𝒙+d𝒙) and phase-
space volume (𝝃, 𝝃 + d𝝃) at time 𝑡. Although it is consistently described as an

13
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average quantity (see e.g. [96, Sec 4.1], [136, Sec. 2.3, Sec. 7.1], [152]), slightly

different interpretations in terms of the derivation can be found in the literature.

The following considerations reflect the author’s interpretation, which ismainly

based on the derivations in Refs. [96, Sec. 4.1] and [136, Sec. 7.1] as well as ideas

from statistical mechanics [137], in particular the kinetic theory of gases [19].

Consider a population of a large number of particles 𝑁𝑝 , where the state of

the 𝑖th particle at any time 𝑡 is uniquely defined by its point in physical space and

phase space
1 𝑿𝑖 (𝑡) ∈ R3 and 𝜩𝑖 (𝑡) ∈ Ω, respectively. Then, if its microscopic be-

havior is probabilistic, i.e. governed by a stochastic differential equation (SDE),

the state at time 𝑡 is given by the one-particle PDF 𝑝
(1)
𝑖
(𝝃

𝑖
, 𝒙

𝑖
; 𝑡) defined such

that

Pr

{︁
𝜩𝑖 ∈

(︁
𝝃𝑖 , 𝝃𝑖 + d𝝃𝑖

)︁
∩ 𝑿𝑖 ∈ (𝒙𝑖 , 𝒙𝑖 + d𝒙𝑖)

}︁
= 𝑝

(1)
𝑖
(𝝃𝑖 , 𝒙𝑖 ; 𝑡) d𝝃𝑖 d𝒙𝑖 . (2.2)

In fact, even if its microscopic behavior is deterministic, virtually any particulate

system that is not purely hypothetical can be considered probabilistic because

the initial state is never known exactly. As the state of a single particle depends

on the states of all other particles, the complete 𝑁𝑝-particle system is described

by a joint PDF of 𝑁𝑝 (𝑁 +3) variables, say 𝑝 (𝑁𝑝 ) (𝝃1, 𝒙1, 𝝃2, 𝒙2, . . . , 𝝃𝑁𝑝
, 𝒙𝑁𝑝

; 𝑡),
with the marginal PDFs

𝑝
(1)
1
(𝝃1, 𝒙1; 𝑡) =

∫
R3
· · ·

∫
Ω

𝑝 (𝑁𝑝 )
d𝝃2 d𝒙2 d𝝃3 d𝒙3 · · · d𝝃𝑁𝑝

d𝒙𝑁𝑝
,

𝑝
(1)
2
(𝝃2, 𝒙2; 𝑡) =

∫
R3
· · ·

∫
Ω

𝑝 (𝑁𝑝 )
d𝝃1 d𝒙1 d𝝃3 d𝒙3 · · · d𝝃𝑁𝑝

d𝒙𝑁𝑝
,

...

𝑝
(1)
𝑁𝑝
(𝝃𝑁𝑝

, 𝒙𝑁𝑝
; 𝑡) =

∫
R3
· · ·

∫
Ω

𝑝 (𝑁𝑝 )
d𝝃1 d𝒙1 d𝝃2 d𝒙2 · · · d𝝃𝑁𝑝−1 d𝒙𝑁𝑝−1.

(2.3)

Given the individual random states of all particles, i.e. 𝜩𝑖 (𝑡), 𝑿𝑖 (𝑡) for 𝑖 =

1, 2, . . . , 𝑁𝑝 , the corresponding state of the 𝑁𝑝-particle system is described by

𝐹 (𝝃, 𝒙; 𝑡) =
𝑁𝑝∑︂
𝑖=1

𝛿
(︁
𝝃 − 𝜩𝑖 (𝑡)

)︁
𝛿
(︁
𝒙 − 𝑿𝑖 (𝑡)

)︁
, (2.4)

1
It is worth noting that, at this point, there is no need to distinguish between physical space

and phase space, and the state of a particle could be given by one (𝑁 + 3)-dimensional vector. The

different variables are only used for consistency with the following sections.
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2.1. Mesoscale Description of Particulate Systems

where 𝛿 denotes the Dirac delta function. Evidently, 𝐹 satisfies the desired prop-

erty of the NDF 𝑓 in (2.1) for some realization of the system. It can be thought of

as the actual NDF, which corresponds to a collection of random variables and is,

accordingly, itself a random quantity. As such, the function 𝐹 is not suitable as a

NDF for the mesoscopic description of the observed particulate system. Instead,

the NDF should represent the average particle number density from an infinite

number of realizations. In other words, the NDF is the expectation of 𝐹, i.e.

𝑓 (𝝃, 𝒙; 𝑡) = ⟨𝐹 (𝝃, 𝒙; 𝑡)⟩

=

𝑁𝑝∑︂
𝑖=1

∫
R3
· · ·

∫
Ω

𝑝 (𝑁𝑝 ) (𝝃1, 𝒙1, 𝝃2, 𝒙2, . . . , 𝝃𝑁𝑝
, 𝒙𝑁𝑝

; 𝑡)

· 𝛿
(︁
𝝃 − 𝝃𝑖

)︁
𝛿 (𝒙 − 𝒙𝑖) d𝝃1 d𝒙1 d𝝃2 d𝒙2 · · · d𝝃𝑁𝑝

d𝒙𝑁𝑝
.

(2.5)

Taking into account the marginal densities in (2.3), the 𝑖th term of the sum in

(2.5) reads∫
R3

∫
Ω

𝑝
(1)
𝑖
(𝝃𝑖 , 𝒙𝑖 ; 𝑡)𝛿

(︁
𝝃 − 𝝃𝑖

)︁
𝛿 (𝒙 − 𝒙𝑖) d𝝃𝑖 d𝒙𝑖 , (2.6)

and thus, the NDF can finally be expressed as

𝑓 (𝝃, 𝒙; 𝑡) =
𝑁𝑝∑︂
𝑖=1

𝑝
(1)
𝑖
(𝝃, 𝒙; 𝑡). (2.7)

In the special case of identical one-particle distributions, this can be simplified

to

𝑓 (𝝃, 𝒙; 𝑡) = 𝑁𝑝𝑝
(1)
1
(𝝃, 𝒙; 𝑡), (2.8)

which highlights the fact that the only mathematical difference between a NDF

and a PDF is the normalization, i.e.∫
R3

∫
Ω

𝑓 (𝝃, 𝒙; 𝑡) d𝝃 d𝒙 = 𝑁𝑝 (𝑡). (2.9)

The NDF provides a complete mesoscopic description of a particulate system.

Its evolution is governed by a PDE, the so-called PBE, which is detailed in the

next section.
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2. Statistical Description of Dispersed Systems

2.1.2. The Population Balance Equation

The PBE is, in its most general form, a partial integro-differential equation that

can be viewed as a continuity statement for the NDF. The contents of this section

are limited to the final differential form of the PBE, which is the result of more

rigorous derivations found elsewhere, e.g. [136, Ch. 2] and [96, Sec. 2.2].

General form

The PBE in general differential form, i.e. for arbitrary control volumes in three-

dimensional physical and 𝑁-dimensional phase space, reads

𝜕 𝑓 (𝝃, 𝒙; 𝑡)
𝜕𝑡

=− 𝜕

𝜕𝑥
𝑖

[︁
𝑣𝑖 (𝝃, 𝒙) 𝑓 (𝝃, 𝒙; 𝑡)

]︁
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

(i) physical advection

+ 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗

[︁
𝑐𝑖 𝑗 (𝝃, 𝒙) 𝑓 (𝝃, 𝒙; 𝑡)

]︁
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

(ii) physical diffusion

− 𝜕

𝜕𝜉
𝑘

[︁
𝑎𝑘 (𝝃, 𝒙) 𝑓 (𝝃, 𝒙; 𝑡)

]︁
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

(iii) phase-space advection

+ 𝜕2

𝜕𝜉𝑘𝜕𝜉𝑙

[︁
𝑑𝑘𝑙 (𝝃, 𝒙) 𝑓 (𝝃, 𝒙; 𝑡)

]︁
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞

(iv) phase-space diffusion

+ S( 𝑓 , 𝝃, 𝒙),⏞ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ⏞
(v) source term

(2.10)

where (𝑣𝑖) = 𝒗 ∈ R3 is the physical advection velocity,

(︁
𝑐𝑖 𝑗

)︁
= C ∈ R3×3 the

physical diffusivity, (𝑎𝑘) = 𝒂 ∈ R𝑁
the advection “velocity” in phase space,

(𝑑𝑘𝑙) = D ∈ R𝑁×𝑁
the phase-space diffusion coefficient matrix, and S repre-

sents sources or sinks. Details on the physical meaning and specifics of each of

the terms in the PBE are discussed below.

(i) Physical advection: The advective transport in physical space requires

particular attention with respect to the advection velocity 𝒗. In the con-

text of multiphase flows, where the particulate phase is dispersed in a

fluid, two cases are distinguished in the literature: In the first case, the

particles instantaneously adapt to the fluid velocity field, and 𝒗 equals the

local fluid velocity at all times. In the second case, particles are trans-

ported in physical space with an individual velocity, which then appears

as an internal coordinate in 𝝃 , and the transport equation of the NDF is

commonly referred to as the generalized PBE (GPBE) [46, 96, 97]. Whether
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2.1. Mesoscale Description of Particulate Systems

𝒗 should be a phase space variable depends on how fast dispersed entities

adapt to the fluid velocity field. This is indicated by the Stokes number

St, which relates the characteristic time of a particle to the characteris-

tic time of the fluid flow. If St ≪ 1, the particles follow the local fluid

velocity, whereas higher Stokes numbers indicate larger particle inertia

and consequently a velocity difference between fluid and particles [97].

In spatially inhomogeneous systems, the classification of the mesoscopic

description as PBE or GPBE is essential for the appropriate selection of

models.

(ii) Physical diffusion: A diffusive flux in physical space must be taken into

account if the observed system involves very fine particles
2
that are signif-

icantly affected by Brownian motion, or if particles are assumed to follow

the flow of a carrier fluid and turbulence is modeled by a turbulent diffu-

sion term (see Section 2.3). If particle velocity is an internal coordinate,

such effects are captured by the phase-space diffusion term (as detailed in

Chapter 5), and the diffusion in physical space vanishes.

(iii) Phase-space advection: The advection in phase space represents all pro-

cesses that imply continuous changes in internal coordinate values with

the rate of change (advection velocity) 𝒂. Physical examples of advection

in phase space are the evaporation of liquid drops if 𝝃 includes a measure

of size, or acceleration if the particle velocity is an internal coordinate.

(iv) Phase-space diffusion: The diffusion in phase space represents changes in

internal-coordinate space due to phenomena that are considered random

at the microscale, e.g. turbulent effects as detailed in Chapter 5.

(v) Source term: The effects of all discrete events are represented by the

source termS. Such events are e.g. the breakup, collision and aggregation
of particles. S is a functional that typically involves some integral ex-

pression with respect to 𝝃 . Thus, the PBE is, in general, a partial integro-

differential equation. The source term shall remain abstract at this point.

An expression of S for particle fragmentation will be given in Chapter 4,

and hard-sphere collisions will be briefly addressed in Chapter 6.

2
Marchisio and Fox [96] give an estimate of less than one micron in size.
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2. Statistical Description of Dispersed Systems

Spatially homogeneous form

Generally, when solving (2.10) numerically, the terms can be treated separately

with respect to discretizing the differential operators. The discretization in

physical space is usually achieved by well-known methods for the numerical

solution of convection-diffusion equations, such as the finite difference method

[40, Ch. 3], the finite element method [88], or the finite volume method [87].

For the development of numerical methods that are not particularly concerned

with the transport in physical space, it is thus sensible to reduce the PBE to the

spatially homogeneous form. Then, dropping all physical-space dependencies,

the PBE simplifies to

𝜕 𝑓 (𝝃, 𝑡)
𝜕𝑡

= − 𝜕

𝜕𝜉
𝑖

[︁
𝑎𝑖 (𝝃) 𝑓 (𝝃, 𝑡)

]︁
+ 𝜕2

𝜕𝜉𝑖𝜕𝜉 𝑗

[︁
𝑑𝑖 𝑗 (𝝃) 𝑓 (𝝃, 𝑡)

]︁
+ S( 𝑓 , 𝝃).

(2.11)

Univariate form

To thoroughly investigate the behavior of new numerical methods with respect

to analytical reference solutions, which only exist for simplified forms, it is often

convenient or even necessary to reduce (2.11) further to the univariate form, i.e.

a NDF of only a single variable in phase space. The PBE then reads

𝜕 𝑓 (𝜉, 𝑡)
𝜕𝑡

= − 𝜕

𝜕𝜉

[︁
𝑎(𝜉) 𝑓 (𝜉, 𝑡)

]︁
+ 𝜕2

𝜕𝜉2

[︁
𝑑 (𝜉) 𝑓 (𝜉, 𝑡)

]︁
+ S( 𝑓 , 𝜉), (2.12)

which is the form of PBE that most of the research reported in this thesis is

based on.

2.2. Moment Transport Equations

In many cases, obtaining detailed information on the NDF is not the primary

goal of numerical simulations. Instead, the desired results are local macroscopic

quantities, such as the total number concentration, mass, momentum or kinetic

energy. These can be expressed in terms of the raw
3
moments associated with

3
Here, the term raw moment refers to a moment about the origin, as opposed to e.g. a central

moment, which refers to a moment about the mean.
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2.2. Moment Transport Equations

the NDF, which are, in the general case of 𝑁-dimensional phase space, defined

as

𝑚𝑘1 ,𝑘2 ,...,𝑘𝑁 = ⟨𝜉𝑘1
1
𝜉
𝑘2
2
· · · 𝜉𝑘𝑁

𝑁
⟩ =

∫
Ω

𝜉
𝑘1
1
𝜉
𝑘2
2
· · · 𝜉𝑘𝑁

𝑁
𝑓 (𝝃) d𝝃 . (2.13)

For example, consider 𝑁 = 4 internal coordinates. Then, if 𝜉1 represents the

particle diameter, (𝜉2, 𝜉3, 𝜉4)T the velocity components in three physical dimen-

sions and the particle density (specific mass), say 𝜌𝑝 , is constant, one can obtain

various macroscopic quantities from the moments, e.g.

total momentum in 𝑥1-direction = 𝐶 𝑚3,1,0,0, (2.14)

total kinetic energy = 1

2
𝐶

(︁
𝑚3,2,0,0 + 𝑚3,0,2,0 + 𝑚3,0,0,2

)︁
, (2.15)

where 𝐶 = 𝜋𝜌𝑝/6. More detailed examples of how moments are related to

physical properties can be found in [46, 96].

It is evident from the moment definition (2.13) that transport equations for

the moments are simply obtained by multiplication of the underlying PBE by

𝜉
𝑘1
1
𝜉
𝑘2
2
· · · 𝜉𝑘𝑁

𝑁
and subsequent integration overΩ. Thus, assuming the advection

velocity to equal that of the carrier fluid 𝒖, and omitting time and physical-space

dependencies for brevity, the (𝑘1, 𝑘2, . . . , 𝑘𝑁 )th moment transport equation for

an inhomogeneous system derived from (2.10) reads

𝜕𝑚𝑘1 ,𝑘2 ,...,𝑘𝑁

𝜕𝑡
= − 𝜕

𝜕𝑥
𝑖

(︁
𝑢𝑖𝑚𝑘1 ,𝑘2 ,...,𝑘𝑁

)︁
+ 𝜕2

𝜕𝑥𝑖𝜕𝑥 𝑗

(︁
𝑐𝑖 𝑗𝑚𝑘1 ,𝑘2 ,...,𝑘𝑁

)︁
+ 𝑚̇𝑘1 ,𝑘2 ,...,𝑘𝑁 ,

(2.16)

where the moment source term 𝑚̇𝑘1 ,𝑘2 ,...,𝑘𝑁 represents the moment transforms

of all except for the physical transport terms, i.e. those of the terms (iii)–(v) in

(2.10). For multivariate inhomogeneous systems, the moment source term is,

due to lack of relevance, not detailed further at this point. However, it is impor-

tant to note that 𝑚̇𝑘1 ,𝑘2 ,...,𝑘𝑁 is unclosed, as will be highlighted by the univariate

form below. Moreover, a specific form considering phase-space advection and

diffusion in the spatially homogeneous multivariate moment equation will be

discussed in Section 5.1.3.

The moment transformation reduces the dimensionality, and hence the com-

putational complexity, by transferring the problem from the mesoscale to the
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2. Statistical Description of Dispersed Systems

macroscale. More precisely, considering a spatially inhomogeneous system, the

problem of solving a PBE in 𝑁 + 4 dimensions
4
is reduced to the problem of

solving a system of moment equations in four dimensions.

Considering only a single internal coordinate and assuming the absence of

fluxes across phase-space boundaries, the univariate moment definition

𝑚𝑘 = ⟨𝜉𝑘⟩ =
∫
Ω

𝜉𝑘 𝑓 (𝜉) d𝜉 (2.17)

can be used to transform the univariate PBE (2.12) and obtain, after repeated

integration by parts, the 𝑘th moment transport equation

d𝑚𝑘 (𝑡)
d𝑡

= 𝑘

∫
Ω

𝜉𝑘−1𝑎(𝜉) 𝑓 (𝜉, 𝑡) d𝜉

+ 𝑘 (𝑘 − 1)
∫
Ω

𝜉𝑘−2𝑑 (𝜉) 𝑓 (𝜉, 𝑡) d𝜉 +
∫
Ω

𝜉𝑘S( 𝑓 , 𝜉) d𝜉.
(2.18)

In the presence of fluxes across phase-space boundaries, e.g. as a result of the

disappearance of droplets by complete evaporation, the integration by parts re-

sults in additional terms of the form 𝑔(𝜉) 𝑓 (𝜉, 𝑡)
|︁|︁𝜉max

𝜉=𝜉min

, where 𝑔 is an arbitrary

function continuous on [𝜉min, 𝜉max]. However, problems of this kind will not be

dealt with in this dissertation.

Evidently, the NDF still appears in both integral terms on the RHS of (2.18),

i.e. the moment equations in this form are unclosed. Various methods to close

moment equations derived from PBEs have been proposed in the past, includ-

ing the method of moments with interpolative closure (MOMIC) [51], numerous

methods for the reconstruction of a NDF with more or less restrictive assump-

tions regarding its shape [8, 16, 37, 80, 142, 165], entropy maximization [106,

108], the finite-size domain complete set of trial functions method of moments

(FCMOM) [154–156], and the family of QBMMs, which will be detailed in Chap-

ter 3.

4
Considering time, three physical and 𝑁 phase-space dimensions, yields a total of 𝑁 + 4 di-

mensions.
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2.3. Description of a Turbulent Carrier Fluid

2.3. Description of a Turbulent Carrier Fluid

Besides the above-described equations for the particulate system, a complete

model for dispersed multiphase flows requires the description of the continuous

fluid phase, which is almost always turbulent, and the interactionwith dispersed

particles in terms of the exchange of momentum and possibly mass and energy.

The most common approach is the macroscopic description of the carrier fluid

by the well-known Navier-Stokes equations that govern the evolution of the

fluid velocity field 𝒖 = (𝑢1, 𝑢2, 𝑢3)𝑇 and the pressure field 𝑝. Assuming an

incompressible Newtonian fluid for the sake of simplicity as well as the absence

of mass transfer, they can be expressed in terms of the conservation of mass

(continuity equation)

𝜕𝑢𝑖

𝜕𝑥
𝑖

= 0 (2.19)

and the conservation of linear momentum

𝜕𝑢𝑖

𝜕𝑡
+ 𝑢 𝑗

𝜕𝑢𝑖

𝜕𝑥
𝑗

= − 1

𝜌 𝑓

𝜕 𝑝

𝜕𝑥
𝑖

+ 𝜈 𝑓

𝜕

𝜕𝑥
𝑗

(︄
𝜕𝑢𝑖

𝜕𝑥
𝑗

+
𝜕𝑢 𝑗

𝜕𝑥
𝑖

)︄
+ 𝑢̇𝑖 , (2.20)

where 𝜌 𝑓 is the fluid density, 𝜈 𝑓 the kinematic viscosity and 𝑢̇𝑖 is the acceler-

ation in 𝑥𝑖-direction by virtue of an external force, which may be due to the

interaction with particles in dispersed multiphase flows. The features of the

Navier-Stokes equations and suitable methods to solve them numerically have

been extensively dealt with in many textbooks, e.g. [7, 164], and will not be de-

tailed further. Instead, this section is intended to briefly review the most com-

mon types of turbulence models used in conjunction with the Navier-Stokes

equations in order to identify the information available to model turbulent ef-

fects on the dispersed phase.

It is common knowledge among researchers in fluid mechanics that the evo-

lution of a dynamic fluid flow system in terms of its macroscopic quantities

is governed by the Navier-Stokes equations, regardless of whether the flow is

laminar or turbulent. Nevertheless, in the field of computational fluid dynam-

ics, turbulence is arguably one of the most important and also one of the most

challenging aspects of numerical models. This is due to the fact that energy is

transferred across a wide range of length scales from large eddies containing
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2. Statistical Description of Dispersed Systems

most of the total energy to eddies of the smallest scale (Kolmogorov scale 𝜂), a

mechanism commonly referred to as the turbulent energy cascade [134]. Thus,

in order to solve the Navier-Stokes equations numerically, capturing the entire

energy spectrum from the energy-containing range to the dissipation range is

essential. In other words, all length scales from the integral scale, say 𝑙0, down

to the Kolmogorov scale 𝜂 must be resolved on the discretized spatial domain.

It is well known from Kolmogorov theory that the range of relevant length

scales depends on the level of turbulence indicated by the Reynolds number

Re =
|𝒖 | 𝑙
𝜈 𝑓

, (2.21)

where 𝑙 is a characteristic length scale of the fluid flow. Then the range of length

scales that must be resolved to capture the entire energy spectrum grows as

𝑙0

𝜂
∝ Re

3/4. (2.22)

Despite what this sublinear growth may suggest, it corresponds to a rapid in-

crease in computational complexity with O(Re9/4) in the general case of three

spatial dimensions. Naturally, this required fine resolution in space entails the

necessity to adjust the temporal discretization accordingly. For this reason,

the direct numerical simulation (DNS) of the governing Navier-Stokes equa-

tions is limited to relatively low Reynolds numbers. The majority of flows

occurring in nature and technology, though, do not belong in that category

and require turbulence modeling. Two major classes of turbulence models are

commonly used with the Navier-Stokes equations, namely Reynolds-averaged

Navier-Stokes (RANS) models and large eddy simulation (LES). The difference

between DNS, LES and RANS in terms of the computed velocity field is schemat-

ically illustrated in Figure 2.1.

The underlying idea of RANS models is the decomposition of the real instan-

taneous fluid velocity

𝒖 = 𝒖 + 𝒖′, (2.23)

where 𝒖 is the mean velocity obtained by a suitable averaging method and 𝒖′

represents the velocity fluctuation due to turbulence. This decomposition yields
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2.3. Description of a Turbulent Carrier Fluid
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Figure 2.1.: Schematic illustration of the local velocity in a turbulent flow com-

puted with DNS, LES and RANS. The DNS resolves all scales of tur-

bulence and, as a result, captures all velocity fluctuations. LES cap-

tures only the fluctuations due to the large turbulent structures that

contain the bulk of the kinetic energy, while the effect of the small-

scale fluctuations is modeled. RANS does not capture any velocity

fluctuations due to averaging.

the RANS equations. As a consequence, an unclosed term appears in the mo-

mentum equation, which is commonly referred to as Reynolds stress tensor. The

various types of RANS models are concerned with modeling of the unclosed

term. The most popular RANS model is the 𝑘-𝜖 model that involves additional

transport equations for the turbulent kinetic energy 𝑘𝑡 and the turbulent en-

ergy dissipation rate 𝜖𝑡 . Then, with an eddy viscosity based on Boussinesq’s

hypothesis

𝜈𝑡 ∝
𝑘2𝑡

𝜖𝑡
, (2.24)

the RANS equations are closed using an effective viscosity

𝜈𝑒 = 𝜈 𝑓 + 𝜈𝑡 (2.25)

instead of 𝜈 𝑓 . Moreover, with 𝑘𝑡 and 𝜖𝑡 known, a characteristic turbulence
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2. Statistical Description of Dispersed Systems

length scale can be estimated by [171]

𝑙𝑡 ∝
𝑘
3/2
𝑡

𝜖𝑡
. (2.26)

LES models are also based on a decomposition like (2.23), though the un-

derlying approach is fundamentally different. Contrary to RANS models, the

decomposition is obtained by filtering instead of averaging. In simplified terms

(see e.g. [144] for detailed explanations), scales are separated by means of some

spatial filtering operation that passes only lengths larger than a specified cut-

off length, often denoted by Δ, which is typically chosen such that the length

scales containing the bulk of the kinetic energy are passed by the filter. Using the

same notation as in (2.23), 𝒖 then represents the filtered or resolved velocity and

𝒖′
the subgrid-scale (SGS) velocity fluctuations. The resulting filtered Navier-

Stokes equations are solved on a spatial grid that is sufficiently fine to resolve

all scales larger than Δ. However, the governing equations contain unclosed

terms for SGS turbulence, namely the SGS stress tensor, that must be modeled.

For that purpose, a large variety of models exist, see [144] for an overview. The

LES-counterparts of the quantities in (2.24) and (2.26) can then be deduced from

the filtered quantities or from the modeled SGS stress tensor. For example, the

characteristic turbulent length scale is given in terms of the cutoff length, i.e.

𝑙𝑡 = Δ, and the SGS kinetic energy and dissipation rate are related to the SGS

stress tensor and strain rate, an indirect result of filtered quantities.

In summary, the numerical simulation of most flows, whether single-phase or

multiphase flows, requires a turbulence model of some kind. The most common

types of turbulence models used with the Navier-Stokes equations are based on

the RANS equations or LES. While the physical interpretation is fundamentally

different, both are similar in that they are based on the decomposition of the

velocity field into a resolved and amodeled contribution resulting in an unclosed

stress tensor in the momentum equation, and that characteristic quantities of

the modeled scales of turbulence, i.e. a characteristic turbulence length scale 𝑙𝑡 ,

the turbulent kinetic energy 𝑘𝑡 , and the turbulent energy dissipation rate 𝜖𝑡 ,

are either obtained directly from the model equations or can be deduced from

basic relationships known from Kolmogorov theory or Boussinesq’s hypothesis.

Thus, it is henceforward assumed that this information is available for modeling

the dispersed phase.
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3. Quadrature-Based Closure of
Moment Equations

This chapter is concerned with the underlying theory and the different types of

quadrature-based moment methods (QBMMs) for the closure of moment trans-

port equations derived from PBEs. Like the contributions in Chapters 4–6, the

contents of this chapter are limited to spatially homogeneous systems. While

this may appear as a major limitation given the complexity of real physical sys-

tems, it is a reasonable simplification when transport in physical space is not

the topic of research, since the discretization of the physical flux terms for the

numerical solution can be chosen independently of the method to close the mo-

ment source terms. However, it should be noted that discretizing the physical

advection and diffusion terms in moment equations is particularly challenging,

due to the problem of moment realizability, and requires special techniques,

which have been the subject of numerous studies, e.g. [23, 147, 166, 167].

The chapter is structured as follows: First, as the mathematical foundation

of QBMMs, the most important aspects of orthogonal polynomials and Gaus-

sian quadrature formulas will be briefly reviewed in Sections 3.1 and 3.2. Then,

in Section 3.3, the problem of moment realizability will be explained, before

describing important moment inversion algorithms, i.e. algorithms to compute

Gaussian quadrature rules from moments, in Section 3.4. Finally, some specific

QBMMs will be detailed in Section 3.5 with a focus on univariate QBMMs, as all

numerical investigations in this thesis are limited to univariate problems. How-

ever, multivariate QBMMs are also briefly addressed in Section 3.5.3 due to their

relevance for real physical problems. This includes the main difficulties associ-

ated with multivariate QBMMs as well as the importance of univariate QBMMs

for multivariate problems, which serves as motivation for the reduction of the

general PBE to the univariate form.
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3. Quadrature-Based Closure of Moment Equations

3.1. Orthogonal Polynomials

3.1.1. Definition

Let B be a subset of R, and let 𝑤 : B → R≥0 be an integrable non-negative

function, referred to as weight function, with finite moments of all orders, i.e.|︁|︁|︁|︁∫
B
𝑧𝑘𝑤(𝑧) d𝑧

|︁|︁|︁|︁ < ∞, 𝑘 = 0, 1, 2, . . . (3.1)

Furthermore, let the weighted inner product of two functions continuous on B,

say 𝑔 and ℎ, with respect to 𝑤 be denoted by(︁
𝑔, ℎ

)︁
𝑤
≔

∫
B
𝑔(𝑧)ℎ(𝑧)𝑤(𝑧) d𝑧. (3.2)

Then the set {𝑝0, 𝑝1, 𝑝2, . . . }, where 𝑝𝑘 is a polynomial of true degree 𝑘 , is said

to be orthogonal with respect to 𝑤 if and only if(︁
𝑝 𝑗 , 𝑝𝑘

)︁
𝑤
= 0 iff 𝑗 ≠ 𝑘. (3.3)

The 𝑘th-degreemonic orthogonal polynomial will hereinafter be denoted by 𝜋𝑘 .

The corresponding orthonormal polynomial 𝜋̃𝑘 is normalized such that∥𝜋̃𝑘 ∥𝑤 =

1, where ∥·∥𝑤 is the norm defined by∥︁∥︁𝑔∥︁∥︁
𝑤
≔

√︂(︁
𝑔, 𝑔

)︁
𝑤
. (3.4)

Accordingly, the two mentioned representations of an orthogonal polynomial

system satisfy

𝜋𝑘 = ∥𝜋𝑘 ∥𝑤 𝜋̃𝑘 . (3.5)

3.1.2. Properties

This section constitutes a brief review of well-known properties of orthogonal

polynomials, limited to those relevant for QBMMs. Proofs of the relationships

presented below as well as further interesting properties can be found in most

textbooks on orthogonal polynomials, e.g. [54, Sec. 1.2] or [22, Ch. I, Sec. 2 & 3].
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3.1. Orthogonal Polynomials

Three-term recurrence relation

With the definition

𝜋−1 ≔ 0, (3.6)

any set of monic orthogonal polynomials {𝜋0, 𝜋1, 𝜋2, . . . } satisfies the three-

term recurrence relation

𝜋𝑘+1 (𝑧) = (𝑧 − 𝛼𝑘) 𝜋𝑘 (𝑧) − 𝛽𝑘𝜋𝑘−1 (𝑧), 𝑘 = 0, 1, 2, . . . , (3.7)

where the recurrence coefficients are

𝛼𝑘 =
(𝑧𝜋𝑘 , 𝜋𝑘)𝑤
(𝜋𝑘 , 𝜋𝑘)𝑤

, 𝑘 = 0, 1, 2, . . . , (3.8)

𝛽𝑘 =
(𝜋𝑘 , 𝜋𝑘)𝑤
(𝜋𝑘−1, 𝜋𝑘−1)𝑤

, 𝑘 = 1, 2, . . . (3.9)

and, by convention (see e.g. [54, Sec. 1.3.1]),

𝛽0 ≔ (𝜋0, 𝜋0)𝑤 . (3.10)

Often it is more convenient to use the orthonormal form. Then the three-term

recurrence relation reads
1√︁

𝛽𝑘+1𝜋̃𝑘+1 (𝑧) = (𝑧 − 𝛼𝑘) 𝜋̃𝑘 (𝑧) −
√︁
𝛽𝑘 𝜋̃𝑘−1 (𝑧), 𝑘 = 0, 1, 2, . . . (3.11)

which can be written for 𝑘 = 0, 1, . . . , 𝑛 − 1 in matrix form as

√︁
𝛽𝑛

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0

...

0

𝜋̃𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝑧

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜋̃0

𝜋̃1
...

𝜋̃𝑛−2

𝜋̃𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⏞ˉ⏟⏟ˉ⏞
𝝅̃𝑛−1

−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝛼0

√
𝛽1√

𝛽1 𝛼1

√
𝛽2

√
𝛽2

. . .
. . .

. . . 𝛼𝑛−2
√
𝛽𝑛−1√

𝛽𝑛−1 𝛼𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
J𝑛

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜋̃0

𝜋̃1
...

𝜋̃𝑛−2

𝜋̃𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠⏞ˉ⏟⏟ˉ⏞
𝝅̃𝑛−1

, (3.12)

where J𝑛 is called the truncated Jacobi matrix of size 𝑛.

1
Inserting (3.5) into (3.7), dividing by ∥ 𝜋𝑘+1 ∥𝑤 and substituting the norm expressions with√

𝛽𝑘+1 = ∥ 𝜋𝑘+1 ∥𝑤 /∥ 𝜋𝑘 ∥𝑤 and

√
𝛽𝑘+1𝛽𝑘 = ∥ 𝜋𝑘+1 ∥𝑤 /∥ 𝜋𝑘−1 ∥𝑤 (following from (3.9)) yields the

given three-term recurrence relation.
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3. Quadrature-Based Closure of Moment Equations

Zeros

The zeros of orthogonal polynomials are all

• real,

• simple,

• located in the interior of the support interval of 𝑤.

Moreover, denoting the zeros of the 𝑛th degree orthogonal polynomial by 𝑧𝑖,𝑛,

using the convention that

𝑧𝑖,𝑛 < 𝑧𝑖+1,𝑛, 𝑖 = 1, 2, . . . , 𝑛 − 1, (3.13)

the LHS of (3.12) vanishes for 𝑧 = 𝑧𝑖,𝑛 ∀𝑖 = 1, . . . , 𝑛, and the three-term recur-

rence relation can be written as

J𝑛 𝝅̃𝑛−1 (𝑧𝑖,𝑛) = 𝑧𝑖,𝑛 𝝅̃𝑛−1 (𝑧𝑖,𝑛). (3.14)

In other words, the zeros of the 𝑛th-degree orthogonal polynomial are the eigen-

values of the truncated Jacobi matrix J𝑛.

3.2. GaussianQuadrature Formulas

This section serves as a brief review of the fundamentals and most important

properties of Gaussian quadrature formulas, an essential component of QBMMs.

Proofs of the well-known relationships presented below as well as additional

details and discussions of numerical aspects can be found in common textbooks

on numerical integration and orthogonal polynomials, e.g. [22, 28, 54].

Consider the functional

𝐼 (𝑔) ≔
∫
B
𝑔(𝑧)𝑤(𝑧) d𝑧, (3.15)

where 𝑔 : B→ R is an arbitrary function and 𝑤 a weight function as defined in

Section 3.1.1. Then an 𝑛-point quadrature rule 𝐺𝑛 satisfies

𝐼 (𝑔) =
𝑛∑︂
𝑗=1

𝑤 𝑗𝑔(𝑧 𝑗 )⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
≕ 𝐺𝑛 (𝑔)

+ 𝑅𝑛 (𝑔), (3.16)
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3.2. Gaussian Quadrature Formulas

where 𝑧 𝑗 denotes the 𝑗th quadrature node (abscissa), 𝑤 𝑗 the corresponding

weight, and 𝑅𝑛 the approximation error associated with𝐺𝑛. An 𝑛-node quadra-

ture is called Gaussian or Gauss quadrature if and only if its degree of accuracy

is 2𝑛 − 1, i.e.

𝑅𝑛 (𝑔) = 0 ∀ 𝑔 ∈ P2𝑛−1, (3.17)

where P2𝑛−1 is the set of all real polynomials with degree up to 2𝑛 − 1. This is
known to be true if the quadrature nodes 𝑧 𝑗 are the zeros of 𝜋𝑛, the 𝑛th-degree

orthogonal polynomial with respect to 𝑤. Moreover, it can be deduced from the

Christoffel-Darboux theorem that the weights satisfy [172, Sec. 2.9]

1

𝑤 𝑗

=

𝑛−1∑︂
𝑖=0

[︁
𝜋̃𝑖 (𝑧 𝑗 )

]︁
2

, 𝑗 = 1, 2, . . . , 𝑛. (3.18)

Taking into account that the normalization of 𝜋̃0 requires
2
√
𝛽0𝜋̃0 = 1, (3.18) is

equivalent to

𝑤 𝑗 = 𝛽0

(︄
𝜋̃0 (𝑧 𝑗 )∥︁∥︁𝝅̃𝑛−1 (𝑧 𝑗 )

∥︁∥︁
)︄
2

⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
𝜑2

𝑗

. (3.19)

Finally, considering (3.14), it becomes obvious that 𝜑 𝑗 is the first component

of the normalized eigenvector belonging to the 𝑗th eigenvalue of J𝑛, which is

also the 𝑗th quadrature node. Thus, the abscissas and weights of the 𝑛-point

Gaussian quadrature rule associated with the weight function 𝑤 result from the

eigenvalues and eigenvectors of the truncated Jacobi matrix J𝑛. Furthermore, it

follows from the definition of the recurrence coefficients in (3.8) and (3.9) that

𝛼𝑘 and 𝛽𝑘 are quotients of linear combinations of the ordinary moments up to

(2𝑘 + 1)th order. Accordingly, the first 𝑛 recurrence coefficients, i.e. those with

indices up to 𝑘 = 𝑛−1, are determined by all moments up to order 2𝑛−1 (see also
Section 3.4). In other words, an 𝑛-node Gaussian quadrature can be computed

from the first 2𝑛 moments.

2
Here, it should be noted that the definitions (3.2) and (3.10) as well as the moment definition

in (2.17) imply the identity 𝛽0 = (𝜋0, 𝜋0 )𝑤 = ∥ 𝜋0 ∥2𝑤 = 𝑚0.
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3. Quadrature-Based Closure of Moment Equations

3.3. The Problem of Moment Realizability

A critical aspect of moment methods that must be taken into account in the

selection of numerical methods is the problem of moment realizability. Con-

sidering the moment definition in (2.17) and an unknown density (NDF) with

support Ω, a set of moments is said to be realizable with respect to Ω if there

exists at least one valid density function, i.e. a non-negative function with sup-

port Ω, that corresponds to the given moments. The question of whether a

sequence of numbers is a valid moment sequence and whether the associated

density function is uniquely determined by that moment sequence is commonly

known as the moment problem. In the context of QBMMs, the latter is of sec-

ondary importance, whereas the former is essential since QBMMs usually fail

with inconsistent moments. Based on the support Ω, the moment problem can

be classified as [146]

• Hausdorff problem with bounded support [0, 1],

• Stieltjes problem with semi-infinite support [0,∞),

• Hamburger problem with infinite support (−∞, +∞).

The moment problem can also be formulated as follows: Let the vector of all

moments
3
up to order 𝑝 with respect to the support Ω be denoted by

𝒎𝑝 = (𝑚0, 𝑚1, . . . , 𝑚𝑝)T. (3.20)

Then 𝒎𝑝 represents a valid (realizable) set of moments with respect to Ω if and

only if 𝒎𝑝 ∈ M𝑝 (Ω), whereM𝑝 (Ω) is the 𝑝th moment space, the convex 𝑝-

dimensional space of all valid sequences of integer moments up to order 𝑝. In

the special case𝒎𝑝 ∈ 𝜕M𝑝 (Ω), where 𝜕M𝑝 (Ω) is the boundary ofM𝑝 (Ω), the
associated density function is unique [33]. In that case, the moment sequence

can be characterized as “weakly realizable” [126]. An example of a function that

3
It should be noted that, strictly speaking, the term “moments” to refer to a sequence of num-

bers that are not known to be realizable moments may be not entirely accurate since unrealizable

moments are not moments at all.
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3.3. The Problem of Moment Realizability

generates moments on 𝜕M2𝑛−1 (Ω) is the 𝑁-point distribution density

𝑓 (𝜉) =
𝑁∑︂
𝑖=1

𝑐𝑖𝛿(𝜉 − 𝜉𝑖), 𝑁 < 𝑛, 𝑐𝑖 > 0, 𝜉𝑖 ∈ Ω. (3.21)

Moment spaces and the problem of moment realizability are best illustrated by

the example of the compact space of Hausdorff moments, as shown in Figure 3.1

forM2 ( [0, 1]).
In terms of realizability criteria, the Hamburger problem is the least restric-

tive. A necessary and sufficient condition for the moment sequence 𝒎2𝑛−1 to

be realizable is that the recurrence coefficients of the corresponding orthogonal

0
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Figure 3.1.: Distributions on the moment space M2 related to the Hausdorff

problem (slightly altered version of the illustration in [131], kindly

provided by the author Martin Pollack). Assuming𝑚0 = 1, the space

of valid moment sequences 𝒎2 is determined by the lower boundary

𝑚2 = 𝑚2

1
and the upper boundary 𝑚2 = 𝑚1. Point (discrete) distri-

butions are located on 𝜕M2, whereas continuous distributions, here

represented by beta distributions with different parameters, are in

the interior ofM2. The shown examples are only a few of an infi-

nite number of possibilities.
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3. Quadrature-Based Closure of Moment Equations

polynomial system satisfy [22]

𝛼𝑘 ∈ R and 𝛽𝑘 > 0 ∀ 𝑘 = 0, 1, 2, . . . , 𝑛 − 1. (3.22)

An equivalent realizability condition is that the related Hankel moment matrix

given by

M𝑛 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑚0 𝑚1 . . . 𝑚𝑛−1

𝑚1 𝑚2 . . . 𝑚𝑛

...
...

. . .
...

𝑚𝑛−1 𝑚𝑛 . . . 𝑚2𝑛−2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(3.23)

is positive definite [54, Sec. 1.1]. On the other hand, 𝒎2𝑛−1 is weakly realizable

if 𝛽𝑘 = 0 for any 𝑘 < 𝑛. In that case, M𝑛 is singular. In terms of realizability,

the only moment sequences of interest for this work are Hamburger sequences.

Therefore, the explicit specification of Ω will be omitted, hence

M𝑝 ≔M𝑝 (R). (3.24)

Criteria for the remaining types of moment problems, which are not detailed

here due to lack of relevance, can be found in the literature, e.g. [33] for Haus-

dorff problems and [54, 148] for Stieltjes problems.

The problem of moment realizability requires careful consideration with re-

gard to the numerical methods used to solve moment transport equations in

order to prevent corruption of the moment set. Even though there are correc-

tion algorithms for unrealizable moment sets, e.g. [173], it should be noted that

they alter moments and additional measures must be taken to compensate the

potential violation of physical conservation laws. Thus, it is preferable to em-

ploy techniques that are guaranteed to preserve moment realizability.

3.4. Moment Inversion Algorithms

As explained at the end of Section 3.2, the abscissas and weights of an 𝑛-node

Gaussian quadrature result from the first 2𝑛 moments. The calculation of a

quadrature rule from moments, a procedure commonly referred to as moment
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3.4. Moment Inversion Algorithms

inversion, is an essential component of QBMMs. While the resulting quadrature

nodes and weights may differ from method to method, virtually every QBMM

computes, at some point, a Gaussian quadrature from moments. Several algo-

rithms are suitable for that purpose, such as the quotient-difference algorithm

(QDA) [141] (see also [33, Sec. 1.5]), the product-difference algorithm (PDA)

[59], the Golub-Welsch algorithm (GWA) [58], and different variants of the long

quotient-modified difference algorithm (LQMDA) [54, 143, 170]. Both the QDA

and the PDA are related to Stieltjes’ work on continued fractions and their re-

lationship to moments and orthogonal polynomials. They may be efficient in

many practical cases but are generally considered to be less stable than the other

mentioned algorithms [96, 170]. The PDA, for instance, is estimated to become

unstable when 𝑛 ≳ 10.
4
Moreover, both the QDA and PDAmay fail for symmet-

ric weight functions. For these reasons (especially the latter which would be an

issue for the problems studied in Chapter 5), the PDA and QDA will hereinafter

be disregarded, and only the LQMDA as well as the GWA are described below.

As the method used to compute the quadrature nodes and weights from the Ja-

cobi matrix can be chosen independently from available methods to solve the

tridiagonal symmetric eigenvalue problem, the descriptions of the algorithms

in this section are limited to the calculation of the elements of J𝑛 from 𝒎2𝑛−1.

3.4.1. The LongQuotient-Modified Difference Algorithm

The (LQMDA) [143] is, in general, suitable to compute the elements of J𝑛 from

a sequence of 2𝑛 modified moments

𝑚′𝑘 =

∫
B
𝑝𝑘 (𝑧)𝑤(𝑧) d𝑧, 𝑘 = 0, 1, . . . , 2𝑛 − 1, (3.25)

where {𝑝0, 𝑝1, . . . , 𝑝2𝑛−1}may be any set of polynomials satisfying a recurrence

relation of the form

𝛾′𝑘 𝑝𝑘+1 (𝑧) = (𝑧 − 𝛼
′
𝑘)𝑝𝑘 (𝑧) − 𝛽′𝑘 𝑝𝑘−1 (𝑧) (3.26)

4
More precisely, Marchisio and Fox [96] state that the number of quadrature nodes resulting

in numerical instabilities depends on the absolute values of the underlying moments and cannot

be predicted a priori. However, they estimate a typical threshold at 𝑛 > 10. This behavior is also

indicated by the numerical study of John and Thein [76].
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3. Quadrature-Based Closure of Moment Equations

with known coefficients 𝛼′
𝑘
, 𝛽′

𝑘
and 𝛾′

𝑘
. However, only the ordinary moments

{𝑚𝑘} are of interest here. The following descriptions are thus limited to the

special case of 𝑝𝑘 (𝑧) = 𝑧𝑘 with the coefficients

𝛼′𝑘 = 𝛽′𝑘 = 0, 𝛾′𝑘 = 1, 𝑘 = 0, 1, 2, . . . . (3.27)

The variant of the LQMDA known as Wheeler algorithm [170] or modified

Chebyshev algorithm [54, Sec. 2.1.7] is only slightly different from that proposed

by Sack and Donovan [143] in terms of the choice of intermediate quantities.

The algorithm presented below is in the form proposed by Wheeler [170] as

described in Ref. [54, Sec. 2.1.7].

The calculation is based on the “mixed moments” 𝑠𝑖 𝑗 . Given a set of ordinary

moments as highlighted above, they are given by

𝑠𝑖 𝑗 =

∫
B
𝜋𝑖 (𝑧)𝑧 𝑗𝑤(𝑧) d𝑧. (3.28)

First, the algorithm is initialized with
5

𝛼0 =
𝑚1

𝑚0

, (3.29)

𝛽0 = 𝑚0, (3.30)

𝑠−1,𝑖 = 0, 𝑖 = 1, 2, . . . , 2𝑛 − 2, (3.31)

𝑠0,𝑖 = 𝑚𝑖 , 𝑖 = 0, 1, . . . , 2𝑛 − 1. (3.32)

The recurrence coefficients with indices 𝑖 = 1, 2, . . . , 𝑛−1 can then be computed

recursively:

𝑠𝑖, 𝑗 = 𝑠𝑖−1, 𝑗+1 − 𝛼𝑖−1𝑠𝑖−1, 𝑗 − 𝛽𝑖−1𝑠𝑖−2, 𝑗 , 𝑗 = 𝑖, . . . , 2𝑛 − 𝑖 − 1 (3.33)

𝛼𝑖 =
𝑠𝑖,𝑖+1
𝑠𝑖𝑖
−

𝑠𝑖−1,𝑖
𝑠𝑖−1,𝑖−1

(3.34)

𝛽𝑖 =
𝑠𝑖𝑖

𝑠𝑖−1,𝑖−1
. (3.35)

5
The initial values of 𝛼0, 𝛽0 and 𝑠−1,𝑖 follow directly from the relationships in (3.8), (3.10) and

(3.6), respectively.
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3.4. Moment Inversion Algorithms

The LQMDA as proposed by Sack and Donovan [143] is obtained by replacing

the intermediate quantities 𝑠𝑖 𝑗 with 𝑠′
𝑖 𝑗

= 𝑠𝑖 𝑗/𝑠𝑖𝑖 and adjusting the calculation

steps accordingly. As evident from (3.33), the computational complexity of the

LQMDA is O(𝑛2), cf. [54].
In the context of QBMMs, the LQMDA or Wheeler algorithm is a popular

choice for the calculation of a quadrature rule from a sequence of moments,

often in the form of an adaptive variant [178] that reduces the order of the ap-

proximation in case of almost-zero weights or strongly clustered abscissas for

increased stability.

3.4.2. The Golub-Welsch Algorithm

The Golub-Welsch algorithm (GWA)
6
is based on the Cholesky decomposition

of the Hankel moment matrix

M𝑛+1 = LL𝑇 , (3.36)

where L =
(︁
𝑙𝑖 𝑗

)︁
is a lower triangular matrix

7
. The Cholesky decomposition ex-

ists for every symmetric positive-definite matrix [57], a condition that is known

to be satisfied by M𝑛+1 provided that the underlying moment sequence is real-

izable, as described in Section 3.3.

Letting L−1 =
(︂
𝑙′
𝑖 𝑗

)︂
, the observation that the polynomials

𝑝 𝑗 (𝑧) =
𝑛∑︂

𝑘=0

𝑙′𝑗+1,𝑘+1𝑧
𝑘 𝑗 = 0, 1, . . . , 𝑛 (3.37)

form an orthonormal system as well as the fact that L−1 can be expressed ex-

plicitly in terms of L result in the following algorithm for the calculation of the

6
It should be noted that it is not entirely clear in the literature what parts of the algorithm

proposed by Golub and Welsch [58] are referred to as GWA. Throughout this thesis, it will be used

to refer only to the computation of the Jacobi matrix from a sequence of moments, which originates,

according to Golub and Welsch [58], from personal communication with Walter Gautschi.

7
Golub and Welsch [58] use the upper triangular matrix R. Here, the more common represen-

tation of the Cholesky decomposition in terms of the lower triangular matrix L = R𝑇
is used with

appropriately adjusted relationships.
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3. Quadrature-Based Closure of Moment Equations

recurrence coefficients:

𝛼𝑘−1 =
𝑙𝑘+1,𝑘
𝑙𝑘,𝑘

−
𝑙𝑘,𝑘−1
𝑙𝑘−1,𝑘−1

𝑘 = 1, . . . , 𝑛, (3.38)√︁
𝛽𝑘 =

𝑙𝑘+1,𝑘+1
𝑙𝑘,𝑘

, 𝑘 = 1, . . . , 𝑛 − 1. (3.39)

The described algorithm uses the moment matrix M𝑛+1, which contains the

first 2𝑛+1moments, while only 2𝑛moments are known. However, the only step

in the Cholesky factorization involving𝑚2𝑛 is the calculation of 𝑙𝑛+1,𝑛+1 (see e.g.

[57]), which is not required to determine the recurrence coefficients with indices

up to order 𝑛 − 1. Hence, the value 𝑚2𝑛 does not affect the entries of J𝑛 and the
only limitation of the GWA for QBMMs is of a practical nature: Most of the

implementations of QBMMs will make use of existing numerical linear algebra

packages, where the Cholesky factorization may fail if the input matrix is not

positive definite. If that is the case, one must choose𝑚2𝑛 appropriately forM𝑛+1
to become positive definite. The most straightforward approach is to simply set

𝑚2𝑛 to a very large value, as done for the study in Chapter 6. The computational

complexity of the GWA is determined by that of the Cholesky decomposition,

which is O(𝑛3), see [57].

3.5. Quadrature-Based Moment Methods

3.5.1. TheQuadrature Method of Moments

The first QBMM, the quadrature method of moments (QMOM), was introduced

byMcGraw [107] for the solution of moment transport equations corresponding

to a PBE for an aerosol size distribution. The QMOM combines the methods

described so far in this chapter to close moment equations like those presented

in Section 2.2. For the sake of simplicity, consider a set of 2𝑛 moment equations

derived from a univariate homogeneous PBE, such as (2.18). Moreover, it is

assumed that source terms in the PBE can be expressed in an integral form that

allows subsuming all terms on the RHS into a single integral term so that the

moment equations can be written as

d𝑚𝑘 (𝑡)
d𝑡

=

∫
Ω

𝑔𝑘 (𝜉) 𝑓 (𝜉, 𝑡) d𝜉, 𝑘 = 0, 1, . . . , 2𝑛 − 1, (3.40)
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3.5. Quadrature-Based Moment Methods

where 𝑔𝑘 is an arbitrary function defined on Ω. Given the relationships de-

scribed in the previous section, the approach to close moment equations like

(3.40) is relatively straightforward: Since the NDF 𝑓 exhibits the mathematical

properties of a weight function of a Gaussian quadrature in that it is an inte-

grable non-negative function, it can be interpreted as such, and the integral can

be approximated by an 𝑛-node Gaussian quadrature, i.e.

d𝑚𝑘 (𝑡)
d𝑡

=

𝑛∑︂
𝑗=1

𝑤 𝑗𝑔𝑘 (𝜉 𝑗 ) + 𝑅𝑛 (𝑔𝑘), (3.41)

where the quadrature nodes 𝜉 𝑗 and weights 𝑤 𝑗 are computed from the first 2𝑛

moments so that the RHS of the 2𝑛 moment equations depend only on the 2𝑛

moments and the system of moment equations is closed.

The procedure to close moment equations with the QMOM is illustrated in

Figure 3.2. With a known set of 2𝑛 moments at time 𝑡𝑖 , one of the algorithms

described in Section 3.4 is used to compute the recurrence coefficients and as-

semble the Jacobi matrix J𝑛 whose eigenvalues and eigenvectors then yield the

abscissas and weights of the 𝑛-point quadrature. After evaluating the integral

𝒎2𝑛−1 (𝑡𝑖 )

Compute Jacobi matrix:
𝒎2𝑛−1 → J𝑛

Solve eigenvalue problem:
J𝑛 → 𝜉 𝑗 , 𝑤 𝑗 ,

𝑗 = 1, 2, . . . , 𝑛

𝑖 ← 𝑖 + 1

Integrate moment eqs.:
𝒎2𝑛−1 (𝑡𝑖 ) → 𝒎2𝑛−1 (𝑡𝑖+1 )

Close moment eqs.:

d𝑚𝑘/d𝑡 ≈
𝑛∑︁
𝑗=1

𝑤 𝑗𝑔 ( 𝜉 𝑗 )

𝑘 = 0, 1, . . . , 2𝑛 − 1

Moment inversion

Figure 3.2.: The procedure of closing moment transport equations with the

quadrature method of moments (QMOM).
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3. Quadrature-Based Closure of Moment Equations

terms using the computed quadrature rule, the moment equations can finally

be solved with a suitable numerical method for the temporal discretization of

differential equations to obtain a new set of moments at time 𝑡𝑖+1, and the entire

sequence of steps is repeated as many times as desired.

As is evident in (3.16) and (3.17), the approximation error generally depends

on the form of 𝑔𝑘 . However, it is worth noting that, regardless of 𝑔𝑘 , the quadra-

ture is also exact (𝑅𝑛 = 0) if 𝑓 represents an 𝑛-point distribution density, which

can formally be expressed as a weighted sum of Dirac delta functions. Thus, it is

frequently stated in the literature [96, 98, 167, 178] that the described approach

is equivalent to an approximation of the NDF by

𝑓 (𝜉) ≈
𝑛∑︂
𝑗=1

𝑤 𝑗𝛿
(︁
𝜉 − 𝜉 𝑗

)︁
. (3.42)

The QMOM is generally considered to be an efficient method [32, 96]. It

has been successfully applied to many different problems [99, 100, 105, 114,

124, 158]. For some problems involving fluxes across phase space boundaries or

strongly nonlinear, however, the QMOM is less suitable and several alternative

QBMMs have been developed for such cases, one of which is described in the

following section.

3.5.2. The ExtendedQuadrature Method of Moments

The standard QMOM described in the previous section may fail to give reason-

ably accurate results in certain cases, best illustrated by an example: Consider

the PBE in (2.12) with 𝑎(𝜉) ≠ 0, 𝑏(𝜉) = S( 𝑓 , 𝜉) = 0 and bounded internal-

coordinate space Ω = [𝜉min, 𝜉max]. Then the 𝑘th moment equation reads, after

integration by parts,

d𝑚𝑘

d𝑡
= − 𝜉𝑘𝑎(𝜉) 𝑓 (𝜉)

|︁|︁|︁𝜉max

𝜉=𝜉min

+ 𝑘

∫
Ω

𝜉𝑘−1𝑎(𝜉) 𝑓 (𝜉) d𝜉. (3.43)

The first term on the RHS requires pointwise values of the NDF, which are

unavailable using the QMOM, considering the discontinuous representation in

(3.42). Furthermore, if 𝑎(𝜉) is strongly nonlinear (the Gauss quadrature is exact
for linear 𝑎(𝜉)), the QMOMmay require a large number of nodes 𝑛, whichwould

result in a large number of moment transport equations. While that alone would
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3.5. Quadrature-Based Moment Methods

only affect the computational costs, a more severe problem is that the moment

inversion problem can become ill-conditioned for large 𝑛 [54, Sec. 2.1]. For such

cases, Yuan et al. [179] used the ideas of the multi-Gaussian quadrature [20] and

the kernel density element method (KDEM) [5] to extend the QMOM and allow

a reconstruction of the NDF by the implementation of so-called kernel density

functions (KDFs) with a presumed shape instead of Dirac delta functions. The

NDF is then approximated by

𝑓 (𝜉) ≈
𝑛∑︂
𝑗=1

𝑤 𝑗𝛿𝜎 (𝜉; 𝜉 𝑗 ), (3.44)

where 𝛿𝜎 is a presumed KDFwith the shape parameter𝜎, an additional variable

needed for the quadrature approximation. Accordingly, the extended QMOM

(EQMOM) requires a set of 2𝑛+1moments. The choice of 𝛿𝜎 depends primarily

on the support of the NDF, Ω. Possible choices are

• Beta KDFs [179] defined on [0, 1] for bounded support,

• Gamma [179], log-normal [94] or Weibull [126] KDFs defined on [0,∞)
for semi-infinite support,

• Gaussian [20] and Laplace [126] KDFs defined on (−∞,∞) for infinite
support.

It should be noted that the KDFs with bounded and semi-infinite support are

not limited to the standard KDF domain [0, 1] and [0,∞), respectively, because
moments can be transformed from the original domain to the KDF domain by

a linear moment transformation. That is, if Ω˜ denotes the KDF domain and the

transformation 𝜉 ∈ Ω→ 𝜉̃ ∈ Ω˜ is given by the linear relationship

𝜉̃ = 𝑎𝜉 + 𝑏, (3.45)

then the corresponding moments are calculated from the original moments by

𝑚̃𝑘 =

𝑘∑︂
𝑗=0

(︃
𝑘

𝑗

)︃
𝑎𝑘− 𝑗𝑏 𝑗𝑚𝑘− 𝑗 . (3.46)

For the sake of simplicity, the rest of this section relies on the assumption that

𝜉 ∈ Ω˜ , i.e. the given moments satisfy 𝑚𝑘 = 𝑚̃𝑘 ∀𝑘 = 0, 1, . . . , 2𝑛.
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3. Quadrature-Based Closure of Moment Equations

The EQMOM consists in performing an extended moment inversion to obtain

a first quadrature (an 𝑛-node quadrature and the KDF-parameter 𝜎), computing

an arbitrary number, say 𝑛12, of second quadrature nodes for each of the first

quadrature nodes, and closing moment equations like (3.43) with the resulting

nested quadrature. These steps are essentially based on the following properties

of the used KDFs:

(i) The KDF 𝛿𝜎 (𝜉; 𝜉 𝑗 ) is centered on the 𝑗th quadrature node, i.e. it has mean

𝜉 𝑗 , and the shape parameter 𝜎 is defined accordingly with respect to the

standard parameters of the used distribution. For example, the Gaussian

KDF 𝛿𝜎 (𝜉; 𝜉 𝑗 ) corresponds to a scaled normal PDF with location param-

eter 𝜉 𝑗 and scale parameter 𝜎.

(ii) The moments associated to the KDF 𝛿𝜎 (𝜉; 𝜉 𝑗 ) can be calculated analyti-

cally in terms of an expression of the form

𝑚
(KDF)
𝑘

(𝜎, 𝜉 𝑗 ) =
𝑘∑︂
𝑖=0

𝛾𝑖 (𝜎)𝜉𝑖𝑘 (3.47)

where the polynomial coefficients 𝛾𝑖 depend on 𝜎 and the chosen KDF

type.

(iii) There is a linear variable transformation 𝜉 ∈ Ω → 𝜁 ∈ B such that

𝛿𝜎 (𝜉; 𝜉 𝑗 ) can be expressed in terms of 𝑤(𝜁), the weight function of a

known family of orthogonal polynomials with support B. For instance,

apart from a constant factor, the Gaussian KDF centered at 𝜉 𝑗

𝛿𝜎 (𝜉; 𝜉 𝑗 ) =
1

√
2𝜋𝜎

exp

{︄
−1
2

(︃
𝜉 − 𝜉 𝑗
𝜎

)︃
2

}︄
(3.48)

can be expressed in terms of the weight function of the Hermite polyno-

mials

𝑤(𝜁) = exp

(︂
−𝜁2

)︂
(3.49)

by the change of variable 𝜉 =
√
2𝜎𝜁 + 𝜉 𝑗 . It should be noted that this

property is not necessarily satisfied by the more recently introduced KDF

types, e.g. the Laplace-KDF. While this does not affect the algorithm to

compute the first quadrature, the computation of the second quadrature

may be significantly less efficient and possibly ill-conditioned.
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3.5. Quadrature-Based Moment Methods

From (3.44), it is obvious that

𝑚𝑘 =

𝑛∑︂
𝑗=1

𝑤 𝑗𝑚
(KDF)
𝑘

(𝜎, 𝜉 𝑗 ). (3.50)

Thus, with the definition of the so-called degenerated moments [126], i.e. the

moments corresponding to the ordinary 𝑛-point Gaussian quadrature with ab-

scissas 𝜉 𝑗 and weights 𝑤 𝑗 ,

𝑚∗𝑘 =

𝑛∑︂
𝑗=0

𝑤 𝑗𝜉
𝑘
𝑗 , (3.51)

(3.47) and (3.50) can be expressed for 𝑘 = 0, 1, . . . , 𝑝 by the linear maps

𝒎𝑝 = A𝑝 (𝜎)𝒎∗
𝑝 , (3.52)

𝒎∗
𝑝 = A−1𝑝 (𝜎)𝒎𝑝 , (3.53)

whereA𝑝 andA−1𝑝 are lower triangular matrices that can be computed explicitly

from 𝜎. The resulting KDF-dependent expressions as well as additional KDF-

specific information needed for the inversion procedure can be found in [126,

App. B].

The extended quadrature is then obtained by repeated moment inversions

and conversions between the “normal” moments and degenerate moments until

(3.50) is satisfied for 𝑘 = 2𝑛, which can be thought of as an iterative procedure

to find the root of

𝜓(𝜎) = 𝑚2𝑛 − 𝒆𝑇
2𝑛+1A2𝑛 (𝜎)𝒎∗

2𝑛, (3.54)

where 𝒆2𝑛+1 ∈ R(2𝑛+1) is the (2𝑛+1)th unit basis vector. The steps of the original
extended moment inversion are shown in Figure 3.3. More recently, improved

methods based on moment realizability have been proposed [126].

With an available extended quadrature, the next step is to compute an ar-

bitrarily large number 𝑛12 of second quadrature nodes and weights. This can

be done efficiently by exploiting the above-mentioned property (iii): For clas-

sical polynomials, the recurrence coefficients are known explicitly (see e.g. [54,

Table 1.1]) so that the Jacobi matrix J𝑛12 can be assembled without an addi-

tional moment inversion, if 𝛿𝜎 (𝜉; 𝜉 𝑗 ) can be expressed in terms of the asso-

ciated weight function 𝑤(𝜁). Thus, the second quadrature for each KDF can
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3. Quadrature-Based Closure of Moment Equations

𝒎2𝑛

Initial guess
𝜎

Convert
𝒎2𝑛−1 → 𝒎∗

2𝑛−1
(3.53))

Invert
𝒎∗

2𝑛−1 → 𝑤 𝑗 , 𝜉 𝑗 ,

𝑗 = 1, . . . , 𝑛

QMOM
inversion

Compute
𝑤 𝑗 , 𝜉 𝑗 → 𝑚∗

2𝑛

(3.51)

𝜓 (𝜎) ≈ 0 ?
Compute new

𝜎

𝑤 𝑗 , 𝜉 𝑗 , 𝜎

𝑗 = 1, . . . , 𝑛

no

yes

Figure 3.3.: The moment inversion algorithm of the extended quadrature

method of moments (EQMOM), cf. [179]. The computation of a new

𝜎 can be done based on common iterative root finding algorithms.

be calculated by solving the eigenvalue problem related to J𝑛12 to obtain the

𝑛12-node Gaussian quadrature associated with 𝑤(𝜁) and then apply the linear

transformation 𝜁 → 𝜉 to the abscissas.

Finally, denoting the 𝑗th node and weight of the second quadrature belonging

to the 𝑖th node of the first quadrature by 𝜉𝑖, 𝑗 and 𝑤𝑖, 𝑗 , respectively, (3.43) can

be closed using the reconstructed NDF and the nested quadrature:

𝑚𝑘 ≈ −
𝑛∑︂
𝑗=1

𝜉𝑘𝑎(𝜉)𝑤 𝑗𝛿𝜎 (𝜉; 𝜉 𝑗 )
|︁|︁|︁𝜉max

𝜉=𝜉min

+ 𝑘

𝑛∑︂
𝑖=1

𝑤𝑖

𝑛12∑︂
𝑗=1

𝑤𝑖, 𝑗𝜉
𝑘−1
𝑖, 𝑗 𝑎(𝜉𝑖, 𝑗 ). (3.55)
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3.5. Quadrature-Based Moment Methods

3.5.3. MultivariateQuadrature-Based Moment Methods

The majority of real physical problems are only adequately described by a mul-

tivariate NDF to capture relevant particle properties such as particle size and

velocity components in multiple dimensions. However, the fundamental theory

of Gaussian quadrature rules and orthogonal polynomials does not extend to in-

tegrals over a multidimensional domain Ω. Assuming that the moment source

term in a multivariate moment transport equation of order (𝑘1, 𝑘2, . . . , 𝑘𝑁 ),
such as (2.16), can be written analogously to (3.40) as

𝑚̇𝑘1 ,𝑘2 ,...,𝑘𝑁 =

∫
Ω

𝑔𝑘1 ,𝑘2 ,...,𝑘𝑁 (𝝃) 𝑓 (𝝃) d𝝃, (3.56)

the multivariate quadrature-based closure can formally be expressed as

𝑚̇𝑘1 ,𝑘2 ,...,𝑘𝑁 ≈
𝑛∑︂
𝑗=1

𝑤 𝑗𝑔𝑘1 ,𝑘2 ,...,𝑘𝑁 (𝝃 𝑗 ) + 𝑅𝑛 (𝑔𝑘1 ,𝑘2 ,...,𝑘𝑁 ). (3.57)

Detailed theoretical considerations on orthogonal polynomials of multiple vari-

ables and the associated multivariate Gaussian quadrature formulas, so-called

cubature formulas, can be found in the literature, e.g. [38]. However, the ex-

istence of such cubature formulas is not guaranteed and there are no reliable

methods of computation based on multivariate moment sets. Instead, alter-

native multivariate QBMMs have been developed that rely on additional tech-

niques and assumptions. Examples are the direct QMOM (DQMOM)
8
[98], the

tensor-product QMOM
9
, the conditional QMOM (CQMOM) [178] and, particu-

larly in the context of multivariate velocity-based NDFs, the hyperbolic version

of the CQMOM (CHyQMOM) [50, 122]. However, to the author’s best knowl-

edge, there is little to no reported general theory concerning the error of such

quadrature approximations. A brief summary of two of the mentioned methods,

namely the tensor-product QMOM and the CQMOM, is given below, focusing

8
In this context, it should be noted that the DQMOMdiffers fundamentally from the approaches

underlying other QBMMs: Instead of solving a system of moment equations that are closed with a

quadrature-based method, transport equations for the quadrature nodes and weights derived from

the quadrature form of the moments are solved directly.

9
The term tensor-product QMOM is used by Marchisio and Fox [96] to refer to a generalized

form of the related methods proposed in [177] and [44].
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3. Quadrature-Based Closure of Moment Equations

on common problems as well as the importance of the univariate moment in-

version for multivariate QBMMs.

The tensor-product QMOM [44, 96, 177] uses the pure moments, i.e. the mo-

ments associated with the marginal distribution of only one internal coordi-

nate, to compute a univariate Gaussian quadrature in each dimension, resulting

in a total of 𝑁 univariate moment inversions. Then, denoting the number of

nodes in 𝑖th dimension by 𝑛𝑖 , all possible combinations yield 𝑛 = 𝑛1𝑛2 · · · 𝑛𝑁
𝑁-dimensional quadrature nodes. The corresponding weights are computed by

solving the linear system

𝑚𝑘1 ,𝑘2 ,...,𝑘𝑁 =

𝑛∑︂
𝑗=1

𝑤 𝑗𝜉
𝑘1
1
𝜉
𝑘2
2
· · · 𝜉𝑘𝑁

𝑁
(3.58)

to force agreement of the multivariate quadrature with the pure moments as

well as the required number of additional mixed moments for (3.58) to have

a unique solution. However, the resulting weights may be negative, and the

preservation of moment realizability is thus not guaranteed.

The CQMOM [178] is based on Bayes’ theorem (here in two dimensions for

the sake of simplicity)

𝑓 (𝜉1, 𝜉2) = 𝑓 (𝜉2 |𝜉1) 𝑓 (𝜉1), (3.59)

where 𝑓 (𝜉2 |𝜉1) denotes the conditional density of 𝜉2 given 𝜉1, and 𝑓 (𝜉1) the
marginal distribution density of 𝜉1. Then, letting Ω = Ω1 × Ω2, 𝜉1 ∈ Ω1 and

𝜉2 ∈ Ω2, the moment of order (𝑘, 𝑙) can be written as

𝑚𝑘,𝑙 =

∫
Ω1

∫
Ω2

𝜉𝑘
1
𝜉𝑙
2
𝑓 (𝜉2 |𝜉1) 𝑓 (𝜉1) d𝜉2 d𝜉1

=

∫
Ω1

𝜉𝑘
1

[︄∫
Ω2

𝜉𝑙
2
𝑓 (𝜉2 |𝜉1) d𝜉2

]︄
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
≕ ⟨𝜉𝑙

2
⟩(𝜉1)

𝑓 (𝜉1) d𝜉1, (3.60)

where ⟨𝜉𝑙
2
⟩(𝜉1) is referred to as conditional moment. Thus, using an 𝑛1-node

Gaussian quadrature in the first dimension yields

𝑚𝑘,𝑙 =

𝑛1∑︂
𝑗=1

𝑤1, 𝑗𝜉
𝑘
1, 𝑗 ⟨𝜉𝑙2⟩(𝜉1, 𝑗 ). (3.61)
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Assuming that 𝑛2 quadrature nodes in the second dimension are desired for

each node in the first dimension, and that all the required moments on the LHS

are available, the next step is to solve the linear system given by (3.61) with

𝑘 = 0, 1, . . . , 𝑛1 − 1 and 𝑙 = 0, . . . , 2𝑛2 − 1 to obtain 𝑛1 sets of 2𝑛2 conditional

moments and finally, applying a moment inversion algorithm, 𝑛1 conditional

𝑛2-node quadratures. However, realizability of the conditional moment sets is

by nomeans guaranteed, which may cause the inversion algorithm to fail unless

the order of the approximation is reduced, as proposed by Yuan and Fox [178].

The extension of the CQMOM to arbitrary dimensions is possible considering

𝑓 (𝜉1, 𝜉2, . . . , 𝜉𝑁 ) = 𝑓 (𝜉𝑁 |𝜉1, . . . , 𝜉𝑁−1) · · · 𝑓 (𝜉2 |𝜉1) 𝑓 (𝜉1), (3.62)

In the 𝑁-dimensional case, the CQMOM involves 1 + 𝑛1𝑛2 · · · 𝑛𝑁−1 univariate
moment inversions.
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4. Modeling Droplet Breakup
withQuadrature-Based
Moment Methods

The PBEs and the derived moment equations in Chapter 2 contain a source term

S that has not been further detailed up to this point. It represents all processes

that can be considered discontinuous at the particle scale. One such process

is particle breakup, which occurs in flow regimes where destabilizing inertial

forces are dominant with respect to the stabilizing surface tension forces. Then

particles, typically bubbles or droplets, break up into smaller particles and con-

tinue disintegrating until the fragments reach a stable size. This chapter is fo-

cused on the breakup of liquid droplets, which is often a dominant process in

particulate systems comprising a dispersed liquid such as sprays.

Numerous breakup models for PBEs have been proposed in the past. A com-

prehensive overview is given in the review article by Liao and Lucas [90]. The

majority of those models, however, are suited to bubbles, since they are based on

the assumption that collisions with turbulent eddies in the carrier fluid are the

primary mechanism of fragmentation, whereas the breakup of liquid droplets

is usually caused by surface instabilities, such as Rayleigh-Taylor (RT) [83] and

Kelvin-Helmholtz (KH) instabilities [111]. Depending on the flow regime and

the dominant type of surface instabilities, different breakup modes have been

observed. A considerable number of theoretical, numerical and experimental

studies imply that the most important breakup modes present in liquid dis-

persions are those referred to as bag breakup and shear breakup. An estab-

lished model for these breakup modes is the model of Reitz and Diwakar [138,

139], which was originally developed for the Eulerian-Lagrangian simulation of

sprays under conditions typical in internal combustion engines.
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The objective of the research reported in this chapter is to formulate the Reitz-

Diwakar model, serving as a representative example for a simple Lagrangian

model, for QBMMs and numerically investigate the behavior in a spatially ho-

mogeneous setup compared to a Monte-Carlo method. For this purpose, a brief

review of the physical background in terms of breakup mechanisms is given

first. Then, after a description of the general form of the breakage term, the

Lagrangian model is formulated as a source term in the PBE and subsequently

for QBMMs. Following that, important results of numerical investigations of

droplet breakup with QBMMs are presented and discussed, before finalizing this

chapter with a summary of major conclusions.

4.1. Mechanisms of Droplet Breakup

As opposed to bubbly flows where collisions with turbulent eddies in the sur-

rounding fluid are commonly considered to be the primary cause of fragmenta-

tion, the breakup of liquid droplets is commonly attributed to growing surface

waves due to RT or KH instabilities. RT instabilities [83] occur at the interface

of two fluids with different densities where the lighter fluid is accelerating into

the heavier one, which constitutes an inherently unstable system due to waves

at the flat surface that grow exponentially with time. The KH instability [111]

is a shear-induced surface instability that occurs in systems of two fluids with

a velocity difference across the interface. As a consequence of the growth of

surface waves induced by small disturbances in the (linear) tangential velocity,

the interface becomes unstable exhibiting vortical structures.

Both mentioned types of surface instabilities are a consequence of inertial

forces due to a relative velocity between droplet and carrier fluid and eventually

lead to breakup when the destabilizing effect of growing surface waves exceeds

the stabilizing effect of surface tension. Thus, the behavior of droplet breakup

is primarily characterized by the dimensionless Weber number that quantifies

the relative importance of inertial forces with respect to surface tension forces.

It is defined by

We =
𝑑𝜌 𝑓 𝑢𝑟

𝜎𝑙

, (4.1)
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Figure 4.1.: Breakup modes at low Ohnesorge numbers identified in different

studies of Krzeczkowski [81], Pilch and Erdman [127], Hsiang and

Faeth [71], Gelfand [55], Dai and Faeth [27], Cao et al. [18], Guilden-

becher et al. [64].

where 𝑑 is the droplet diameter, 𝜌 𝑓 the density of the carrier fluid, 𝑢𝑟 the relative

velocity between fluid and droplet and 𝜎𝑙 the liquid surface tension.

The identification of breakupmodes has been the subject of numerous studies.

Figure 4.1 illustrates the breakup regimes reported by different authors for low

Ohnesorge numbers
1
, depending only on the droplet Weber number.

Considering the use of various terms for identical breakup morphologies, five

distinct modes of droplet breakup have been observed:

(1) Vibrational breakup refers to the fragmentation of a drop in the absence

of aerodynamic forces. This type of breakup is driven solely by oscilla-

tions of the drop at is natural frequency due to surface tension. Since this

mechanism is very slow and the resulting fragment sizes are large, it is

commonly ignored [64].

1
The Ohnesorge number is defined in terms of the Weber and Reynolds number as Oh =√

We/Re and quantifies the importance of viscous effects.
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(2) Bag breakup occurs when the Weber number exceeds a critical value. As-

suming that viscous effects are negligible, an approximate value consis-

tently stated in the literature isWe ≳ 11. Bag breakup is always initiated

by a deformation, increasing the surface area perpendicular to the dom-

inant flow direction, until a bag-like structure is formed. Subsequently,

the first breakup of the bag results in the formation of a toroidal ring and

small fragments of almost equal sizes. The ring then disintegrates into

smaller droplets, which have been observed to be considerably larger than

the fragments of the initial bag breakup [24]. The large surface area per-

pendicular to the flow suggests that RT-instabilities play a major role in

the bag breakup regime, which is supported by several experimental, nu-

merical and theoretical studies [72, 82, 159, 161, 180, 181]. As vibrational

breakup is usually neglected, the onset of bag breakup is considered the

first criticality.

(3) Shear breakup is a breakup mode associated with high Weber numbers.

It is characterized by a sheet that is stripped from the periphery of the

deformed droplet and breaks up into smaller droplets, while the coherent

core drop remains until after disintegration. It is also referred to as sheet

stripping and sheet thinning in Figure 4.1. Experimental and numerical

studies as well as theoretical considerations suggest that KH instabilities

are the primary cause of shear breakup [159, 161].

(4) Multimode breakup refers to the transition from bag to shear breakup.

Different breakup morphologies in this regime have been identified as

shown in Figure 4.1. It is assumed that the physical mechanisms as well

as the morphologies are some combination of bag and shear breakup [64].

(5) Catastrophic breakup is attributed to large-amplitude surface waves that

penetrate a drop and initiate a cascading process in which fragments can

undergo multiple consecutive breakups [127]. However, it has also been

suggested that catastrophic breakup does not exist [160].

It can be concluded from the brief review above that three breakup modes

are dominant in particulate systems involving dispersed droplets: bag breakup,

shear breakup and multimode breakup, which is assumed to be a combination

of the former two.
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4.2. The Breakup Term in Moment Equations

Up to this point, the source term due to discontinuous events S that appears

in the PBE (2.10) and the derived moment equations (2.16) has not been further

specified. Considering a measure of particle size 𝜉 ∈ (0,∞) as the only internal

coordinate and assuming the absence of all discontinuous processes other than

breakup, the source term can be written as [96, 136]

S(𝜉) =
∫ ∞

𝜉

𝜈(𝜉′)𝛽(𝜉 |𝜉′) 𝑓 (𝜉′) d𝜉′ − 𝜈(𝜉) 𝑓 (𝜉), (4.2)

where 𝜈(𝜉) is the breakup rate and the function 𝛽(𝜉 |𝜉′) is the conditional frag-
ment size distribution of 𝜉 given the pre-breakup size 𝜉′. The first term on the

RHS is the birth term accounting for the generation of new particles as a result

of fragmentation. The second term on the RHS represents the disappearance of

particles.

Let the moment transform of the breakup source term be defined as

B𝑘 ≔

∫ ∞

0

𝜉𝑘S(𝜉) d𝜉. (4.3)

Then the source term in the 𝑘th moment equation reads

B𝑘 =

∫ ∞

0

𝜉𝑘
∫ ∞

𝜉

𝜈(𝜉′)𝛽(𝜉 |𝜉′) 𝑓 (𝜉′) d𝜉′ d𝜉 −
∫ ∞

0

𝜉𝑘𝜈(𝜉) 𝑓 (𝜉) d𝜉. (4.4)

This can can also be written as [136, Sec. 3.2.2]

B𝑘 =

∫ ∞

0

𝜈(𝜉′) 𝑓 (𝜉′)
∫ 𝜉 ′

0

𝜉𝑘𝛽(𝜉 |𝜉′) d𝜉 d𝜉′ −
∫ ∞

0

𝜉𝑘𝜈(𝜉) 𝑓 (𝜉) d𝜉. (4.5)

Finally, using an 𝑛-point quadrature rule, the source term in the 𝑘th moment

equation can be approximated by

B𝑘 ≈
𝑛∑︂
𝑗=1

𝑤 𝑗𝜈(𝜉 𝑗 )
[︄∫ 𝜉 𝑗

0

𝜉𝑘𝛽(𝜉 |𝜉 𝑗 ) d𝜉 − 𝜉𝑘𝑗

]︄
, (4.6)

which can be computed efficiently if an analytical expression exists for the inner

integral.
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4.3. Formulation of the Reitz-Diwakar Breakup
Model forQuadrature-Based Moment
Methods

The Reitz-Diwakar model [138, 139] is an established Lagrangian model for the

bag and shear breakup
2
mode, originally developed for fuel sprays in engines.

In this section, the model is formulated in terms of a population balance model

and finally as a model for QBMMs.

According to the Reitz-Diwakar model, breakup occurs if

We ≥ 𝐶bag, (4.7)

where 𝐶bag is a model constant defining the critical Weber number for bag

breakup.
3
If (4.7) is satisfied, the breakup mode is determined by a second con-

dition: Shear breakup occurs if

We√︁
Rep

≥ 𝐶shear, (4.8)

where the particle Reynolds number is defined as

Rep =
𝑢𝑟𝑑

𝜈 𝑓

, (4.9)

and 𝐶shear is a model constant of order unity. Otherwise, the breakup mode is

assumed to be bag breakup. Once the type of breakup is known, the breakup

rate and the fragment sizes need to be determined. As regards the latter, the

Reitz-Diwakar model is based on a very simple idea, namely that the size of

droplets produced by breakup is exactly the critical droplet size. In other words,

a constant fragment size is chosen such that the inequalities in (4.7) or (4.8)

(depending on the breakup regime) become equalities.

2
In the original publication the breakup mode is referred to as “stripping breakup”. Here, the

term “shear breakup” is used for the sake of consistency with earlier sections.

3
Here the original limits for the two considered breakup modes, based on an earlier experimen-

tal study [116], are replaced by general model constants.
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As to the breakup frequency, the lifetimes of unstable droplets are given by
4

𝜏bag = 𝐷bag

√︄
𝜌𝑝𝑑

3

𝜎𝑙

, (4.10)

𝜏shear = 𝐷shear

𝑑

𝑢𝑟

√︃
𝜌𝑝

𝜌 𝑓

. (4.11)

where 𝜌𝑝 is the droplet (particle) density and 𝐷bag and 𝐷shear are model con-

stants of order unity.

For themesoscopic formulation, let the only internal coordinate be the droplet

diameter, i.e. 𝜉 = 𝑑. Then, taking into account the definitions of the Weber and

Reynolds number, the breakup limits in (4.7) and (4.8) can be expressed in terms

of the critical droplet sizes

𝜉̂
bag

= 𝐶bag

𝜎𝑙

𝜌 𝑓 𝑢
2

𝑟

, (4.12)

𝜉̂
shear

= 𝐶2

shear

𝜎2

𝑙

𝜌2
𝑓
𝜈 𝑓 𝑢

3

𝑟

, (4.13)

As mentioned above, the Reitz-Diwakar model assumes a constant fragment

size equal to the critical size of the respective breakup mode. Thus, the frag-

ment size distributions can be expressed as Dirac delta functions centered at

the critical size, i.e.
5

𝛽mode (𝜉 |𝜉′) =
(︃
𝜉′

𝜉

)︃
3

𝛿

(︂
𝜉 − 𝜉̂

mode

)︂
, (4.14)

where “mode” represents either “bag” or “shear”. The factor (𝜉′/𝜉)3 ensures the
conservation of mass.

The breakup frequencies are simply the reciprocals of the droplet lifetimes in

(4.10) and (4.11). To mathematically express the above-described conditions for

4
The original model was formulated in terms of the droplet radius instead of the droplet diam-

eter. However, the difference can be taken into account by choosing the model constants appropri-

ately.

5
It should be noted that, in the original Lagrangian model, the fragment size is determined

by a rate equation corresponding to a continuously shrinking droplet rather than discontinuous

fragmentation.
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breakup, one can use the Heaviside step function

Θ(𝜉) =
⎧⎪⎪⎨⎪⎪⎩
1 if 𝜉 > 0,

0 otherwise.
(4.15)

Then the breakup rates corresponding to the two considered breakupmodes can

be written as

𝜈bag (𝜉) = Θ(𝜉 − 𝜉̂
bag
)
[︂
1 − Θ(𝜉 − 𝜉̂

shear
)
]︂
𝐷−1

bag

√︃
𝜎𝑙

𝜌 𝑓

𝜉−3/2, (4.16)

𝜈shear (𝜉) = Θ(𝜉 − 𝜉̂
bag
)Θ(𝜉 − 𝜉̂

shear
)𝐷−1

shear

√︃
𝜌 𝑓

𝜌𝑝

𝑢𝑟𝜉
−1. (4.17)

The factor 1 − Θ(𝜉 − 𝜉̂
shear
) in (4.16) accounts for the model assumption that

bag breakup only takes place if the condition for shear breakup in (4.8) is not

satisfied. The breakup term in the PBE then results from the sum of bag and

shear breakup:

S(𝜉) =
∫ ∞

𝜉

[︁
𝜈bag (𝜉′)𝛽bag (𝜉 |𝜉′) + 𝜈shear (𝜉′)𝛽shear (𝜉 |𝜉′)

]︁
𝑓 (𝜉′) d𝜉′

−
[︁
𝜈bag (𝜉) + 𝜈shear (𝜉)

]︁
𝑓 (𝜉).

(4.18)

Finally, substitution into (4.6) and integration yields the source term in the 𝑘th

moment equation in quadrature form:

B𝑘 ≈
𝑛∑︂
𝑗=1

[︄
[1 − Θ(𝜉 𝑗 − 𝜉̂shear)]𝐷−1bag

√︃
𝜎𝑙

𝜌 𝑓

(︂
𝜉̂
𝑘−3
bag

𝜉
3/2
𝑗
− 𝜉𝑘−3/2

𝑗

)︂
+ Θ(𝜉 𝑗 − 𝜉̂shear)𝐷−1shear

√︃
𝜌 𝑓

𝜌𝑝

(︂
𝜉̂
𝑘−3
shear

𝜉2𝑗 − 𝜉𝑘−1𝑗

)︂]︄
𝑤 𝑗Θ(𝜉 𝑗 − 𝜉̂bag).

(4.19)

It is easy to verify that B3 = 0, i.e. mass is conserved. In the following section,

the expression above is investigated in comparison to the original form of the

Reitz-Diwakar model using a spatially homogeneous univariate configuration.

4.4. Numerical Tests

In this section, major results of numerical investigations of the Reitz-Diwakar

model for droplet breakup using QBMMs are presented and discussed. The
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study consists of three test cases. The general approach and the main features

of the different test cases are described in Section 4.4.1 below. Following that,

results of the tests are discussed one by one in Sections 4.4.2–4.4.4.

4.4.1. Summary of Test Cases

The numerical investigations in this section include three different test cases

that are all based on the assumption of constant fluid properties. These fluid

properties as well as other parameters that are uniformly used in all test cases

are summarized in Table 4.1.

Table 4.1.: Uniform parameters used in all test cases for the numerical investi-

gation of droplet breakup with QBMMs.

Quantity Value Unit

Droplet density 𝜌𝑝 1000 kg/m
3

Fluid density 𝜌 𝑓 1.3 kg/m
3

Liquid surface tension 𝜎𝑙 0.05 N/m

Relative velocity 𝑢𝑟 60 m/s

Model constant 𝐶bag 12 -

Model constant 𝐶shear 0.5 -

Model constant 𝐷bag 0.785 (≈ 𝜋/4, cf. [139]) -

Model constant 𝐷shear 10 -

In all three test cases, QBMMs are employed to solve the system of moment

equations

d𝑚𝑘

d𝑡
= B𝑘 , 𝑘 = 0, 1, . . . , (4.20)

where the RHS results from the breakup term derived in Section 4.3. For all

test cases, the temporal derivative was discretized using a simple explicit Euler

method. Thus, denoting the numerical solution at time 𝑡𝑖 by 𝑚𝑖
𝑘
, the solution at

time 𝑡𝑖+1 is given by

𝑚𝑖+1
𝑘 = 𝑚𝑖

𝑘 + Δ𝑡B𝑘 . (4.21)
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As the Euler method is only first-order accurate, a sufficiently small step size

Δ𝑡 = 10
−7

s was determined experimentally. The explicit Euler method was

chosen due to its simplicity and relative robustness with regard to moment re-

alizability in cases where the moment sequence is on or close to the moment

space boundary, which is a common situation in the configurations investigated

in this section. For more detailed considerations on the problem of moment re-

alizability with respect to the temporal discretization of moment equations, see

Section 5.3.

Differences between the test cases in terms of properties of the droplet popu-

lation and breakup modes were created by varying only the fluid viscosity and

the initial distribution of droplet sizes. These parameters and the resulting di-

mensionless numbers and breakup modes are given in Table 4.2. It is important

to note that, in this context, the breakupmode referred to as multimode breakup

describes the simultaneous presence of bag and shear breakup.

Table 4.2.: Varied parameters in different test cases for the numerical investiga-

tion of droplet breakup with QBMMs.

Case 1 Case 2 Case 3

Dynamic viscosity 𝜌 𝑓 𝜈 𝑓 4 · 10−5 Pa s 1 · 10−5 Pa s 4 · 10−5 Pa s
Initial distribution Delta Delta Log-normal

Weber number We 93.6 93.6 17. . . 491

Particle Reynolds number Rep 1950 7800 361. . . 10239

Breakup mode Shear Multimode Multimode

The first two test cases are based on initially monodisperse populations, i.e.

droplets with equal sizes. They serve as simple tests to validate the quadrature-

based moment model and implementation, as both configurations correspond

to discrete distributions where the QMOM with a sufficient number of nodes

is an exact representation. As the EQMOM is, in such cases, equivalent to the

QMOM, only the QMOM is used for the first two cases. The third test involves

more realistic initial droplet sizes sampled from a log-normal distribution. For

Case 3, the Gamma-EQMOM was also employed in addition to the QMOM. In
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all cases, the “Lagrangian” model
6
described by the expressions (4.7)–(4.11) is

used as a reference solution. More precisely, the relationships in (4.7)–(4.11)

are applied to each sample, and the reference moments are computed from the

resulting discrete distribution. With respect to Case 3, the method to compute

the reference solution can be thought of as a Monte-Carlo method.

In the following sections, the used QBMMs are indicated first by the general

type of method and second by the number of moments. For example, the six-

moment (three-node) QMOM is referred to as QMOM-6 and the seven-moment

(three-node) EQMOM by EQMOM-7. As only Gamma-KDFs were used with the

EQMOM, the explicit labeling as Gamma-EQMOM is omitted for brevity.

4.4.2. Case 1: Shear Breakup of Monodisperse Droplets

This first test case is characterized by an initially monodisperse population in

the shear breakup regime. Because of the constant fragment size produced by

breakup according to the Reitz-Diwakar model, the NDF is, at all times, repre-

sented by the two-point distribution density

𝑓 (𝜉) =
2∑︂
𝑗=1

𝑤 𝑗𝛿(𝜉 − 𝜉 𝑗 ), 𝜉1 = 𝜉 (0) , 𝜉2 = 𝜉̂
shear

, 𝑤1, 𝑤2 ≥ 0, (4.22)

where 𝜉 (0) is the initial constant droplet size. Therefore, the QMOM using two

Gaussian quadrature nodes is exact, and solving four moment equations is suffi-

cient to obtain the exact solution (except for round-off errors). This is shown in

Figure 4.2 for the zeroth moment, which is equal to the total number of droplets.

Not surprisingly, the QMOM-2, considering only a mean droplet size, produces

very large errors and underestimates breakup significantly after initially rapid

breakup. The QMOM-4, on the other hand, yields accurate results as expected.

As the two-node representation is exact, i.e. 𝒎5 ∈ 𝜕M5 and thus 𝛽2 = 0, the

solution of the eigenvalue problem associated with the Jacobi matrix J3 results
in at least one zero-weight, and the QMOM-6 yields results that are practically

identical to those of the QMOM-4.

6
It should be noted that, while the Reitz-Diwakar model was originally developed for Eulerian-

Lagrangian simulations, the term “Lagrangian” is (strictly speaking) not meaningful in a spatially

zero-dimensional context.

57



4. Modeling Droplet Breakup with Quadrature-Based Moment Methods

101

103
m

0 [
-]

0.0 0.5 1.0 1.5 2.0
Time [s] ×10 3

10 5

10 3

10 1

Re
l. 

er
ro

r

Reference QMOM-2 QMOM-4 QMOM-6

Figure 4.2.: Temporal evolution of the total number of droplets (top) and relative

error (bottom) for Case 1.

Figure 4.3 shows the temporal evolution of the mean diameter 𝑚1/𝑚0. Since

all transported moments are theoretically exact using the QMOM with two or

more nodes, the QMOM-4 and QMOM-6 produce accurate results, while, as a

consequence of the underestimated breakup, the mean diameter is drastically

overpredicted using the QMOM-2. A similar trend can be observed in Figure 4.4,

which shows the Sauter mean diameter (SMD) 𝑚3/𝑚2, a physically important

measure of the volume-to-surface ratio. As neither 𝑚2 nor 𝑚3 are considered

when using the QMOM-2, they were reconstructed from the one-node quadra-

ture, and the shown SMD is thus equal to the mean diameter in Figure 4.3. In

addition to the demonstrated lack of accuracy, the fact that 𝑚3 is not a trans-

ported moment makes the QMOM-2 non-conservative in terms of mass and

thus unsuitable for this type of problem when using diameter as the internal

coordinate. An alternative approach is to use volume as the internal coordinate

instead. In that case, however, the surface is not computed accurately, which is

important for several processes involving e.g. mass and heat transfer in more

complex configurations. Due to the lack of mass conservation, methods that do
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Figure 4.3.: Temporal evolution of the mean diameter (top) and relative error

(bottom) for Case 1.
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Figure 4.4.: Temporal evolution of the Sauter mean diameter (top) and relative

error (bottom) for Case 1.
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not involve an equation for 𝑚3 are hereinafter disregarded. As for the higher-

order methods, it is worth mentioning that, by virtue of the preservation of 𝑚3,

the SMD depends only on 𝑚2.

In summary, the results of the first test case demonstrate that the formulation

of the quadrature-based moment model in Section 4.3 corresponds to the orig-

inal Lagrangian model in the shear breakup regime. Moreover, the QMOM-2

was clearly shown to be unsuitable for the investigated kind of problem, not

only due to the previously known lack of mass conservation, but also generally

poor accuracy.

4.4.3. Case 2: Multimode Breakup of Monodisperse
Droplets

The second case serves as a test to validate the quadrature-based formulation of

the Reitz-Diwakar model in the bag breakup regime. As the model has already

been validated for shear breakup, this is done using parameters corresponding to

the multimode breakup regime (see Table 4.2), which is used here to describe the

presence of both bag and shear breakup. Starting with the same monodisperse

population as in the previous section, the fluid viscosity is chosen such that the

fragments of the initial shear breakup are in the bag breakup regime. As a result,

the NDF is a three-point distribution density, similar to that in (4.22), only with

one additional node 𝜉3 = 𝜉̂
bag

. Thus, the considerations in the previous section

can be transferred to the case of a three-node distribution density in that the

QMOMmust be exact with six or more transported moments. This is confirmed

by the results in terms of the total number of droplets in Figure 4.5 and the SMD

in Figure 4.6. As expected, the QMOM-6 and QMOM-8 are accurate, whereas

the results of the QMOM-4 display relative errors in the ten-percent range.

It can be concluded from the second test case that the formulation of the

quadrature-based moment model in Section 4.3 is consistent with respect to the

original Lagrangian model for both considered breakup modes. Furthermore,

the QMOM-4 produces relatively large errors. However, this setup involving

a three-node distribution is very specific, and the latter result should not be

generalized to configurations involving continuous distributions.
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Figure 4.5.: Temporal evolution of the total number of droplets (top) and relative

error (bottom) for Case 2.
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Figure 4.6.: Temporal evolution of the Sauter mean diameter (top) and relative

error (bottom) for Case 2.
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4.4.4. Case 3: Multimode Breakup of Polydisperse Droplets

The third test case is characterized by a more realistic polydisperse initial popu-

lation of droplets with 1000 different sizes that were sampled from a log-normal

distribution. These samples were then used as the initial condition to compute

the reference solution, and the moments resulting from the discrete distribution

as the initial condition for QBMMs. The distribution ofWeber numbers resulting

from the sampled droplet sizes and the chosen parameters in Tables 4.1 and 4.2

is shown in Figure 4.7. In addition to the QMOM, the EQMOM was also em-

ployed in this case, using Gamma-KDFs and ten second quadrature nodes for

each point of the first quadrature. This number was determined in a pre-test

that showed no further improvement when using up to 100 second quadrature

nodes, see Appendix A.2 for additional information.

The temporal evolution of the total number of droplets resulting from the

solution of up to ten moment equations with the QMOM and the EQMOM is

shown in Figure 4.8. It can be seen that the QMOM using six or more moments

produces relative errors of about 1 % or less over the entire observed time inter-

val, even less than 0.1 % in case of theQMOM-10. This can be deemed reasonably

accurate considering the discontinuous integrand in the moment equations as

well as the considerable deviation of the actual distribution in Figure 4.7 from a

three-point or five-point distribution, which are the equivalent approximations

corresponding to the QMOM-6 and QMOM-10, respectively. The continuous
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Figure 4.7.: Distribution of Weber numbers in the initial droplet population for

Case 3.
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Figure 4.8.: Temporal evolution of the total number of droplets (top) and relative

error (bottom) for Case 3.

NDF reconstruction by the EQMOM does not lead to any improvement. On the

contrary, the results of the QMOM are consistently more accurate compared to

an EQMOM approximation of similar order. Especially in the beginning, the

results of the EQMOM display a significant difference with respect to the ref-

erence solution. A possible explanation is given by the continuous NDF recon-

structions by the EQMOM shown Figure 4.9, where substantial differences from

the actual distribution can be observed in certain regions. This may lead to sig-

nificant deviations in the predicted fragmentation, particularly in combination

with the discontinuous breakup term due to critical limits in the model formu-

lation. However, this effect fades over time. Apart from the absolute deviation

from the reference solution, the used QBMMs display the generally expected

trend that the accuracy increases with the number of moment equations in all

cases. This is also true for higher-order methods (see Appendix A.2). Similar

trends as for the zeroth moment, which is of secondary importance with regard

tomost physical applications, can be observed for the SMD shown in Figure 4.10.
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Figure 4.9.: Comparison of the continuous NDF reconstructions by the Gamma-

EQMOM and the actual initial size distribution at 𝑡 = 0.
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error (bottom) for Case 3.
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Moreover, it is evident that the differences between QBMMs with six or more

transported moments vanish as time progresses and the system approaches a

three-point distribution similar to that in Section 4.4.3.

In conclusion, the third test case showed that QBMMs can be used to effi-

ciently and accurately approximate the moment source terms due to the Reitz-

Diwakar breakup model. However, no improvements could be achieved by us-

ing the EQMOM instead of the QMOM in this specific case where the modeled

population tends to a three-point distribution.

4.5. Summary and Conclusion

In this chapter, the Reitz-Diwakar model for droplet breakup, originally devel-

oped as a Lagrangian model, was formulated as a population balance model in

terms of a breakage term in the univariate spatially homogeneous PBE. The de-

rived system of moment equations was solved using different QBMMs, namely

the QMOM and the EQMOM with Gamma-KDFs. The major conclusions from

the numerical results can be summarized as follows:

• In general, QBMMs are suitable methods to approximate solutions to the

moment source terms derived from the Reitz-Diwakar breakup model

with adequate accuracy.

• For the specific configurations investigated in this chapter, the Gamma-

EQMOM with its continuous reconstruction of the NDF does not provide

any benefits compared to the QMOM. The numerical results suggest two

possible reasons for that. First, the studied system tends to a discrete

distribution with only a few different sizes where a continuous NDF is

not an appropriate representation. Second, the differences between the

actual initial size distribution and the reconstruction may be significant

in regions that are particularly relevant for the modeled process. While

the former is very specific to the problems investigated in this chapter,

the latter is a rather general problem of methods that assume a functional

form of the NDF.

• Using the Reitz-Diwakar model that allows two possible fragment sizes

given a specific state of the carrier fluid, at least six moments should be
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considered to obtain a reasonably accurate solution. While the presented

results are limited to spatially homogeneous systems, this statement also

applies to the numerical simulation of inhomogeneous systems where the

computation of the moment source terms for some interval [𝑡, 𝑡 + Δ𝑡] is
typically based on constant fluid properties in each cell of the discretized

spatial domain.

As a concluding remark, it is worth noting that, contrary to Lagrangian mod-

els, QBMMs are well-suited for breakup terms involving more complex frag-

ment size distributions than the assumed constant fragment size, which could

be a possible extension to more accurately model the physics of droplet breakup

with QBMMs.
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5. Modeling Turbulence-Induced
Phase-Space Diffusion with
Quadrature-Based Moment
Methods

The vast majority of dispersed multiphase flows occurring in nature and tech-

nology are turbulent, which presents a particular challenge in terms of numer-

ical modeling with QBMMs. Although the extent to which turbulence in the

carrier fluid affects the exchange of momentum depends on specific flow char-

acteristics, such as turbulence intensity and fluid-particle density ratio, it can

be assumed that, in many cases, turbulent effects are not negligible. However,

while the effects of turbulence on the breakup and coalescence of particles, i.e.

phenomena that indirectly affect particlemomentum, are a frequently addressed

topic in the literature, e.g. [89–91] and [96, Sec. 5.8.4], reported research on the

direct effects of turbulent fluctuations in the carrier phase on dispersed-phase

momentum in the specific context of QBMMs is relatively scarce.

The choice of a suitable model for the effects of fluid-phase turbulence on

dispersed particles depends primarily on whether particle velocity is an inter-

nal coordinate. As previously addressed in the discussion on the difference be-

tween the PBE and the GPBE in Section 2.1.2, the dispersed-phase velocity can

be assumed to equal the fluid velocity at all times in low Stokes-number flows,

i.e. St ≪ 1, where particle inertia can be neglected, whereas a higher Stokes

number requires the particle velocity to be an internal coordinate. In case of the

former, modeling turbulence effects on particles is straightforward as they fol-

low directly from the fluid turbulence model and, provided that the turbulence

model is based on an eddy viscosity, appear in the form of a physical diffusion
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term in the PBE as in (2.10). This chapter focuses on the more difficult case

where particle velocity is an internal coordinate and turbulent velocity fluctua-

tions need to be considered in the momentum exchange between the fluid and

particles, a problem that has not received much attention in the context of QB-

MMs. To the author’s best knowledge, the only published approach explicitly

suited to QBMMs is that proposed by Fox [48], involving a particle-phase tur-

bulent kinetic energy and the solution of additional transport equations. There

is, however, abundant literature on the mesoscopic description of turbulent dis-

persed multiphase flows where turbulent effects are represented by a diffusion

term in velocity phase space [112, 113, 123, 135].

In this chapter, a macroscopic model for the effect of turbulent fluctuations is

formulated starting from the microscopic behavior of a particle in a turbulent

flow field. The equivalent mesoscale description takes the form of a Fokker-

Planck equation with nonlinear and non-smooth terms. The corresponding in-

tegral terms in the derivedmoment equations pose a particular problem in terms

of the numerical solution with QBMMs, which is the main focus of this chap-

ter (instead of physically accurate turbulence modeling). Based on the mathe-

matical properties of the investigated turbulence-induced terms, a variation of

the QMOM using anti-Gaussian quadrature rules [86], the so-called Gauss/anti-

Gauss QMOM, will be introduced and be revealed to significantly reduce the

initially large errors in a series of one-dimensional test cases with analytical

reference solutions. Moreover, a modified strong-stability preserving Runge-

Kutta scheme for the temporal discretization of moment equations is provided

that guarantees the unconditional preservation of moment realizability in the

presence of phase-space diffusion.

5.1. Model Formulation

In what follows, the model equations governing the evolution of a spatially ho-

mogeneous particulate system dispersed in a turbulent fluid will be formulated,

starting with the microscale description, i.e. the trajectory of a single particle

denoted by 𝑿 (𝑡). Further, let the corresponding Lagrangian velocity be denoted

by 𝑽 (𝑡) and, assuming that the fluid velocity is given in terms of the Eulerian
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field 𝒖(𝒙, 𝑡), the Lagrangian fluid velocity by

𝑼(𝑡) ≔ 𝒖(𝑿 (𝑡), 𝑡). (5.1)

The temporal dependencies of the Lagrangian variables will henceforth be omit-

ted for brevity.

First, it is important to clarify the fundamental assumptions that form the

basis of the model formulation below:

(i) Particles are considered to be non-deformable point particles with spher-

ical shape.

(ii) The fluid properties are known from a numerical solution of some form

of the Navier-Stokes equations (see Section 2.3) in conjunction with a tur-

bulence model based on the velocity decomposition in (2.23) so that the

Lagrangian fluid velocity can be written as

𝑼 = 𝑼 +𝑼′, (5.2)

where𝑼 is the velocity resolved on the numerical grid and𝑼′
is the mod-

eled turbulent contribution to the total fluid velocity. Moreover, the fluid

properties are assumed to be constant during some observed time inter-

val [𝑡, 𝑡 + Δ𝑡]. This includes thermophysical properties and the resolved

fluid velocity 𝑼 as well as turbulence quantities resulting from the tur-

bulence model such as the turbulent kinetic energy 𝑘𝑡 , the characteristic

turbulence length scale 𝑙𝑡 and time scale 𝜏𝑡 .

(iii) The characteristic time scale corresponding to the unresolved turbulence

structures is much smaller than the numerical step size and the charac-

teristic particle time scale, i.e. 𝜏𝑡 ≪ Δ𝑡 and 𝜏𝑡 ≪ 𝜏𝑝 , where 𝜏𝑝 is the

characteristic particle time scale.

(iv) Fluid turbulence is isotropic.

Although the mentioned quantities are presumed to be known without fur-

ther specification of the turbulence model, it is worth noting that LES (see Sec-

tion 2.3) is consistent with the assumptions (ii)-(iv). In that case, 𝑼, 𝑼′
and 𝑙𝑡

denote the spatially filtered velocity, the modeled SGS velocity fluctuation and

the filter width, respectively.
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5.1.1. Microscale Model

The trajectory of a single particle obeys the equations of motion. Provided that

momentum exchange is solely driven by drag forces due to a velocity difference

between fluid and particle, they read

d𝑿 = 𝑽 d𝑡, (5.3)

d𝑽 =
(𝑼 − 𝑽)

𝜏𝑝
d𝑡, (5.4)

where the fraction on the RHS represents the particle acceleration. The response

time 𝜏𝑝 is a characteristic time that elapses for the particle to adapt to the local

fluid velocity. It results from Newton’s second law of motion with a modeled

drag force. In the case of spherical particles it is commonly expressed as

𝜏𝑝 =
4

3

𝜌𝑝

𝜌 𝑓

𝑑

𝐶𝑑

|𝑼 − 𝑽 |−1 , (5.5)

where 𝜌𝑝 , 𝜌 𝑓 and 𝑑 denote the particle density, fluid density and particle di-

ameter, respectively. 𝐶𝑑 is the drag coefficient depending on the flow regime,

which can be quantified in terms of the particle Reynolds number Rep as de-

fined in (4.9). At high Rep, 𝐶𝑑 is commonly taken to be a constant, which is also

presumed here. The decomposition in (5.2) then yields

d𝑽 =
3

4

𝜌 𝑓

𝜌𝑝

𝐶𝑑

𝑑
|𝑼 +𝑼′ − 𝑽 | (𝑼 +𝑼′ − 𝑽) d𝑡. (5.6)

Stochastic Lagrangian models, e.g. the eddy interaction model [61], make use of

this equation to compute individual sample paths on the common supposition

that in isotropic turbulence the components of 𝑼′
are independent normally

distributed random variables with zero mean and variance 2𝑘𝑡/3. Additionally,
the time of interaction between particles and turbulent eddies is tracked to take

into account the rate at which particles undergo fluctuations in the fluid ve-

locity field, making the model non-Markovian and thus less suitable to derive

mesoscale models, which typically rely only on the current state. Moreover, the

eddy interaction model was designed for turbulence models based on the RANS

equations, where the modeled velocity fluctuation 𝑼′
would correspond to all

scales of turbulence from the integral scale to the dissipation scale. Thus, the
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particle-eddy interaction time might be considerably larger than the numerical

step size, which contradicts assumption (iii).

A detailed general description in the mesoscopic sense would instead require

𝑼 to be an internal coordinate. Minier and Peirano [113] refer to that velocity

sampled along the particle trajectory as the fluid velocity “seen” and describe its

temporal evolution with a stochastic differential equation (SDE) to account for

the randomness of turbulent fluctuations. In simplified terms, it takes the form

d𝑼 = −𝑼
𝜏 𝑓

d𝑡 +𝚽 d𝑾, (5.7)

where 𝜏 𝑓 denotes some time scale of the fluid velocity “seen”,𝚽 ∈ R3 the noise
coefficient matrix that may depend on internal coordinates and d𝑾 an incre-

ment of a three-dimensional Wiener process. Minier and colleagues provide

expressions for the coefficients in (5.7), considering evenmore detailed and com-

plex physics, e.g. in [113, 135] and recently in [112].

Because of the problem of multivariate quadrature-based closures (see Sec-

tion 3.5.3) that becomes more severe with increasing phase-space dimensional-

ity, it is essential to reduce the number of internal coordinates to a minimum

when using QBMMs. Thus, treating the fluid velocity 𝑼 as an internal coor-

dinate is rather undesired in this context. Instead, the particle velocity can be

described in terms of a simplified model that takes the form of the (generally)

nonlinear Langevin equation

d𝑽 = 𝒂(𝑽) d𝑡 + 𝚺(𝑽) ∗ d𝑾, (5.8)

where 𝒂 : R3 → R3 and 𝚺 : R3 → R3×3 denote the velocity-dependent drift

and noise function, respectively. The operator ∗ specifies the interpretation of

the SDE in terms of the stochastic integral, where the Itô integral is indicated by

∗ d𝑊 ≡ d𝑊 and the Stratonovich integral by ∗ d𝑊 ≡ ◦ d𝑊 . The first term on the

RHS of (5.8) is deterministic and represents the particle acceleration by virtue of

a mean drag force while the second term takes into account the randomness of

𝑼′
. Separating the resolved from the modeled part, the drift function becomes

𝒂(𝑽) = 𝑼 − 𝑽
𝜏𝑝

. (5.9)
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The noise term can be simplified, due to the assumption of isotropic turbulence,

to 𝚺(𝑽) = 𝑰𝜎(𝑽), where 𝑰 denotes the 3×3 identity matrix. Hence, the primary

issue of the Langevin approach is to model the noise function 𝜎(𝑽).
There are numerous studies proposing various more or less complex forms of

the noise function. An example of a Langevin model based on detailed physical

considerations is the LES-relatedmodel byGorokhovski and Zamansky [60] that

distinguishes between particles larger and smaller than the Kolmogorov length

and introduces additional SDEs to describe the effects of turbulence fluctuations

on particle trajectories. However, such models are almost always accompanied

by stochastic particle methods, which practically allow for arbitrarily complex

forms of the noise function. For the derivation of amacroscopicmodel combined

with QBMMs, simplified models must be employed.

Minier and Peirano [113] describe ways to eliminate the fluid velocity “seen”

in (5.7) from the internal coordinate vector in one spatial dimension. Consid-

ering the limits 𝜏 𝑓 → 0 and ⟨𝑈2⟩ → ∞ such that 𝜏 𝑓 ⟨𝑈2⟩ = 𝐷, they obtain

𝜎(𝑉) = 𝜏−1𝑝
√
2𝐷, though this result is based on constant 𝜏𝑝 . The considered

limiting case 𝜏 𝑓 → 0 requires the time scale of the fluid velocity 𝜏 𝑓 to be very

small compared to the particle time scale, which implies small-scale turbulence.

Bini and Jones [10] deduced from dimensional analysis that the noise coeffi-

cient should take the form

𝜎(𝑽) = 𝐶𝑡

√︂
𝑘𝑡𝜏
−1
𝑝,𝑡 (𝑽), (5.10)

where 𝐶𝑡 is a model constant and 𝜏𝑝,𝑡 is a characteristic turbulent particle time

scale which was taken to be 𝜏𝑝 in (5.5) evaluated in terms of the resolved ve-

locity 𝑼, say 𝜏∗𝑝 . This is consistent with the statement of Minier and Peirano

[113] if 𝜏𝑝 = 𝜏∗𝑝 and 2𝐷 = 𝐶2

𝑡 𝑘𝑡𝜏
∗
𝑝 . Bini and Jones extended the model by a

nonlinearity parameter to fit experimental results. In a later LES-based study

[9], they proposed the alternative form 𝜏𝑝,𝑡 = 𝜏𝑝,𝑙 with

𝜏𝑝,𝑙 =
𝑙𝑡

|𝑽 | , (5.11)

where 𝑙𝑡 is the turbulence length scale resulting from the turbulence model (in

LES the filter width). The time 𝜏𝑝,𝑙 can be interpreted as the time of a particle

with velocity |𝑽 | traversing a notional eddy. It is worth noting that this is in
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agreement with the underlying ideas of the eddy-interaction model mentioned

above.

One can argue that the model should account for both time scales, 𝜏∗𝑝 and 𝜏𝑝,𝑙
in order to capture the effects of particle inertia as well as the interaction time

with fluid turbulence. Then dimensional analysis yields

𝜎(𝑽) = 𝐶𝑡

√︂
𝑘𝑡 (𝜏∗𝑝𝜏𝑝,𝑙)−1/2. (5.12)

Here, the relationship in (5.10) with 𝜏𝑝,𝑡 = 𝜏∗𝑝 is deemed sufficient. It should

be noted though, that, while it is certainly important in terms of physical ac-

curacy, the choice of 𝜏𝑝,𝑡 as 𝜏
∗
𝑝 or as in (5.12) is secondary for the numerical

investigations in this chapter since in any case the particle acceleration depends

on

√︁
|𝑽 |.

Having determined expressions for the drift and noise function, the remain-

ing question is whether to interpret the governing SDE (5.8) in the Itô sense or

in the Stratonovich sense. While different interpretations can be found in the

literature and the interpretation can be regarded merely as part of the model,

here the common conception is adopted that the Itô integral is suitable for prob-

lems described by actual jump processes (e.g. financial markets) whereas the

Stratonovich integral is appropriate for continuous physical problems in the

macroscopic sense [53, 78]. As a further simplification,𝑼 = 0 will be presumed

without loss of generality
1
. Additionally subsuming all constants in the drift

and noise function into dimensional constants, the resulting microscale model

can finally be expressed as

d𝑽 = −𝛾 |𝑽 |𝑽⏞ˉ̄ ˉ⏟⏟ˉ̄ ˉ⏞
𝒂(𝑽)

d𝑡 + 𝜙
√︁
|𝑽 |⏞ˉ⏟⏟ˉ⏞

𝜎(𝑽)

◦ d𝑾, (5.13)

where the dimensions are [𝛾] = [length]−1 and [𝜙] = [time]−1 [length]1/2.
Reduced to one dimension, the governing SDE can be written as

d𝑉 = −𝛾 sgn(𝑉)𝑉2
d𝑡 + 𝜙

√︁
|𝑉 | ◦ d𝑊. (5.14)

1
The moments associated with the particle velocity𝑽 can be converted into the moments asso-

ciated with the mean relative velocity𝑼 −𝑽 (and vice versa) by the linear moment transformation

in (3.46).
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It should be noted that the one-dimensional model is nonphysical since turbu-

lence is inherently three-dimensional. However, this reduction simplifies the

development and evaluation of numerical methods, which is the focus of this

work.

As a concluding remark it must be stressed once more that the considerations

above resulting in (5.13) and (5.14) are limited to the case of small-scale turbu-

lence. In other words, modeling the particle velocity as a Markov process is

justified because many fluctuations act upon a particle during one integral time

step, as stated by Bini and Jones [10].

5.1.2. Mesoscale Model

For the sake of simplicity, the mesoscopic description is limited to the three par-

ticle velocity components as internal coordinates, denoted by 𝒗 = (𝑣1, 𝑣2, 𝑣3)𝑇 .
It is well known that the evolution of the PDF describing the stochastic process

in (5.13) is governed by a Fokker-Planck equation. As all particles of the pop-

ulation are identically distributed, it can simply be written for the NDF instead

of the PDF due to (2.8) and the fact that the total number of particles remains

constant. The Fokker-Planck equation results from a Kramers-Moyal expansion

and reads for the given Stratonovich SDE [140]

𝜕 𝑓 (𝒗; 𝑡)
𝜕𝑡

= − 𝜕

𝜕𝑣
𝑖

[︁
𝑎𝑖 (𝒗) 𝑓 (𝒗; 𝑡)

]︁
− 𝜕

𝜕𝑣
𝑖

[︁
𝑎∗𝑖 (𝒗) 𝑓 (𝒗; 𝑡)

]︁
+ 1

2

𝜕2

𝜕𝑣2
𝑖

[︂
𝜎2 (𝒗) 𝑓 (𝒗; 𝑡)

]︂
,

(5.15)

where the function 𝑎∗
𝑖
(𝒗) represents an additional noise-induced drift that re-

sults from the Stratonovich integral and is given by

𝑎∗𝑖 (𝒗) =
1

2

𝜕𝜎(𝒗)
𝜕𝑣

𝑖

𝜎(𝒗). (5.16)

Reduced to one dimension, the PBE can be written as

𝜕 𝑓 (𝑣; 𝑡)
𝜕𝑡

= − 𝜕

𝜕𝑣

[︁
𝑎(𝑣) 𝑓 (𝑣; 𝑡)

]︁
− 𝜕

𝜕𝑣

[︁
𝑎∗ (𝑣) 𝑓 (𝑣; 𝑡)

]︁
+ 1

2

𝜕2

𝜕𝑣2

[︂
𝜎2 (𝑣) 𝑓 (𝑣; 𝑡)

]︂
.

(5.17)
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A Fokker-Planck equation of this form does not have a general analytical solu-

tion. However, there is an analytical expression for the steady-state NDF where

the advective and diffusive fluxes are at an equilibrium. Setting the LHS in (5.17)

to zero and substituting the explicit expressions for the drift and noise coeffi-

cients, see (5.13) and (5.14), yields the stationary NDF

𝑓𝑠𝑡 (𝑣) =
𝐶

𝜙2
√︁
|𝑣 |

exp

(︃
−2 𝛾

𝜙2
|𝑣 |

)︃
, (5.18)

where𝐶 is a normalization constant such that

∫
R
𝑓𝑠𝑡 (𝑣) d𝑣 = 𝑚0. The derivation

of the steady-state solution can be found in Appendix A.4.

5.1.3. Macroscale Model

It was demonstrated in Section 2.2 how a macroscopic model in terms of mo-

ment transport equations is derived from a PBE. For the multivariate moment

𝑚𝑖 𝑗𝑘 = ⟨𝑣𝑖
1
𝑣
𝑗

2
𝑣𝑘
3
⟩, the moment transformation is applied to (5.15) and yields, after

repeated integration by parts,

d𝑚𝑖 𝑗𝑘 (𝑡)
d𝑡

=

∭
R3

[︂
𝑖𝑣𝑖−1
1

𝑣
𝑗

2
𝑣𝑘
3
𝑎Σ
1
(𝒗) + 𝑗 𝑣𝑖

1
𝑣
𝑗−1
2

𝑣𝑘
3
𝑎Σ
2
(𝒗)

+ 𝑘𝑣𝑖
1
𝑣
𝑗

2
𝑣𝑘−1
3

𝑎Σ
3
(𝒗)

]︂
𝑓 (𝒗; 𝑡) d𝑣1 d𝑣2 d𝑣3

+ 1

2

∭
R3

[︂
𝑖(𝑖 − 1)𝑣𝑖−2

1
𝑣
𝑗

2
𝑣𝑘
3
+ 𝑗 ( 𝑗 − 1)𝑣𝑖

1
𝑣
𝑗−2
2

𝑣𝑘
3

+ 𝑘 (𝑘 − 1)𝑣𝑖
1
𝑣
𝑗

2
𝑣𝑘−2
3

]︂
𝜎2 (𝒗) 𝑓 (𝒗; 𝑡) d𝑣1 d𝑣2 d𝑣3,

(5.19)

where

𝑎Σ𝑖 (𝒗) = 𝑎𝑖 (𝒗) + 𝑎∗𝑖 (𝒗), 𝑖 = 1, 2, 3. (5.20)

The considerations in the following sections are primarily focused on the uni-

variate form. For the moment of order 𝑘 , it can be written as

d𝑚𝑘 (𝑡)
d𝑡

= 𝑘

∫
R
𝑣𝑘−1𝑎(𝑣) 𝑓 (𝑣; 𝑡) d𝑣 + 𝑘

∫
R
𝑣𝑘−1𝑎∗ (𝑣) 𝑓 (𝑣; 𝑡) d𝑣

+ 𝑘 (𝑘 − 1)
2

∫
R
𝑣𝑘−2𝜎2 (𝑣) 𝑓 (𝑣; 𝑡) d𝑣,

(5.21)
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and finally, substituting the general drift and noise functions with the explicit

expressions derived in Section 5.1.1, as

d𝑚𝑘 (𝑡)
d𝑡

= − 𝑘𝛾

∫
R
sgn(𝑣)𝑣𝑘+1 𝑓 (𝑣; 𝑡) d𝑣 + 𝑘 𝜙

2

4

∫
R
sgn(𝑣)𝑣𝑘−1 𝑓 (𝑣; 𝑡) d𝑣

+ 𝑘 (𝑘 − 1) 𝜙
2

2

∫
R
sgn(𝑣)𝑣𝑘−1 𝑓 (𝑣; 𝑡) d𝑣.

(5.22)

The problem of numerically solving the moment equations can be divided into

two aspects: closure of the unclosed integral terms and discretization of the time

derivative. Methods to approach both are presented in the next sections.

5.2. The Gauss/Anti-GaussQuadrature Method
of Moments

As pointed out above, themoment equations (5.22) derived from the PBE require

a suitable method for closure, such as a QBMM. The application of QBMMs to

Fokker-Planck equations and general PBEs with a diffusive flux in phase space

can be found in several publications, e.g. [93, 119, 132], though with diffusivi-

ties that are constant or smooth functions. In such cases, Gaussian quadrature

rules are known to yield accurate results. More precisely, the diffusion term

is calculated exactly if 𝜎2 ∈ P2, as can be inferred from the generalized uni-

variate moment equation (3.40) and the corresponding quadrature form (3.41).

Moreover, high accuracy of the quadrature approximation can be expected if the

diffusivity is a smooth function that is well approximated by a polynomial on

the relevant interval. This condition is not satisfied by the governing equations

derived above, which will be revealed to cause potentially large approximation

errors.

As stated in Section 3.2, the error of an 𝑛-node Gaussian quadrature for the

integral

∫
Ω
𝑔(𝑣) 𝑓 (𝑣) d𝑣 vanishes, i.e. 𝑅𝑛 (𝑔) = 0, if 𝑔 ∈ P2𝑛−1. It is evident that

this condition is not satisfied by any of the integrals in (5.22) since all integral

terms can be expressed in the form

∫
R
sgn(𝑣)𝑣 𝑗 𝑓 (𝑣) d𝑣 and sgn(𝑣)𝑣 𝑗 is not a
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5.2. The Gauss/Anti-Gauss Quadrature Method of Moments

polynomial for any 𝑗 . In quadrature form, (5.22) can be written as

d𝑚𝑘 (𝑡)
d𝑡

= − 𝑘

⎡⎢⎢⎢⎢⎣𝛾
𝑛∑︂
𝑗=1

𝑤 𝑗sgn(𝑣 𝑗 )𝑣𝑘+1𝑗 + 𝑅𝑛 (𝑣𝑘−1𝑎)
⎤⎥⎥⎥⎥⎦

+ 𝑘

⎡⎢⎢⎢⎢⎣
𝜙2

4

𝑛∑︂
𝑗=1

𝑤 𝑗sgn(𝑣 𝑗 )𝑣𝑘−1𝑗 + 𝑅𝑛 (𝑣𝑘−1𝑎∗)
⎤⎥⎥⎥⎥⎦

+ 𝑘 (𝑘 − 1)
2

⎡⎢⎢⎢⎢⎣𝜙2
𝑛∑︂
𝑗=1

𝑤 𝑗sgn(𝑣 𝑗 )𝑣𝑘−1𝑗 + 𝑅𝑛 (𝑣𝑘−2𝜎2)
⎤⎥⎥⎥⎥⎦ .

(5.23)

Although none of the terms on the RHS satisfies the condition for exactness of

the 𝑛-node Gaussian quadrature or can be considered smooth, there is a fun-

damental difference between the first term representing drift and the noise-

induced terms. First, the advection term tends to an equilibrium at the origin,

which prevents the error from growing indefinitely.
2
Second, the quadratic de-

pendence corresponds to a fast error correction over time in that a positive error

at time 𝑡 leads to a negative error at time 𝑡+Δ𝑡 and vice versa. The noise-induced
terms exhibit neither of these properties, allowing the error to grow over time.

Thus, the quadrature errors 𝑅𝑛 (𝑣𝑘−1𝑎∗) and 𝑅𝑛 (𝑣𝑘−2𝜎2) can be deemed most

critical with regard to the quality of the quadrature-based closure.

In order to estimate how the quadrature error behaves, it is sensible to ap-

proximate the sign function by a continuously differentiable function, e.g. the

error function or the hyperbolic tangent. Because of the convenient properties

of the error function in terms of its derivatives, the approximate sign function

is defined as

∼
sgn(𝑣) := erf (𝜆𝑣), (5.24)

where 𝜆 is a sufficiently large positive constant.
3
Using this approximation and

omitting constants, both the noise-induced advection and the diffusion term in

2
It is worth noting that the fragmentation of droplets discussed in Chapter 4 can be interpreted

similarly in that the process under consideration shifts the distribution towards a regime where it

no longer occurs.

3
It follows directly from the definition of the error function erf (𝑧) = 2/

√
𝜋

∫ 𝑧

0
exp(−𝑥2 ) d𝑥

that lim

𝜆→∞
erf (𝜆𝑣) = sgn(𝑣) .
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the 𝑘th moment equation can be written in the form

𝐼 (𝑔𝑘) =
∫
R

∼
sgn(𝑣)𝑣𝑘−1⏞ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ⏞

𝑔𝑘 (𝑣)

𝑓 (𝑣) d𝑣. (5.25)

Based on the polynomial series expansion of the error function [2, Eq. 7.1.5]

∼
sgn(𝑣) = erf (𝜆𝑣) = 2

𝜋

∞∑︂
𝑖=0

(−1)𝑖 𝜆2𝑖+1

𝑖!(2𝑖 + 1) 𝑣
2𝑖+1, (5.26)

𝑔𝑘 in (5.25) can be expressed as

𝑔𝑘 (𝑣) =
2

𝜋

∞∑︂
𝑖=0

(−1)𝑖 𝜆2𝑖+1

𝑖!(2𝑖 + 1) 𝑣
2𝑖+𝑘 . (5.27)

Then it follows from the degree of accuracy 2𝑛−1 that the Gaussian quadrature

corresponding to (5.25) is exact for all terms with 𝑖 < 𝑛− 𝑘/2. Thus, making use

of the definition

𝐶𝑖 :=
2

𝜋

𝜆2𝑖+1

𝑖!(2𝑖 + 1) , (5.28)

(5.27) can be rewritten for even 𝑘 as

𝑔𝑘 (𝑣) =
𝑛− 𝑘

2∑︂
𝑖=0

(−1)𝑖𝐶𝑖 𝑣
2(𝑖−1)+𝑘 + (−1)𝑛𝐶𝑛−𝑘/2+1 (−1)1−𝑘/2 𝑣2𝑛

+ O(𝑣2𝑛+2),

(5.29)

where the first term on the RHS represents the part that is integrated exactly

by an 𝑛-node Gaussian quadrature. Evidently, the second term, i.e. the leading

error term, changes its sign depending on whether the number of quadrature

nodes 𝑛 is even or odd. This is also true for moments of odd order.
4
This per-

spective, though not considered mathematical proof, suggests that the sign of

the quadrature error in the moment equations is largely determined by the par-

ity of 𝑛, which is supported by the numerical results in Section 5.4.

4
For odd 𝑘, the upper limit of the sum and the expressions in the exponents change, but the

factor (−1)𝑛 remains, regardless of the parity of 𝑘.
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The considerations above give rise to the question whether some average of

an 𝑛-node and an (𝑛 − 1)-node quadrature is advantageous to achieve a more

accurate approximation of (5.22). An obviousmethod to compute such a quadra-

ture rule given the first 2𝑛 moments is to form the average of the (𝑛 − 1)-
and 𝑛-node Gaussian quadratures resulting from the first 2𝑛 − 2 and the first

2𝑛 moments, respectively. This approach is, however, not optimal since it de-

creases the formal order of accuracy to the lower-order representation, i.e. 2𝑛−3.
In other words, such a type of quadrature would fail to exactly reproduce the

underlying moment sequence. Instead, the so-called anti-Gaussian quadrature

rules [86] are used to obtain an averaged (2𝑛 − 1)-node quadrature preserving
the original degree of accuracy.

It was shown by Laurie [86] that it is possible to compute an 𝑛-node quadra-

ture, referred to as anti-Gaussian quadrature formula, with the same degree of

accuracy as the corresponding (𝑛−1)-node Gaussian quadrature, i.e. 2𝑛−3, and
errors equal in magnitude but with opposite sign up to degree 2𝑛 − 1. Then the

average of the Gaussian and the anti-Gaussian quadrature can be regarded as a

(2𝑛 − 1)-node quadrature rule with degree of accuracy 2𝑛 − 1, which is easily

demonstrated considering an arbitrary (2𝑛 − 1)th-degree polynomial with real

coefficients, say 𝑝2𝑛−1. Then, indicating the abscissas, weights and errors of the

Gaussian quadrature and the anti-Gaussian quadrature by the superscripts 𝐺

and 𝐴, respectively, the integral 𝐼 as defined in (3.15) can be written as

𝐼 (𝑝2𝑛−1) =
1

2

⎡⎢⎢⎢⎢⎣
𝑛−1∑︂
𝑗=1

𝑤𝐺
𝑗 𝑝2𝑛−1 (𝑣𝐺𝑗 ) + 𝑅𝐺

𝑛−1 (𝑝2𝑛−1)

+
𝑛∑︂
𝑗=1

𝑤𝐴
𝑗 𝑝2𝑛−1 (𝑣𝐴𝑗 ) + 𝑅𝐴

𝑛 (𝑝2𝑛−1)
⎤⎥⎥⎥⎥⎦ .

(5.30)

Both quadrature formulae are exact for polynomials up to degree 2𝑛 − 3. More-

over, by the definition of anti-Gaussian quadratures given above, the errors sat-

isfy 𝑅𝐺
𝑛−1 = −𝑅𝐴

𝑛 for polynomials up to degree 2𝑛 − 1. Hence, the expression is

exact and the combined (2𝑛−1)-node quadrature has degree of accuracy 2𝑛−1.
A characteristic property of the anti-Gaussian quadrature nodes is that they

are interlaced by those of the corresponding Gaussian quadrature nodes, i.e.

𝑣𝐴
1
< 𝑣𝐺

1
< 𝑣𝐴

2
< · · · < 𝑣𝐺𝑛−1 < 𝑣𝐴𝑛 . (5.31)
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The calculation is straightforward: As demonstrated by Laurie [86], the 𝑛 anti-

Gaussian quadrature nodes are simply the roots of the polynomial

𝜋∗𝑛 (𝑣) = (𝑣 − 𝛼𝑛−1)𝜋𝑛−1 (𝑣) − 2𝛽𝑛−1𝜋𝑛−2 (𝑣), (5.32)

cf. (3.7). Thus, the computation of the anti-Gaussian quadrature requires only

knowledge of the recurrence coefficients of the polynomials orthogonal with

respect to 𝑓 (𝑣) with doubled coefficient 𝛽𝑛−1.

These relationships can be used to extend the standard QMOM to a (2𝑛 − 1)-
node approximation in order to mitigate the above-described dependence of the

quadrature error on the choice of 𝑛. The procedure is as follows: With 2𝑛 known

moments, the recurrence coefficients of the first 𝑛 orthogonal polynomials are

computed with an adequate algorithm (see Section 3.4). With available recur-

rence coefficients, a modified Jacobi matrix can be expressed as

J∗𝑛 =

⎛⎜⎜⎜⎜⎝
J𝑛−1

0

√
2𝛽𝑛−1

0

√
2𝛽𝑛−1 𝛼𝑛−1

⎞⎟⎟⎟⎟⎠
, (5.33)

where J𝑛−1 represents the ordinary truncated Jacobi matrix (see Section 3.1.2).

Then the 𝑛−1Gaussian quadrature nodes and weights result from the eigenval-

ues and eigenvectors of J𝑛−1, respectively. Likewise, the 𝑛 anti-Gaussian quadra-
ture nodes and weights are computed from J∗𝑛. Averaging both quadrature for-

mulas as in (5.30), the resulting nodes and weights of the combined quadrature

rule are

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1

𝑣2

𝑣3
...

𝑣2𝑛−2

𝑣2𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣𝐴
1

𝑣𝐺
1

𝑣𝐴
2

...

𝑣𝐺
𝑛−1

𝑣𝐴𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑤1

𝑤2

𝑤3

...

𝑤2𝑛−2

𝑤2𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑤𝐴
1

𝑤𝐺
1

𝑤𝐴
2

...

𝑤𝐺
𝑛−1

𝑤𝐴
𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.34)

It should be noted that this method is specifically suited to Hamburger mo-

ment problems as the outer nodes 𝑣1 = 𝑣𝐴
1
and 𝑣2𝑛−1 = 𝑣𝐴𝑛 may be located

80



5.3. A Method of Realizability-Preserving Temporal Discretization

outside the interval of integration if it is bounded. This type of quadrature is

here referred to as Gauss/anti-Gauss (GaG) quadrature and the modified QMOM

accordingly as GaG-QMOM. Since the recurrence coefficients required for an

𝑛-node Gaussian quadrature and a (2𝑛 − 1)-node GaG-quadrature are equal,

the algorithm employed to compute them from a given set of moments, e.g.

the Wheeler algorithm, is identical for the QMOM and the GaG-QMOM. The

only computational overhead introduced by the proposed inversion algorithm

involves the solution of the symmetric tridiagonal (𝑛 − 1) × (𝑛 − 1) eigenvalue
problem for J𝑛−1. Thus, the GaG-QMOM is expected to cause moderate compu-

tational costs in comparison with the standard QMOM, see also Appendix A.6.

Finally, the (2𝑛 − 1)-point GaG-quadrature rule is applied to (5.22) to obtain

d𝑚𝑘 (𝑡)
d𝑡

≈ − 𝑘𝛾

2𝑛−1∑︂
𝑗=1

𝑤 𝑗sgn(𝑣 𝑗 )𝑣𝑘+1𝑗 + 𝑘
𝜙2

4

2𝑛−1∑︂
𝑗=1

𝑤 𝑗sgn(𝑣 𝑗 )𝑣𝑘−1𝑗

+ 𝑘 (𝑘 − 1) 𝜙
2

2

2𝑛−1∑︂
𝑗=1

𝑤 𝑗sgn(𝑣 𝑗 )𝑣𝑘−1𝑗 .

(5.35)

It should be highlighted that the method described here is not limited to phase-

space diffusion. Instead, it can be applied to problems involving nonlinear or

even discontinuous integral terms with respect to an unbounded internal coor-

dinate, serving as an alternative inversion algorithm that

• requires no additional assumptions,

• maintains the maximal formal degree of accuracy,

• potentially reduces the approximation error for strongly nonlinear or dis-

continuous problems,

• has moderate computational overhead (see Appendix A.6).

5.3. A Method of Realizability-Preserving
Temporal Discretization

With a closed form of the moment equations, the remaining question is how

to discretize the temporal derivative in (5.35). It was highlighted in Section 3.3
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that moment realizability is a critical issue that must be taken into account in

the choice of numerical methods when solving moment equations. A common

restriction on the numerical scheme in conjunction with QBMMs is that the

discretization should be explicit. There are, however, further limitations entailed

by the realizability problem, whichwill be discussed in the course of this section.

The most straightforward explicit method of numerical integration is the ex-

plicit Euler method. Given a valid sequence of 2𝑛 moments at time 𝑡𝑖 , denoted

by 𝒎𝑖
2𝑛−1, a single integration step from 𝑡𝑖 to 𝑡𝑖+1 = 𝑡𝑖 +Δ𝑡 with the explicit Euler

scheme is given by

𝑚𝑖+1
𝑘 = 𝑚𝑖

𝑘 + Δ𝑡 𝑚̇𝑘 (𝒎𝑖
2𝑛−1), (5.36)

where the function 𝑚̇𝑘 represents the complete algorithm to calculate d𝑚𝑘/d𝑡,
including the moment inversion and the evaluation of the RHS of (5.35). The

Euler scheme is only first-order accurate in time and thus requires a very small

step size Δ𝑡 to achieve adequate accuracy. A suitable family of higher-order

schemes to approximate a solution to the closed moment equations (5.35) are

the strong stability preserving Runge-Kutta (RKSSP) methods due to Shu and

Osher [149]. RKSSP schemes, particularly the second-order accurate two-stage

scheme RK2SSP, were shown to preserve moment realizability when applying

QBMMs to inhomogeneous systems where physical space advection may be-

come a severe problem in terms of realizability [167]. One step of the RK2SSP

scheme can be written as

𝑚∗𝑘 = 𝑚𝑖
𝑘 + Δ𝑡 𝑚̇𝑘 (𝒎𝑖

2𝑛−1), (5.37)

𝑚∗∗𝑘 = 𝑚∗𝑘 + Δ𝑡 𝑚̇𝑘 (𝒎∗2𝑛−1), (5.38)

𝑚𝑖+1
𝑘 =

1

2

(︂
𝑚𝑖

𝑘 + 𝑚
∗∗
𝑘

)︂
, (5.39)

where 𝑘 = 0, 1, . . . , 2𝑛 − 1. The RK2SSP scheme comprises two consecutive

Euler steps yielding the intermediate moments 𝒎∗∗
2𝑛−1 and finally a weighted

average to compute the moment sequence at time 𝑡𝑖+1. It is guaranteed to yield

valid moments 𝒎𝑖+1
2𝑛−1 if 𝒎

∗∗
2𝑛−1 is realizable, for the sum of realizable moment

sequences yields, again, a realizable moment sequence. In other words, a nu-

merical method that is guaranteed to preserve moment realizability in a single
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step of the explicit Euler scheme is easily transferable to higher-order RKSSP

methods.

In spatially homogeneous systems, realizability issues may occur in two sit-

uations. First, the step size Δ𝑡 is too large. The resulting realizability problem

is illustrated well by the example of the moment equation (5.22) in discretized

general quadrature form with zero diffusivity, i.e.

𝑚𝑖+1
𝑘 ≈ 𝑚𝑖

𝑘 − Δ𝑡 𝑘𝛾
∑︂
𝑗

𝑤 𝑗sgn(𝑣)𝑣𝑘+1. (5.40)

Evidently, even if the quadrature approximation is exact, a large Δ𝑡 may re-

sult in negative moments of even order, which corresponds to an unrealizable

moment set. One way to ensure moment realizability in the presence of advec-

tion in physical space is to limit the step size based on a realizability criterion

as suggested in [115, 167]. This is necessary in spatially inhomogeneous sys-

tems where numerical schemes are typically constrained by a fixed step size in

physical space. In homogeneous systems this limitation is avoidable, as will be

demonstrated further below.

The second situation that is critical in terms ofmoment realizability is that the

initial moment sequence is weakly realizable, i.e. 𝒎𝑖
2𝑛−1 ∈ 𝜕M2𝑛−1. As a result,

even a very small error induced by the temporal discretization with nonlinear

𝑚̇𝑘 may lead to a sequence 𝒎𝑖+1
2𝑛−1 ∉M2𝑛−1. In that case, correction algorithms

are needed to generate a realizable moment set close to the original one.

Although both of the described situations should be rare and could be handled

with a restriction onΔ𝑡 andmethods for moment correction, the application of a

numerical scheme that prevents moment corruption regardless of the step size

and given moment sequence is generally preferable. In order to achieve that,

the governing moment equations are not solved directly. Instead, the solution

of the governing microscale equation, in this case the Itô SDE corresponding to

the Fokker-Planck equation, is approximated at each quadrature node on the in-

terval [𝑡𝑖 , 𝑡𝑖+1], and the moment sequence 𝒎𝑖+1
2𝑛−1 is subsequently reconstructed

with the modified quadrature. The Itô SDE corresponding to (5.17) reads

d𝑉 =
[︁
𝑎(𝑉) + 𝑎∗ (𝑉)

]︁
d𝑡 + 𝜎(𝑉) d𝑊. (5.41)

An approximate solution to this SDE on the interval [𝑡𝑖 , 𝑡𝑖+1] is obtained by

first considering the deterministic contribution to compute a modified set of
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quadrature nodes and subsequently approximating a solution to the stochastic

part. That is, without further specification of the moment inversion method

and the according number of nodes, advection on the interval [𝑡𝑖 , 𝑡𝑖+1] yields
the modified 𝑗th quadrature node

𝑣̂𝑖𝑗 = 𝑣𝑖𝑗 +
[︂
𝑎(𝑣𝑖𝑗 ) + 𝑎∗ (𝑣𝑖𝑗 )

]︂
Δ𝑡. (5.42)

The weights remain unchanged, i.e. 𝑤̂𝑖
𝑗 = 𝑤𝑖

𝑗
. As for the diffusion term, it is well

known that the solution to

d𝑉 = 𝜎 d𝑊 (5.43)

with constant 𝜎 and zero variance at time 𝑡 = 0 is a Gaussian with variance

𝜎2𝑡 [53]. Thus, denoting a normal distribution with mean 𝜇 and variance 𝑠2 by

N(𝜇, 𝑠) and the associated 𝑘th moment by

𝑚̃𝑘 (𝜇, 𝑠) = ⟨𝑌 𝑘⟩, 𝑌 ∼ N(𝜇, 𝑠), (5.44)

the application to each modified quadrature node yields, presuming constant

𝜎 = 𝜎(𝑣𝑖
𝑗
) on the interval [𝑡𝑖 , 𝑡𝑖+1], the approximate moments at time 𝑡𝑖+1:

𝑚𝑖+1
𝑘 =

∑︂
𝑗

𝑤̂𝑖
𝑗 𝑚̃𝑘

(︂
𝑣̂𝑖𝑗 , 𝜎(𝑣𝑖𝑗 )

√
Δ𝑡

)︂
. (5.45)

Since the RHS is a positively weighted sum of realizable moments (the moments

of a normal distribution) realizability is ensured regardless of Δ𝑡. It is important

to note that the assumption of constant 𝜎 is consistent with the Itô interpreta-

tion of the governing SDE instead of the Stratonovich interpretation.

The approach described above is, albeit less complex, inspired by the phase-

space advection scheme for evaporating droplets by Massot et al. [101] in that

the governing microscale equations are used to approximate the macroscale so-

lution. The equations (5.42), (5.44) and (5.45) can be thought of as a modifica-

tion of the explicit Euler method to ensure preservation of moment realizabil-

ity. The method is hence first-order accurate in time. However, the extension

to a second-order RKSSP method is straightforward: Instead of computing the

moments 𝒎𝑖+1
2𝑛−1 directly, (5.45) is used to calculate the intermediate moments

𝒎∗
2𝑛−1. Following another moment inversion, the same procedure can then be
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applied to obtain 𝒎∗∗
2𝑛−1. Denoting the number of quadrature nodes by 𝑛′, where

𝑛′ = 𝑛 for the standard QMOM or 𝑛′ = 2𝑛−1 for the GaG-QMOM, the realizable

RK2SSP algorithm can be summarized as follows:

1. Invert moments at time 𝑡𝑖

𝒎𝑖
2𝑛−1 → 𝑤𝑖

𝑗 , 𝑣
𝑖
𝑗 , 𝑗 = 1, 2, . . . , 𝑛′

2. Compute modified quadrature due to advection

𝑣̂𝑖𝑗 = 𝑣𝑖𝑗 +
[︂
𝑎(𝑣𝑖𝑗 ) + 𝑎∗ (𝑣𝑖𝑗 )

]︂
Δ𝑡, 𝑤̂𝑖

𝑗 = 𝑤𝑖
𝑗

3. Compute first-stage intermediate moments considering diffusion

𝑚∗𝑘 =

𝑛′∑︂
𝑗=1

𝑤̂𝑖
𝑗 𝑚̃𝑘

(︂
𝑣̂𝑖𝑗 , 𝜎(𝑣𝑖𝑗 )

√
Δ𝑡

)︂
, 𝑘 = 0, 1, . . . , 2𝑛 − 1

4. Invert intermediate moments

𝒎∗
2𝑛−1 → 𝑤∗𝑗 , 𝑣

∗
𝑗 , 𝑗 = 1, 2, . . . , 𝑛′

5. Compute modified quadrature due to advection

𝑣̂∗𝑗 = 𝑣∗𝑗 +
[︂
𝑎(𝑣∗𝑗 ) + 𝑎∗ (𝑣∗𝑗 )

]︂
Δ𝑡, 𝑤̂∗𝑗 = 𝑤∗𝑗

6. Compute second-stage intermediate moments considering diffusion

𝑚∗∗𝑘 =

𝑛′∑︂
𝑗=1

𝑤̂∗𝑗 𝑚̃𝑘

(︂
𝑣̂∗𝑗 , 𝜎(𝑣∗𝑗 )

√
Δ𝑡

)︂
, 𝑘 = 0, 1, . . . , 2𝑛 − 1

7. Form average to obtain moments at time 𝑡𝑖+1

𝒎𝑖+1
2𝑛−1 =

1

2

(︂
𝒎𝑖

2𝑛−1 + 𝒎∗∗2𝑛−1
)︂
.

During the entire procedure moments are computed only as a result of posi-

tive weights and valid quadrature nodes, that is 𝑣 𝑗 ∈ R ∀ 𝑗 = 1, 2, . . . , 𝑛′. Cor-

ruption of the initial moment set is thus impossible, regardless of Δ𝑡. Therefore,
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the presented numerical scheme will be referred to as the absolutely realizable

RK2SSP scheme (RK2SSP-AR) in the following sections. The extension to the

three-stage third-order RKSSP scheme [149] is straightforward. Further, it can

be easily transferred to multivariate problems, provided that a suitable multi-

variate quadrature is available. Additionally, the step size Δ𝑡 can be controlled

if needed, using either a higher-order approximation as an error estimate, e.g.

by means of an efficient embedded scheme as proposed in [115] or step size dou-

bling based on Richardson extrapolation, see e.g. [67, Ch. 2, Sec. 4]. The latter

is employed for some of the numerical investigations in the following section.

5.4. Numerical Tests

In this section, the numerical methods introduced above are applied to three

different one-dimensional test cases with analytical reference solutions. After a

brief summary of the considered general configuration in Section 5.4.1, each test

case will be detailed in terms of the governing equations and initial conditions,

analytical reference solutions and finally the numerical results in Sections 5.4.2–

5.4.4. All numerical tests were performed using a Python implementation de-

veloped as part of this work, see Appendix A.1 for additional details.

5.4.1. Summary of Test Cases

Three test cases were considered with different combinations of physical phe-

nomena and initial conditions. More precisely, the numerical investigations in-

clude pure Itô diffusion (Case 1), Stratonovich diffusion (Case 2) and the steady-

state Fokker-Planck equation (Case 3). The mesoscopic description of all cases

can be expressed in the form of the one-dimensional Fokker-Planck equation

(5.17) with different advection coefficients 𝑎(𝑣) (drift-induced), 𝑎∗ (𝑣) (noise-
induced) and diffusivities 𝜎2 (𝑣), which are summarized in Table 5.1. Further

details are provided in the respective subsections.

Considering that the choice of constants does not matter with regard to the

relative errors, all investigations were carried out with fixed constants 𝛾 and 𝜙.

With the commonly used drag coefficient 𝐶𝑑 = 0.44, the model constant 𝐶𝑡 = 1

and estimated values of 𝑑 ∼ 10
−5

m (particle diameter), 𝜌𝑝/𝜌 𝑓 ∼ 10
2
(density
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Table 5.1.: Summary of test cases with the advection and diffusion coefficients

corresponding to the Fokker-Planck equation (5.17).

Case 𝑎(𝑣) 𝑎∗ (𝑣) 𝜎2 (𝑣)
1 0 0 𝜙2 |𝑣 |

2 0
𝜙2

4
sgn(𝑣) 𝜙2 |𝑣 |

3 −𝛾 |𝑣 | 𝑣 𝜙2

4
sgn(𝑣) 𝜙2 |𝑣 |

ratio) and 𝑘𝑡 ∼ 1 m
2
s
−2

(turbulent kinetic energy), the chosen constants are

𝛾 = 330 m
−1, 𝜙 = 16

√
m

s

.

The fluid state is assumed to be constant over the entire observed time interval.

Thus, the zeroth moment, which corresponds to the total number of particles
5
,

is mathematically merely a scaling factor without any particular importance.

For simplicity, it is set to 𝑚0 = 1.

In all test cases, both the standard QMOM and the GaG-QMOMwere applied

to close the governingmoment equations. Additionally, the EQMOMwithGaus-

sian KDFs (using the algorithm proposed by Pigou et al. [126] for the extended

moment inversion) was tested in some cases. Since the number of quadrature

nodes differs depending on the used closure, the specific methods are primar-

ily characterized by the number of transported moments, which should serve

as a basis for comparison. Thus, the respective QBMMs are indicated first by

the general type of moment inversion, second by the number of transported

moments and finally by the number of nodes in parentheses, which is merely a

result of the former two. For example, in the case of eight transported moments,

the four-nodeQMOMwill be referred to as QMOM8(4) and the seven-nodeGaG-

QMOM as GaG-QMOM8(7). Configurations using the EQMOM are additionally

characterized by the number of second quadrature nodes, e.g. EQMOM7(3/20)

to refer to the EQMOM using seven moments, i.e. three first quadrature nodes,

5
Normally, the zeroth moment represents the number of particles per unit volume. In spatially

homogenous systems, however, it may as well be defined as the total number of particles, since the

physical control volume is arbitrary.
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and 20 second quadrature nodes.

As for the temporal discretization, the RK2SSP as well as the RK2SSP-AR

schemewere used to approximate solutions to themoment equations in all cases

where moment realizability is not an issue, which excludes Case 2 as will be ex-

plained in Section 5.4.3. In Case 3 these numerical schemes were also combined

with an adaptive step size control based on Richardson extrapolation and step

doubling [67].

5.4.2. Case 1: Itô Diffusion

The first studied test case is one-dimensional Itô diffusion. The numerical solu-

tion of pure diffusion problems on an unbounded domain is inherently unstable

for the error can grow indefinitely with the solution. Hence, this problem can

serve only as a basis for comparison of numerical methods among one another

rather than a quantitative error analysis. Moreover, a fixed step size must be

used for numerical integration in time as the use of an adaptive step size that is

controlled by an allowed error would inevitably result in Δ𝑡 → 0. The step size

is therefore set to Δ𝑡 = 10
−6

s.

Governing equations and initial conditions

The microscopic description of Itô diffusion is given by the SDE

d𝑉 = 𝜎(𝑉) d𝑊. (5.46)

With the diffusivity given in Table 5.1, this corresponds to the mesoscopic de-

scription

𝜕 𝑓 (𝑣; 𝑡)
𝜕𝑡

=
𝜙2

2

𝜕2

𝜕𝑣2

[︁
|𝑣 | 𝑓 (𝑣; 𝑡)

]︁
, (5.47)

and the derived moment equation for order 𝑘 reads

d𝑚𝑘 (𝑡)
d𝑡

= 𝑘 (𝑘 − 1) 𝜙
2

2

∫
R
𝑣𝑘−2 |𝑣 | 𝑓 (𝑣; 𝑡) d𝑣. (5.48)

Initially, particle velocities are normally distributed with mean 𝜇 = 0 and

standard deviation 𝑠 = 1 m/s. Using the notation for normal moments in Sec-
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tion 5.3, the initial moments can thus be expressed as [42]

𝑚𝑘 (0) = 𝑚̃𝑘 (0, 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑘!

2
𝑘/2 (𝑘/2)!

if 𝑘 is even,

0 otherwise.

(5.49)

Analytical reference solution

The symmetry about the origin allows for an analytical expression for the tem-

poral evolution of moments, making use of the absolute moments

𝑀𝑘 =

∫
R
|𝑣 |𝑘 𝑓 (𝑣) d𝑣. (5.50)

Application of this definition to the PBE (5.47) and repeated integration by parts

yields the ODE for the 𝑘th absolute moment

d𝑀𝑘 (𝑡)
d𝑡

= 𝑘 (𝑘 − 1) 𝜙
2

2

∫
R
|𝑣 |𝑘−1 𝑓 (𝑣; 𝑡) d𝑣⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

𝑀𝑘−1 (𝑡 )

. (5.51)

Since only absolute moments of lower order appear on the RHS, the system

of ODEs for 𝑘 = 1, 2, . . . can be solved recursively for 𝑀1, 𝑀2, . . . with given

initial conditions 𝑀𝑘 (0). Then the solution for the absolute moments can be

expressed as

𝑀𝑘 (𝑡) =
𝑘∑︂
𝑗=1

(︃
𝑘

𝑗

)︃
(𝑘 − 1)!
( 𝑗 − 1)!𝑀 𝑗 (0)

(︄
𝜙2

2

𝑡

)︄ (𝑘− 𝑗 )
. (5.52)

In the general case, the ordinary moments cannot be expressed directly in terms

of the absolute moments. However, for a NDF that is initially symmetric, i.e.

𝑚2𝑘+1 (0) = 0, it follows from the symmetric properties of the integral terms

that d𝑚2𝑘+1/d𝑡 = 0. Moreover, the ordinary moments of even order equal the

absolute moments (𝑚2𝑘 = 𝑀2𝑘) for 𝑣 ∈ R. That is, the moments for Itô diffusion

with symmetric 𝑓 (𝑣; 0) are

𝑚
analyt

𝑘
(𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑘∑︂
𝑗=1

(︃
𝑘

𝑗

)︃
(𝑘 − 1)!
( 𝑗 − 1)!𝑀 𝑗 (0)

(︄
𝜙2

2

𝑡

)︄ (𝑘− 𝑗 )
if 𝑘 is even,

0 otherwise.

(5.53)
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Thus, in order to calculate the analytical solution one must provide the initial

absolute moments, that is, in the case of zero mean, the central absolute mo-

ments of the normal distribution, which can be found in Appendix A.3. It is

worth noting that the expression (5.53) corresponds to a linear growth in the

second moment, which represents the variance and is proportional to kinetic

energy.

Results

The results of the standard QMOM with up to seven quadrature nodes in terms

of the second and fourth moment are illustrated in Figure 5.1. As problems re-

lated to moment realizability did not occur with the selected step size and initial

distribution, the RK2SSP was used first in order to rule out any possible unde-

sired effects that may result from the indirect approximation of moments by the

RK2SSP-AR scheme. It is immediately apparent that the deviation of the second

moment from the exact solution is significantly larger than that of the fourth

moment. As discussed in Section 5.2 and indicated by (5.29), the sign of the er-

rors is determined by the parity of the number of Gauss quadrature nodes 𝑛.

For the second moment, an odd 𝑛 results in negative errors corresponding to an

underestimation, whereas the second moment is overestimated when choosing

an even 𝑛. The fourth moment displays a similar behavior, albeit reversed. That

is, errors in the fourth moment are positive if 𝑛 is odd and negative if 𝑛 is even.

This behavior is also suggested by the factor (−1)1−𝑘/2 in the leading error term

in (5.29).

Figure 5.2 shows the second moment and its relative error using the QMOM

andGaG-QMOMwith up to tenmoments. The system of ODEswas again solved

with the RK2SSP scheme to enable a comparison of the used QBMMs unaffected

by the alterations made to preserve realizability. The averaging procedure of the

GaG-QMOM appears to have the desired effect that the dependence of the error

on the parity of 𝑛 is eliminated to a large extent. Generally, the results in terms

of the second moment reveal a considerable increase in accuracy of the GaG-

QMOM compared to the QMOM, even with a lower-order quadrature. This is

also true for the fourth moment, which is shown in Figure 5.3. While all applied

methods display a smaller approximation error in the fourthmoment than in the

90



5.4. Numerical Tests

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75
M

om
en

t m
2 [

m
2 /s

2 ]

0 1 2 3 4 5
Time [s] ×10 3

5

10

15

20

25

30

35

M
om

en
t m

4 [
m

4 /s
4 ]

Exact
QMOM-8(4)
QMOM-14(7)

QMOM-4(2)
QMOM-10(5)

QMOM-6(3)
QMOM-12(6)

Figure 5.1.: Temporal evolution of the second (top) and fourth moment (bottom)

for Case 1 (Itô diffusion) using the standard QMOM and the RK2SSP

scheme.

secondmoment, the GaG-QMOM is significantlymore accurate over a relatively

long period of time.

Given the form of the integrals, it is natural to assume that significant im-

provement might be achieved by the application of the EQMOM with its pos-

sibility to generate an arbitrary number of moment-preserving samples in the
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Figure 5.2.: Temporal evolution of the second moment (top) and the relative er-

ror (bottom) for Case 1 (Itô diffusion), using both the QMOM and

the GaG-QMOM with the RK2SSP scheme.

form of second quadrature nodes (see Section 3.5.2). To this end, the EQMOM

was also tested in addition to the QMOM and the GaG-QMOM, though limited

to Gaussian KDFs since the second type suited to unbounded internal coordi-

nates, the Laplace-EQMOM, suffers from the lack of a transformation to aweight

function of orthogonal polynomials with known recurrence coefficients. As a
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Figure 5.3.: Temporal evolution of the fourthmoment (top) and the relative error

(bottom) for Case 1 (Itô diffusion), using both the QMOM and the

GaG-QMOM with the RK2SSP scheme.

result, the calculation of the second quadrature requires additional moment in-

versions that are, in case of a larger number of nodes, ill-conditioned. First,

an appropriate number of second quadrature nodes 𝑛12 was estimated by vary-

ing 𝑛12 within a relatively wide range of values and observing the error at a

fixed point in time, here 𝑡 = 5 · 10−3 s. The result shown in Figure 5.4 sug-
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gests that for 𝑛12 ≥ 100 no stronger dependence on 𝑛12 can be expected, hence

𝑛12 = 100 was chosen for tests involving the EQMOM. Furthermore, Figure 5.4

reveals that configurations corresponding to an even number of first quadrature

nodes yield results that are virtually identical to those of the respective lower-

order approximation with an odd number of nodes. The reason is that the root

finding algorithm for the KDF-parameter failed to find an extended quadrature

for this specific setup and reduced the number of KDFs. Figure 5.5 compares the

Gaussian-EQMOM to the GaG-QMOMwith respect to the second moment. The

initially high accuracy of the EQMOM decreases with time so that the approx-

imation errors quickly exceed those of the GaG-QMOM. The explanation for

the accurate results in the beginning is obvious, considering the chosen normal

KDFs in combination with the normal distribution as initial condition. In other

words, the Gaussian-EQMOM is exact at 𝑡 = 0. However, as the solution devi-

ates from the assumption of the Gaussian shape, large errors can be observed.

Thus, it can be concluded that the EQMOM is not a suitable alternative to the

GaG-QMOM in this case.

Figure 5.6 shows the relative errors in terms of the second moment at time

𝑡 = 5·10−3 s using the QMOM and GaG-QMOMwith up to 20moments and both

20 40 60 80 100 120
Number of second quadrature nodes

10 1

8 × 10 2
9 × 10 2Re

l. 
er

ro
r

Gaussian-EQMOM(3)
Gaussian-EQMOM(7)
Gaussian-EQMOM(11)

Gaussian-EQMOM(5)
Gaussian-EQMOM(9)

Figure 5.4.: Dependence of the error at 𝑡 = 5 · 10−3 s on the number of second

quadrature nodes using the EQMOM for Case 1 (Itô diffusion).
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Figure 5.5.: Comparison of the GaG-QMOM and EQMOM in terms of the second

moment (top) and the relative error (bottom) for Case 1 (Itô diffu-

sion) using the RK2SSP scheme.

the RK2SSP and the RK2SSP-AR scheme. Besides the observation that the results

do not display the expected correlation between the error and the number of

quadrature nodes, it is evident that the GaG-QMOM gives significantly better

approximations in all cases (it was already mentioned above that this case can

only serve for a comparison of methods instead of a quantitative error analysis).
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Figure 5.6.: Relative errors in the second-order moment at time 𝑡 = 5 · 10−3 s
using QBMMs with up to 20 moments and the RK2SSP and RK2SSP-

AR scheme for Case 1 (Itô diffusion).

Moreover, the results using the RK2SSP-AR scheme are almost identical to those

of the standard RK2SSP scheme, which indicates that the RK2SSP-AR scheme is

a suitable realizability-preserving alternative to the standard method.

In conclusion, the first test case proved that the error due to the quadrature-

based approximation of the turbulence-induced diffusion term in the absence of

advection behaves as suggested by the theoretical considerations in Section 5.2.

It can be reduced significantly by the application of a GaG-quadrature instead of

the ordinary Gaussian quadrature, while the extended quadrature from the EQ-

MOM did not prove to be an appropriate alternative for the investigated prob-

lem. Furthermore, both numerical schemes, the RK2SSP and the RK2SSP-AR,

yield almost identical results in this particular case, where moment realizability

is not critical.

5.4.3. Case 2: Stratonovich Diffusion

The second test case is concerned with one-dimensional Stratonovich diffusion

and weakly realizable initial moments. As outlined in Section 5.3, moment re-

alizability is then critical. In fact, several computations involving the standard
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RK2SSP scheme failed due to realizability issues, more precisely, negative re-

currence coefficients 𝛽𝑘 were encountered for 𝑘 > 2, resulting in failure of the

moment inversion procedure. Thus, only the RK2SSP-AR scheme, which pre-

served realizability as expected, was used for the results shown below. The step

size was again fixed atΔ𝑡 = 10
−6

s for the same reasons discussed in the previous

section.

Governing equations and initial conditions

The SDE describing Stratonovich diffusion is

d𝑉 = 𝜎(𝑉) ◦ d𝑊. (5.54)

The Fokker-Planck equation is characterized by an additional noise-induced ad-

vection term as a result of the interpretation of the stochastic integral in the

Stratonovich sense. With the coefficients in Table 5.1, it reads

𝜕 𝑓 (𝑣; 𝑡)
𝜕𝑡

= −𝜙
2

4

𝜕

𝜕𝑣

[︁
sgn(𝑣) 𝑓 (𝑣; 𝑡)

]︁
+ 𝜙2

2

𝜕2

𝜕𝑣2

[︁
|𝑣 | 𝑓 (𝑣; 𝑡)

]︁
, (5.55)

finally resulting in the moment equations

d𝑚𝑘 (𝑡)
d𝑡

= 𝑘
𝜙2

4

∫
R
𝑣𝑘−1sgn(𝑣) 𝑓 (𝑣; 𝑡) d𝑣

+ 𝑘 (𝑘 − 1) 𝜙
2

2

∫
R
𝑣𝑘−2 |𝑣 | 𝑓 (𝑣; 𝑡) d𝑣.

(5.56)

The initial condition in this case is the two-point distribution with 𝑣 = ±1m/s

and equal weights

𝑓 (𝑣; 0) = 1

2

[︁
𝛿(𝑣 − 𝑣1) + 𝛿(𝑣 − 𝑣2)

]︁
, 𝑣1 = −𝑣2 = −1 (5.57)

with the moments

𝑚𝑘 (0) =
⎧⎪⎪⎨⎪⎪⎩
1 if 𝑘 is even,

0 otherwise.
(5.58)

The peculiarity of this configuration is that the initial NDF is uniquely deter-

mined by the first four moments. In other words, the moments are on the mo-

ment space boundary, 𝒎2𝑛−1 ∈ 𝜕M2𝑛−1 ∀ 𝑛 > 2.
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Analytical reference solution

Analogously to (5.51), a system ofODEs can bewritten for the absolutemoments

as

d𝑀𝑘 (𝑡)
d𝑡

=

[︄
𝑘
𝜙2

4

+ 𝑘 (𝑘 − 1) 𝜙
2

2

]︄
𝑀𝑘−1 (𝑡) (5.59)

with the exact solution

𝑚
analyt

𝑘
(𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
𝑘∑︂
𝑗=1

⎛⎜⎝
𝑘∏︂

𝑖= 𝑗+1

𝑖

2

2𝑖 − 1
𝑖 − 𝑗

⎞⎟⎠𝑀 𝑗 (0)
(︄
𝜙2

2

𝑡

)︄ (𝑘− 𝑗 )
if 𝑘 is even,

0 otherwise,

(5.60)

where the initial condition follows from (5.57):

𝑀𝑘 (0) = 1, 𝑘 = 0, 1, . . . . (5.61)

In contrast to Itô diffusion, the noise-induced advection term, which does not

vanish for the first absolute moment, causes a quadratic increase in the second

moment.

Results

Figure 5.7 shows the second moment and its relative error with up to ten trans-

ported moments. Initially, the approximation by means of the standard QMOM

is more accurate than that by the GaG-QMOM. This behavior is expected due

to the different properties of the underlying quadrature forms: It was empha-

sized in Section 3.5.1 that the 𝑛-node Gaussian quadrature is exact if the weight

function represents an 𝑛-point distribution, which is the case here. The GaG-

quadrature, however, does not have this property. While the (𝑛−1)-node Gaus-
sian quadrature used for averaging is clearly exact for (𝑛 − 1)-point distribu-
tions, the 𝑛-node anti-Gaussian quadrature is not. This implies that the standard

QMOM may be the preferable choice in cases where the moments are located

on or close to the boundary of the moment space. However, this case is uncom-

mon and in the presence of a diffusive flux term the discussed effect fades over

time as the moments diverge from this specific initial state and display the same
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Figure 5.7.: Temporal evolution of the second moment (top) and the relative

error (bottom) for Case 2 (Stratonovich diffusion), using both the

QMOM and the GaG-QMOM with the RK2SSP-AR scheme.

general trend as observed in the previous section, that is, a considerably larger

error of the standard QMOM approximation with a strong dependence on the

parity of 𝑛.

The errors in higher-order moments are significantly smaller, as illustrated

in Figures 5.8 and 5.9 for the fourth and sixth moment, respectively. Although
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the higher-order moments resulting from the GaG-QMOM calculations appear

to fluctuate around the analytical solution, in contrast to those of the QMOM,

the shown results do not allow for a clear conclusion as to whether higher-order

moments are computed more accurately by the GaG-QMOM in this particular

case.
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Figure 5.8.: Temporal evolution of the fourthmoment (top) and the relative error

(bottom) for Case 2 (Stratonovich diffusion), using both the QMOM

and the GaG-QMOM with the RK2SSP-AR scheme.
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Figure 5.9.: Temporal evolution of the sixth moment (top) and the relative error

(bottom) for Case 2 (Stratonovich diffusion), using both the QMOM

and the GaG-QMOM with the RK2SSP-AR scheme.

To summarize this section, the case of Stratonovich diffusion with an initial

two-point distribution of particle velocities revealed that the QMOM is more ac-

curate than the GaG-QMOM in the very particular cases where the moment set

is on the boundary of the moment space due to the different quadrature forms.

However, with increasing distance to the moment space boundary as a result of
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turbulence-induced dispersion, the behavior discussed in Case 1 can be observed

again. While the errors in higher-order moments are not entirely conclusive

here, the second moment, the only moment that represents a relevant physical

quantity (kinetic energy), becomes more accurate using the GaG-QMOM after

some time.

5.4.4. Case 3: Steady-State Fokker-Planck Equation

This final test case aims at the numerical investigation of the complete model

formulated in Section 5.1 with QBMMs. As a general analytical solution of the

Fokker-Planck equation exists only for the steady state, this configuration is

limited to the case where advective and diffusive fluxes are at an equilibrium.

That is, exact moments are provided as the initial condition, and their evolution

over time is observed until no further change is detected.

In contrast to the previously discussed cases, an adaptive step size control can

be employed. Here a simple step doubling method is used: At each time step

from 𝑡𝑖 to 𝑡𝑖+1, the solution is first approximated in a single step with step size

Δ𝑡 and then in two steps with step size Δ𝑡/2. The difference can then be used

to estimate the error and, based on Richardson extrapolation and an allowed

absolute and relative error, a new optimal step size is computed. Amore detailed

description of the procedure can be found in several textbooks on the numerical

solution of ODEs, e.g. [67, Sec. II.4]. Here the allowed absolute error was set to

10
−7

and the relative error to 10
−5
. The initial step size was set to Δ𝑡 = 10

−6
s.

Governing equations and initial conditions

The governingmoment equations corresponding to the complete Fokker-Planck

model with advection and diffusion terms is given by (5.17). The analytical

steady-state solution serves as initial condition, i.e.

𝑚𝑘 (0) = 𝑚
analyt

𝑘
, 𝑘 = 0, 1, . . . , 2𝑛 − 1, (5.62)

where 𝑚
analyt

𝑘
is given in (5.63) below.
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Analytical reference solution

The analytical solution in terms of moments is obtained by simply applying

the moment definition (2.17) to the stationary solution of the Fokker-Planck

equation (5.18), which yields

𝑚
analyt

𝑘
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝐶 Γ

(︃
1 + 2𝑘

4

)︃
𝜙4

𝛾

(︃
𝛾

𝜙2

)︃ (3−2𝑘 )/4
if 𝑘 is even,

0 otherwise,

(5.63)

where Γ is the gamma function, and the normalization constant can be written

as

𝐶 = 𝑚0

[︄
Γ

(︃
1

4

)︃
𝜙5/2𝛾−1/4

]︄−1
, (5.64)

see also Appendix A.4.

Results

Figure 5.10 provides a first overview of how well the different QBMMs approx-

imate the exact steady-state solution in terms of the second and the fourth mo-

ment. The RK2SSP-AR scheme was employed in all cases. The difference be-

tween the QMOM and the GaG-QMOM is remarkable. The standard QMOM

exhibits very large errors in both the second and fourth moment with the pre-

viously discussed strong dependence on the parity of 𝑛. The GaG-QMOM on

the other hand, yields significantly more accurate results, though the error is

still large for low numbers of transported moments, in particular that of the

four-moment GaG-QMOM. This observation suggests that the consideration of

only four moments is just not sufficient for an approximation with acceptable

accuracy for the examined kind of problem. Based on the shown results, this is

certainly true for the standard QMOM, irrespective of the number of moments.

Figure 5.11 shows a comparison of the GaG-QMOM with the EQMOM (with

100 second quadrature nodes) in terms of the second moment and its relative er-

ror, using the standard RK2SSP scheme for temporal integration.
6
Interestingly,

6
The used implementation of the RK2SSP-AR scheme was not optimized, resulting in excessive
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Figure 5.10.: The second (top) and fourth moment (bottom) for Case 3 (station-

ary Fokker-Planck equation) using QBMMswith up to 12 moments

and the RK2SSP-AR scheme.

the two-KDF EQMOM gives considerably better results than the higher-order

EQMOM approximations, though still with overall poor accuracy. The GaG-

computation times when using the relatively large number of second quadrature nodes. Thus, the

EQMOM was combined with the ordinary RK2SSP method for convenience.
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Figure 5.11.: The second (top) and fourth moment (bottom) for Case 3 (station-

ary Fokker-Planck equation) using QBMMswith up to 12 moments

and the RK2SSP scheme.

QMOM also displays errors that seem, at first, uncorrelated with the order of

the respective method, which is detailed further below. Overall, the results in

Figure 5.11 confirm the observation in Section 5.4.2 that the EQMOM is not able

to significantly improve the quality of results for the investigated type of prob-

lem. Thus, the EQMOM will hereafter be disregarded. Instead, the rest of this
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section is primarily focused on the GaG-QMOM.

The signed relative errors in the second moment resulting from the GaG-

QMOM with up to 16 moments are illustrated in Figure 5.12, where the solid

lines represent the RK2SSP scheme and the dashed lines the RK2SSP-AR scheme.

First, it is evident that the RK2SSP-AR scheme is a suitable realizable alternative

to the regular RK2SSP scheme, displaying only a slightly larger error, whereas

the results were virtually identical in Section 5.4.2. The difference is not sur-

prising considering that the steps accounting for microscale advection (see Sec-

tion 5.3) have no effect in case of the pure Itô diffusion problem. Furthermore, it

can be seen that the GaG-QMOM generally appears to overestimate the second

moment.

The most striking results in Figure 5.12 are those of the GaG-QMOM6(5), ex-

hibiting very small errors when combined with the RK2SSP-AR method while

the results are even exact with the RK2SSP scheme. The explanation for this be-

havior is not that the quadrature is exact (otherwise the GaG-QMOM6(5) would

have been exact as well in the previously investigated cases) but that the errors

of the quadrature approximations to the integral terms in (5.22) cancel each

other out in the very specific case that the NDF equals the steady-state solu-

tion of the Fokker-Planck equation, see Appendix A.5. As regards the other

approximations, it can be said that there is still a notable difference depending

on whether 𝑛 is even or odd: With even 𝑛 the quadrature approximations have

larger errors but display the generally expected behavior that they decreasewith

increasing number of nodes, whereas the methods with even 𝑛 display signif-

icantly higher accuracy in general with an error of about 3 %, albeit without

further improvement when using a larger number of quadrature nodes.

As the integral terms in the moment equations have different forms with dif-

ferent quadrature errors and the resulting moments represent the sum of those,

it is natural to take a closer look at the errors of each term contributing to

d𝑚𝑘/d𝑡, see Figure 5.13. The exact expressions for the integral terms in the sta-

tionary moment equations are given in Appendix A.4. In Figure 5.13 the terms

representing noise-induced advection and diffusion are summarized because

both terms differ only in constants for all moments with orders greater than

one. Further, the presented results were computed with the ordinary RK2SSP

method since, contrary to the RK2SSP-AR scheme, the integral terms appearing

106



5.4. Numerical Tests

0.0

0.1

0.2

0.3

0.4

0.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time [s] ×10 2

10 5

10 4

10 3

10 2

10 1

RK2SSP
RK2SSP-AR

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Si

gn
ed

 re
l. 

er
ro

r i
n 

m
2

GaG-QMOM-4(3)
GaG-QMOM-8(7)
GaG-QMOM-12(11)
GaG-QMOM-16(15)

GaG-QMOM-6(5)
GaG-QMOM-10(9)
GaG-QMOM-14(13)

Figure 5.12.: The signed relative error in the second moment for Case 3 (station-

ary Fokker-Planck equation) resulting from the GaG-QMOM with

the RK2SSP and the RK2SSP-AR scheme, scaled linearly (top) and

logarithmically (bottom).

in the moment equations are calculated explicitly. The behavior of the errors re-

lated to the GaG-QMOM6(5) highlights the fact that the exactness of moments

in the stationary case is a result of a beneficial cancellation of errors rather than

an exact quadrature, exhibiting the largest errors at time 𝑡 = 0. With the ex-
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Figure 5.13.: Errors in the second moment (top) and fourth moment (bottom)

equations for Case 3 (stationary Fokker-Planck equation) using

the GaG-QMOM with up to 12 moments and the standard RK2SSP

scheme.

act solution as the initial condition, it can be said that all errors over time until

reaching an equilibrium originate from the errors at time 𝑡 = 0. Initially, the

noise-induced terms in the second moment equation are underestimated by all

methods, whereas the advection is overestimated. However, the introduced mo-
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ment errors interact in a way that this effect is reversed and the noise-induced

terms are eventually overestimated to a larger extent than the advection term

is underestimated, resulting in moments that correspond to a larger spread of

the underlying NDF. It is also apparent that the methods of quadrature-based

closure with odd 𝑛, i.e. an even-node Gaussian quadrature combined with an

odd-node anti-Gaussian quadrature, are more accurate, not only in terms of the

resultingmoments but also the quadrature approximation of each of the integral

terms in the moment equations.

The results of all applied numerical configurations with up to 20 moments

are summarized in Figure 5.14. With the exception of the GaG-QMOM6(5),

which yields the exact moments as discussed above, only minor deviations of

the RK2SSP-AR from the RK2SSP scheme can be observed. Thus, the statement

above that the RK2SSP-AR is an adequate alternative to the RK2SSP method in

cases where moment realizability is a potentially critical issue can be confirmed,

considering all tested methods. As for the quadrature-based closure, the QMOM

displays very large errors and only a slight increase in accuracy by raising the

number of quadrature nodes, which allows for the conclusion that no standard

QMOM approximation can yield sufficiently accurate results for this type of

problem. Using the GaG-QMOM, the quality of the approximation in terms of

the relative error could be improved by one to two orders of magnitude, though

lower-degree approximations still exhibit a relatively large error. Furthermore,

the results in Figure 5.14 confirm the general trend found above, namely that

higher-order moments display smaller relative errors for all methods.

To conclude this final test case, it can be said that the trends identified in the

numerical investigation of the previous test cases were confirmed and quanti-

fied. The main findings are the following: First, the RK2SSP-AR scheme, dis-

playing only small deviations from the original RK2SSP method, is a suitable

alternative for cases where moment realizability is expected to become a po-

tentially critical problem. Second, the approximation by the standard QMOM

results in very large errors with the sign depending on the parity of 𝑛. Using

the well-established EQMOM with Gaussian KDFs did not lead to a substan-

tial improvement in accuracy, even with a large number of second quadrature

nodes. Even though the dependence on the parity of 𝑛 is still observable using

the GaG-QMOM, the errors can be reduced significantly, more precisely, from
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Figure 5.14.: Summary of investigated methods used for Case 3 (stationary

Fokker-Planck equation) in terms of the relative error in the second

(top) and fourth (bottom) moment against the number of solved

moment equations.

relative errors in the order of unity to errors in the order of 10
−2

when consid-

ering more than four moments. Moreover, the GaG-QMOM6(5) is exact when

the underlying PBE is a Fokker-Planck equation with advection and diffusion

coefficients of the form derived in Section 5.1. This property, albeit the result of
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error cancellation, could be exploited in particular cases close to the equilibrium

state.

5.5. Summary and Conclusion

This chapter has focused on the numerical solution of moment transport equa-

tions derived from PBEs with turbulence-induced diffusion in phase space us-

ing QBMMs. Based on a simplified microscopic and the corresponding meso-

scopic description of turbulent momentum exchange, which takes the form of a

nonlinear Fokker-Planck equation, the macroscale equations were formulated,

that is, the moment equations governing a spatially homogeneous system. The

arising unclosed integral terms are nonlinear and non-smooth, which was, in

accordance with the theory of Gaussian quadratures, identified as a source of

potentially large errors. Based on theoretical considerations as well as numer-

ical results, the sign of those errors were found to be largely determined by

the parity of the number of Gaussian quadrature nodes. Making use of this in-

formation, the standard QMOM was modified using an alternative quadrature

rule that is formed by the average of an ordinary Gaussian quadrature and a

so-called anti-Gaussian quadrature [86], referred to as Gauss/anti-Gauss (GaG)

quadrature, in order to mitigate the undesired effects entailed by the nonlinear

turbulence-induced terms. Moreover, a variation of the second-order strong-

stability preserving Runge-Kutta (RK2SSP) method was provided that ensures

the preservation of moment realizability in the presence of phase-space diffu-

sion.

These numerical methodswere applied in a series of univariate test cases with

analytical reference solutions and compared to the standard QMOM as well as

the Gaussian-EQMOM. The major findings were the following:

• The ordinary Gaussian quadrature used by the standard QMOM is accom-

panied by very large approximation errors with the expected dependence

on the parity of the number of quadrature nodes, particularly in the im-

portant second moment, which is proportional to kinetic energy.

• Using the Gaussian-EQMOM does not lead to a significant gain in accu-

racy, even with many second quadrature nodes.
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• The GaG-QMOM is able to reduce these large errors by one to two orders

of magnitude.

• As a consequence of error cancellation, the five-node (six-moment) GaG-

QMOM yields, depending on the used temporal discretization, accurate

or even exact results for the steady-state Fokker-Planck equation.

• The realizable variation of the RK2SSP scheme can serve as an adequate

alternative scheme in cases where moment realizability is expected to be-

come a critical issue.

To conclude this chapter, it should be emphasized that the proposed exten-

sion of the QMOM, the GaG-QMOM, is not limited to the particular physical

problem investigated here, but rather an alternative closure of moment equa-

tions involving non-smooth integral terms. The generalization to multivariate

PBEs as well as its application to other physical problems are possible subjects

of future research.

112



6. Performance and Accuracy of
the BasicQuadrature-Based
Closure Algorithm

The method introduced by McGraw [107] as the QMOM (see Section 3.5.1) is, at

least in parts, the fundamental core routine of most QBMMs. For the numerical

simulation of transient, spatially three-dimensional systems, the moment clo-

sure algorithm must be performed at every point in discretized time and physi-

cal space, for some QBMMs even multiple times, as highlighted in Section 3.5.2

(in particular Figure 3.3) for the EQMOM, and in Section 3.5.3 for common mul-

tivariate QBMMs. Accordingly, the algorithm is executed many millions to bil-

lions of times in large-scale simulations. That as well as the fact that the use

of QBMMs is often motivated by computational efficiency [32, 100, 179] raises

the question of how to choose the building blocks of the core algorithm appro-

priately in different cases to optimize it and potentially save tremendous com-

putational resources. Of the countless publications on the development and ap-

plication of QBMMs, computational costs are only addressed in a few, e.g. [76,

100], where computation times are reported for the QMOM procedure in its en-

tirety. Detailed analyses in terms of the computational costs of the algorithm’s

components, are, to the author’s best knowledge, not available in the literature.

The main objective of this chapter is to investigate which parts of the basic

quadrature-based moment closure algorithm are the most critical with respect

to performance and accuracy in different numerical and physical configurations.

More precisely, the following questions will be addressed:

1) What are suitable numerical methods for different parts of the algorithm?

2) Are some of those methods more efficient or accurate than others?
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3) Are certain common practical implementations advantageous with re-

spect to performance and accuracy?

4) How is accuracy of different numerical configurations affected by the pro-

cessed moment sequence?

5) What parts of the moment closure algorithm are dominant in terms of

computational costs and should be optimized to enhance the overall per-

formance?

For this purpose, the three main components of the quadrature-based moment

closure algorithm will be briefly summarized first. Then, after discussing the

methodology underlying the numerical study on performance and accuracy, the

most important results will be presented, before concluding this chapter with a

summary of the major findings.

6.1. Components of theQuadrature-Based
Closure Algorithm

One of the main objectives of the numerical investigations in this chapter is

to quantify the effects of each step in the basic moment closure algorithm on

overall performance and accuracy. These steps are:

(I) Computation of the recurrence coefficients from a sequence of moments

to assemble the Jacobi matrix:

𝒎2𝑛−1 → J𝑛.

(II) Solution of the eigenvalue/eigenvector problem associated with J𝑛 to ob-
tain the quadrature nodes and weights:

J𝑛 → 𝑤 𝑗 , 𝜉 𝑗 , 𝑗 = 1, . . . , 𝑛.

(III) Application of the quadrature rule to approximate the integral terms in

the moment equations:

𝑤 𝑗 , 𝜉 𝑗 → d𝑚𝑘/d𝑡, 𝑗 = 1, . . . , 𝑛, 𝑘 = 0, . . . , 2𝑛 − 1.
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Corresponding to the numbering above, the three components are hereinafter

referred to as Subroutine I, Subroutine II and Subroutine III. The following sub-

sections provide some important details on the methods applied in each of those

steps.

6.1.1. Subroutine I: Computing the Jacobi Matrix from
Moments

Algorithms suitable to compute the Jacobi matrix J𝑛 from a sequence of mo-

ments 𝒎2𝑛−1 have already been discussed in Section 3.4. The numerical study

in this chapter includes the comparison of two of those, namely

• the long quotient-modified difference algorithm (LQMDA) in the form

proposed by Sack and Donovan [143] (see Section 3.4.1),

• the Golub-Welsch algorithm (GWA, see Section 3.4.2).

As to the latter, it was mentioned in Section 3.4.2 that the unavailable moment

𝑚2𝑛 must be chosen appropriately for the Hankel moment matrix M𝑛+1 to be-

come positive-definite when using implementations of the Cholesky factoriza-

tion provided by common numerical linear algebra packages. The approach

employed for the investigations in Section 6.3 is as simple as setting 𝑚2𝑛 to the

value 10
200

, which should suffice for all realistic configurations. The PDA and

QDA are disregarded for the reasons stated in Section 3.4.

6.1.2. Subroutine II: Solving the Eigenvalue Problem for
the Jacobi Matrix

As pointed out in Section 3.2, the quadrature abscissas are the eigenvalues of

the Jacobi matrix J𝑛 while the quadrature weights result from its eigenvectors.

In order to solve the eigenvalue problem associated with general matrices, one

may choose from numerous methods, which can be found in most textbooks on

numerical linear algebra, e.g. [30, 57]. However, comparatively few algorithms

to solve the eigenvalue problem associated with tridiagonal symmetric matrices

are practically used and implemented in established numerical linear algebra

packages such as LAPACK [4], namely thewell-knownQR algorithm, the Divide
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& Conquer (DC) algorithm [26], Relatively Robust Representations (RRR) [36,

121] and bisection with inverse iteration (BI) [6].

Demmel et al. [31] compared the LAPACK implementations of the four above-

mentioned algorithms in terms of performance and accuracy and concluded that

the DC and RRR are much faster than QR and BI on large matrices and that QR

and DC are the most accurate algorithms of those investigated. While these

findings may give valuable hints as to which methods are most suitable for the

application of interest, they are hardly transferable to the eigenvalue problem

associated with QBMMs due to the focus on larger matrices, whereas the pri-

mary concern here are very small matrices with 𝑛 ≤ 10. Moreover, instead of a

general set of test matrices, the numerical study in this chapter aims to quantify

accuracy depending on characteristics of the underlying moment set.

The DC algorithm uses QR iterations to compute the eigenvalues of subma-

trices, which is a very efficient approach for matrices larger than 𝑛 ≈ 25 [30,

31]. For matrices as small as the Jacobi matrices in the inversion procedure of

QBMMs, the DC algorithm is not suitable and is thus not considered any further,

neither is the BI, which is most suited to finding subsets instead of the entire

spectrum [30]. Both of the remaining two algorithms, namely the QR and the

RRR algorithm, need O(𝑛2) FLOPs to find all eigenvalues [30, 36, 121]. If the

eigenvectors are also computed, the complexity of the QR algorithm is O(𝑛3)
while that of RRR is only O(𝑛2).
Given the computational complexity to compute the eigenvectors, the ques-

tion arises whether it is more efficient in some cases to use the computed eigen-

values and available moment information with a fast O(𝑛2) algorithm like that

of Björck and Pereyra [12] to solve the Vandermonde system

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1

𝜉1 𝜉2 . . . 𝜉𝑛
...

...
. . .

...

𝜉𝑛−1
1

𝜉𝑛−1
2

. . . 𝜉𝑛−1𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑤1

𝑤2

...

𝑤𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑚0

𝑚1

...

𝑚𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (6.1)

Even though Vandermonde matrices tend to be ill-conditioned [120] it is worth

examining if, in specific cases, this approach could be the faster alternative to

compute the weights of the Gaussian quadrature.
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6.1.3. Subroutine III: Closing the Moment Equations

With an available 𝑛-node Gaussian quadrature, the 2𝑛 moment transport equa-

tions can be closed. For the univariate PBE for a spatially homogeneous system

(2.18), the quadrature form can be written as

d𝑚𝑘

d𝑡
≈ 𝑘

𝑛∑︂
𝑗=1

𝑤 𝑗𝜉
𝑘−1
𝑗 𝑎(𝜉 𝑗 ) + 𝑘 (𝑘 − 1)

𝑛∑︂
𝑗=1

𝑤 𝑗𝜉
𝑘−2
𝑗 𝑑 (𝜉 𝑗 )

+ Q𝑘 (𝒘𝑛, 𝝃𝑛), 𝑘 = 0, . . . , 2𝑛 − 1,
(6.2)

where Q𝑘 (𝒘𝑛, 𝝃𝑛) is the source term approximation using the Gaussian quadra-

ture with weights 𝒘𝑛 ∈ R𝑛+ and abscissas 𝝃𝑛 ∈ R𝑛, i.e.

Q𝑘 (𝒘𝑛, 𝝃𝑛) ≈
∫
Ω

𝜉𝑘S( 𝑓 , 𝜉) d𝜉. (6.3)

The computational costs of this subroutine primarily depend on what point pro-

cesses, if any, are represented by S. In the absence of point processes or in the

presence of, at most, first-order processes, e.g. particle breakage, the moment

closure step has complexity O(𝑛2). In the presence of second-order point pro-

cesses, i.e. processes with particle-particle interactions such as collisions, the

evaluation of each Q𝑘 requires O(𝑛2) FLOPs, resulting in an overall computa-

tional complexity of O(𝑛3). Both cases are considered here (see Section 6.2.3).

6.2. Methodology

In what follows, the methodology underlying the numerical study in this chap-

ter will be detailed, starting with a discussion on what parts of the algorithm are

problem-specific with respect to performance and accuracy. Following that, the

investigated configurations will be detailed in terms of test moment sequences

as well as representative PBEs, and important implementation details will be

addressed. Finally, the section will conclude with a description of how output

data was generated and processed for meaningful results.

6.2.1. Identification of Problem-Specific Effects

Both performance and accuracy may be problem-dependent, which must be

taken into account when designing a suitable set of test moments. In the fol-
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lowing, this issue is addressed for each of the three subroutines separately.

Regardless of which specific algorithm is used to compute the recurrence co-

efficients, Subroutine I is non-iterative and the number of FLOPs depends solely

on 𝑛. Thus, the performance of Subroutine I can be considered to be problem-

independent. Its accuracy, on the other hand, can be expected to depend on

the input moment set, more precisely, on its distance from the moment space

boundary. If a moment sequence 𝒎2𝑛−1 is close to 𝜕M2𝑛−1, the moment ma-

trixM𝑛+1 for the Cholesky factorization will be almost singular when using the

GWA. In case of the LQMDA, such moment sets will result in very small 𝑠𝑖𝑖

in (3.33)–(3.35) for some 𝑖 < 𝑛 − 1 and, consequently, lead to larger numerical

errors in the next iteration.

Subroutine II may be affected by the input moment set in terms of both per-

formance and accuracy. This is due to the fact that commonly used eigenvalue

algorithms are iterative and that their accuracy depends on how well the eigen-

values are separated [30, 57]. The robustness of such algorithms generally de-

creases with stronger clustering of eigenvalues. The relationship between mo-

ment sequences close to the moment space boundary and clustered eigenval-

ues is well illustrated by the simple example in Figure 6.1. It shows three de-

generate NDFs: a three-node NDF corresponding to a realizable moment set

𝒎5 ∈ M5 \ 𝜕M5 (left), a two-node NDF corresponding to a weakly realizable

moment set 𝒎5 ∈ 𝜕M5 (center) and a three-node NDF with a moment set close

to 𝜕M5 (right). Obviously, the latter case is equivalent to clustered quadrature

nodes, i.e. clustered eigenvalues of the Jacobi matrix.

The sole purpose of including Subroutine III as part of the numerical study is

to gain knowledge of what steps of the algorithm require most of the compu-

tation time in specific cases and are thus worth optimizing. Naturally, the re-

quired computation time of Subroutine III is extremely problem-dependent with

respect to the underlying PBE. For this reason, different representative cases are

considered, as will be detailed in Section 6.2.3.

6.2.2. Data Generation

The basis of the numerical study in this chapter is a test data set comprising se-

quences of 2𝑛 = 4, 6, . . . , 20moments. Based on the considerations in the previ-
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Figure 6.1.: Illustration of the relationship between the distance of moment se-

quences to the moment space boundary and the separation of eigen-

values of the associated Jacobi matrix. The shown NDFs correspond

to moment sequences that are realizable (top), weakly realizable

(center) and close to weakly realizable (bottom) with respect to the

moment spaceM5.

ous section, 10
5
pseudo-randommoment sequenceswere generated for each 𝑛 to

cover an appropriate range of cases with particular emphasis on moments close

to the moment space boundary. This was achieved by sampling the recurrence

coefficients 𝛼𝑖 and 𝛽𝑖 from a normal distribution and a gamma distribution
1
,

respectively, that is

𝛼𝑖 ∼ N(0, 1

2𝛿
), 𝛽𝑖 ∼ Gamma(𝜆, 𝛿), (6.4)

1
The shape/rate parametrization with probability density 𝜑 (𝑥 ) = 𝛿𝜆

Γ (𝜆) 𝑥
𝜆−1𝑒−𝛿𝑥 is used here,

where Γ denotes the gamma function.
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with parameters 𝛿 = 1 and 𝜆 = 1/2. It is worth noting that, with this choice of

distributions for the recurrence coefficients, the probability density of the dis-

tribution of moments is known explicitly [34, 35]. However, instead of sampling

the moments directly based on a relatively complex probability density for the

moments, the well-known distributions in (6.4) were used to generate a pseudo-

random Jacobi matrix and subsequently calculate the moment sequences from

the relationship [150]

𝑚𝑘 = 𝒆𝑇
1
J𝑘𝑛𝒆1, 𝒆1 = (1, 0, 0, . . . , 0)𝑇 . (6.5)

By carrying out this calculation in long double (80-bit) precision, it is ensured

that the input moments for Subroutine I are “exact” in terms of their 64-bit rep-

resentation, and erroneous input data can be ruled out as a potential source

of errors. For the investigation of Subroutine II, the sampled recurrence coeffi-

cients are used directly, and the moments from (6.5) are used as reference values

for the calculation of errors, see also Section 6.2.6.

For later analysis, it is necessary to characterize the distance of moment sets

from the moment space boundary in terms of a single scalar quantity. To this

end, several options are conceivable. The simplest choice would be the smallest

recurrence coefficient 𝛽min. Further possible choices are e.g. the Hankel deter-

minant det(M𝑛), the smallest singular value of M𝑛, or its radius of regularity

(radius of non-singularity) [129]. The latter defines a distance to the closest sin-

gular matrix, which is, in this sense, very similar to the smallest singular value.

In fact, the smallest singular value provides a lower bound for the radius of reg-

ularity [129]. While all the mentioned quantities showed plausible and similar

correlations with resulting errors, it was found in the course of the numerical in-

vestigations that the distribution of the radius of regularity, henceforth denoted

by 𝑟reg (M𝑛), is the most convenient for error analysis.

6.2.3. Representative Moment Equations

For a meaningful relative comparison of the subroutines in terms of computa-

tion times, three different representative PBEs are considered. As the moment

sequences of interest are of Hamburger type, models with velocity as the inter-

nal coordinate, denoted by 𝑣, are used in all three cases. It should be empha-

sized that the equations presented below serve as representative examples for
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moment equations derived from PBEs with typical terms to help estimate the

computational costs for closing the moment equations. The independent pro-

cess of solving the resulting system of differential equations is not subject of the

study in this chapter.

Fokker-Planck equation with a constant drag coefficient

The first PBE representing a simple first-order process is the one-dimensional

Fokker-Planck equation with drag and turbulence-induced diffusion that was

derived in Chapter 5. Thus, the moment equations in closed quadrature form

read

d𝑚𝑘 (𝑡)
d𝑡

≈ − 𝑘𝛾

𝑛∑︂
𝑗=1

𝑤 𝑗sgn(𝑣 𝑗 )𝑣𝑘+1𝑗 + 𝑘
𝜙2

4

𝑛∑︂
𝑗=1

𝑤 𝑗sgn(𝑣 𝑗 )𝑣𝑘−1𝑗

+ 𝑘 (𝑘 − 1) 𝜙
2

2

𝑛∑︂
𝑗=1

𝑤 𝑗sgn(𝑣 𝑗 )𝑣𝑘−1𝑗 , 𝑘 = 0, . . . , 2𝑛 − 1.
(6.6)

Fokker-Planck equation with a velocity-dependent drag coefficient

The second set of testedmoment equations results from the Fokker-Planck equa-

tion underlying the moment equations above, extended by a velocity-dependent

drag coefficient 𝐶𝑑 in (5.5). In fact, 𝐶𝑑 is often modeled as a function of the

velocity-dependent particle Reynolds number Rep. A commonly accepted ex-

pression for such a velocity-dependent drag coefficient is

𝐶𝑑 (𝑣) =
24

Rep

(︃
1 + 1

6

Rep
2/3

)︃
, (6.7)

where Rep is defined as in (4.9). Evidently, this expression entails additional divi-

sions and powers with fractional exponents to compute the RHS of the moment

equations. Therefore, the second PBE can be deemed representative for other

common first-order models such as particle breakage models, many of which

have similar forms, see e.g. [90] and [96, Sec. 5.7.2].

Population balance equation with hard-sphere collisions

The third set of moment equations results from a PBE with a term accounting

for hard-sphere collisions. It represents second-order processes, i.e. processes
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with particle-particle interactions resulting in a total of O(𝑛3) FLOPs for Sub-
routine III. For this purpose, a simplified form of the quadrature-based moment

model for hard-sphere collisions of Fox and Vedula [47] is used, which is based

on the inelastic Boltzmann-Enskog kinetic equation. In quadrature form re-

duced to one dimension, the collision source term can be expressed as

Q𝑘 (𝒘𝑛, 𝒗𝑛) = 𝐶

𝑛∑︂
𝑖=1

𝑛∑︂
𝑗=1

𝑤𝑖𝑤 𝑗

|︁|︁𝑔𝑖, 𝑗 |︁|︁ 𝐼 (0)𝑘
(𝜔𝑖, 𝑗 , 𝑣𝑖 , 𝑔𝑖, 𝑗 ), (6.8)

where 𝐶 is a model constant that can be determined from the particle diameter

and the particle volume fraction [96, Sec. 6.1.2]. The relative velocity between

particles is 𝑔𝑖, 𝑗 = 𝑣𝑖 − 𝑣 𝑗 and 𝜔𝑖, 𝑗 is a measure of the elasticity of collisions.

It may depend on 𝑔𝑖, 𝑗 or be constant, which is assumed here for the sake of

simplicity, i.e.

𝜔𝑖, 𝑗 = 𝜔0 = const., 𝑖, 𝑗 = 1, . . . , 𝑛. (6.9)

The function 𝐼
(0)
𝑘
(𝜔, 𝑣, 𝑔) is a 𝑘th-degree homogeneous polynomial in 𝑣 and 𝑔

and results from the analytical integration over collision angles, see [47]. Defin-

ing

𝐼̃
(0)
𝑘 (𝑣𝑖 , 𝑣 𝑗 ) ≔ 𝐼

(0)
𝑘
(𝜔0, 𝑣𝑖 , 𝑣𝑖 − 𝑣 𝑗 ), (6.10)

the moment equations in closed quadrature form can be written as

d𝑚𝑘 (𝑡)
d𝑡

≈ Q𝑘 (𝒘𝑛, 𝒗𝑛) = 𝐶

𝑛∑︂
𝑖=1

𝑛∑︂
𝑗=1

𝑤𝑖𝑤 𝑗

|︁|︁𝑣𝑖 − 𝑣 𝑗 |︁|︁ 𝐼̃ (0)𝑘 (𝑣𝑖 , 𝑣 𝑗 ). (6.11)

6.2.4. Implementation

The applications for the numerical study were implemented in C++, see Ap-

pendix A.7 for more details. The implementation uses the Intel®Math Kernel
Library (MKL) interface to LAPACK, primarily for Cholesky factorizations and

for the computation of eigenvalues and eigenvectors. Moreover, to rule out im-

plementation details as the root of significant differences in performance and

accuracy, methods provided by the C++ template library Eigen3 [63] were addi-
tionally tested as an alternative toMKL/LAPACK functions. The chrono library,

122



6.2. Methodology

which is part of the C++ standard template library, was used to quantify perfor-

mance in terms of CPU times.

Besides different libraries for numerical linear algebra operations, another

measure that was taken to ascertain the meaningfulness of results was to test

two different compilers, namely the C++ compiler from the GNU Compiler Col-
lection as well as the Intel®oneAPI DCP++/C++ Compiler (see Appendix A.7). Af-
ter ensuring that no significant compiler-dependent differences in computing

times occurred, the Intel® compiler was used for the main parts of the study.

Finally, to make results more hardware-independent with respect to relative

computation times, multithreading was disabled, whereas vectorization with

Advanced Vector Extensions (AVX2) was enabled since it is supported by most

processors, e.g. virtually all modern Intel® and AMD processors.

6.2.5. Execution

The numerical studywas carried out using aworkstationwith anUbuntu system
and an Intel®CoreTM i7-9700K processor. Since most test cases were executed

using up to six cores simultaneously and independently, the results of selected

cases were compared to those from single-core computations to make certain

that the use of multiple cores does not entail any bottlenecks corrupting the

results.

For the quantification of performance in terms of computation times, wall

clock times were measured using the chrono::high_resolution_clock class. Nat-

urally, the times measured in this way are affected by fluctuations. For this

reason, the computation time for each subroutine of the closure algorithm was

obtained by averaging the times of 10
4
executions.

6.2.6. Error Analysis

The main objective of the numerical investigations in this chapter is, besides

measuring performance, the quantification of accuracy of the moment closure

algorithm using different configurations. To this end, appropriate error mea-

sures for each of the subroutines must be defined, which is the purpose of this

section.
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Subroutine I takes a sequence of moments as input and computes the entries

of the associated Jacobi matrix. The latter are, as explained in Section 6.2.2, the

most basic output of the data generation process. Thus, the error of Subroutine I,

say 𝐸1, is measured by the relative error of the Jacobi matrix in terms of the

Frobenius norm, i.e.

𝐸1 (J𝑛) =

∥︁∥︁∥︁ J𝑛 − J(𝑟 )𝑛

∥︁∥︁∥︁
𝐹∥︁∥︁∥︁ J(𝑟 )𝑛

∥︁∥︁∥︁
𝐹

, (6.12)

where J(𝑟 )𝑛 is the original reference matrix.

Subroutine II computes the nodes and weights of a Gaussian quadrature from

a given Jacobi matrix. To quantify the accuracy, the quality of the computed

quadrature is evaluated in terms of moments by first computing a set of recon-

structed moments

𝑚𝑘 =

𝑛∑︂
𝑗=1

𝑤 𝑗𝜉
𝑘
𝑗 , 𝑘 = 0, 1, . . . , 2𝑛 − 1 (6.13)

and then calculating an error with respect to the original reference moments.

In this case, however, defining a relative error analogously to (6.12) would not

be a suitable approach because the elements of the moment vector may dif-

fer by several orders of magnitude, which is particularly true for Hamburger

sequences where the values of higher-order moments are usually significantly

larger than those of lower-order moments. Thus, to prevent the errors from be-

ing determined by the higher-order moments, it is sensible to calculate a vector

of relative errors first and subsequently take the norm to obtain a scalar quan-

tity. Mathematically, the error induced by Subroutine II can then be expressed

as

𝐸2 (𝒎2𝑛−1) =
∥︁∥︁∥︁∥︁diag−1 (𝒎 (𝑟 )2𝑛−1)

(︂
𝒎2𝑛−1 − 𝒎 (𝑟 )

2𝑛−1

)︂∥︁∥︁∥︁∥︁ , (6.14)

where, again, the superscript (𝑟) indicates the reference values.
As mentioned previously, Subroutine III is only analyzed in terms of compu-

tation times used to close the moment equations, i.e. to apply the quadrature to

the RHS of (6.2). Hence, no other error measures than those defined above are

needed for the interpretation of the numerical results in the following section.
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6.3. Results

In this section, some major results are presented and discussed. The conducted

numerical study is composed of three parts, one for each of the subroutines I

and II, and one final part quantifying the relative contributions to the total com-

putational costs of the algorithm under investigation. The number of moments

was varied from 4 to 20. The more detailed illustrations in this section are based

on representative numbers of 6 and 16 moments.

The tested numerical configurations include several methods for each of the

algorithm’s steps as well as various implementations of those methods, using

the MKL interface to LAPACK, the Eigen3 library, or C++ codes developed as

part of this work, see Appendix A.7 for details.

6.3.1. Subroutine I: Computation of the Jacobi Matrix

The first subroutine of the quadrature-based closure algorithm takes a sequence

of moments as input and computes, as output, the recurrence coefficients of the

associated orthogonal polynomials to assemble the Jacobi matrix. As described

in Section 6.2, the regularity radius of the Hankel moment matrix 𝑟reg (M𝑛) and
the relative error of the Jacobi matrix in terms of the Frobenius norm are used

to characterize the input and output quantities, respectively.

Figure 6.2 shows the distribution of the relative error over the radius of regu-

larity for 6 and 16 moments employing the LQMDA and the GWA with a plain

C++ implementation of the Cholesky decomposition, where the colors indicate

the absolute frequency corresponding to each hexagonal bin. The solid line in-

dicates the conditional geometric mean of the relative error, i.e. the mean given

a fixed range of 𝑟reg (M𝑛). Besides the observation that, with a larger number of

moments, very large errors appear to bemore frequent when using the LQMDA,

no significant differences in terms of the sensitivity to input quantities are vis-

ible. This is also highlighted by Figure 6.3 showing the conditional geometric

mean of the relative error for all methods and implementations. The only visi-

ble differences are very close to the boundary of the moment space, which may,

however, be caused by the very low sample density in that region rather than

actual substantial differences in the methods’ behavior.

The performance of variousmethods and implementationsmeasured in terms
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Figure 6.2.: Distribution of the error resulting from the LQMDA and GWA (with

plain C++ implementation of the Cholesky decomposition) solving

for 6 and 16 moments.

of executions per second is compared in Figure 6.4. The implementation of the

GWA using the LAPACK routine POTRF2 (recursive algorithm) to compute the

Cholesky decomposition is obviously not suitable for this type of problem. Fur-

ther, the pure C++ implementations of the GWA are considerably faster than

that using the LAPACK routine POTRF for small numbers of moments and

twice as fast for 20 moments. Since LAPACK is generally known to be efficient

due to the extensive use of BLAS (Basic Linear Algebra Subprograms [13]) op-

erations, this clearly indicates that the computation time is dominated by data

conversion and calls to interfaces to the underlying Fortran routines, which can-
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Figure 6.3.: Conditional geometric mean error of the Jacobi matrix resulting

from different implementations of computing the Jacobi matrix from

moments (Subroutine I).

not be compensated by performant linear algebra routines due to the very small

matrices. The fastest variant of Subroutine I is the LQMDA, which, compared

to the fastest version of the GWA, increases the execution frequency by a factor

of about 2 for moment sequences with a size greater than 6.

Based on this first part of the study, it can be concluded that no significant dif-

ferences in sensitivity to input moment sets could be observed between different

methods. As regards performance, the use of standard linear algebra packages

may come with significant drawbacks due to data conversion/transfer and in-

terface calls. Moreover, the LQMDA is superior to the GWA for the considered

range of moments and should be preferred unless, for some reason, additional

quantities resulting from the GWA, e.g. the Hankel determinant, are needed.
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Figure 6.4.: Number of executions per second of different implementations of

computing the Jacobi matrix from moments (Subroutine I).

6.3.2. Subroutine II: Solution of the Eigenvalue Problem

This section is concerned with the computation of the Gaussian quadrature rule

from the Jacobi matrix. As described in Section 6.1.2, this is done by finding

the eigenvalues and subsequently computing the eigenvectors or, alternatively,

solving the linear Vandermonde system in (6.1). For the sake of brevity, the

former will be referred to as eigenvector method and the latter as Vandermonde

method for the remainder of this section.

The input of Subroutine II are the diagonals of the Jacobi matrix, i.e. the recur-

rence coefficients of orthogonal polynomials, which are the original quantities

obtained from the sampling procedure described in Section 6.2.2. The output

of Subroutine II are the abscissas and weights of the related Gaussian quadra-

ture. However, since there is no particular interest in errors of individual nodes

and weights but rather in the induced moment errors, the following results will

focus on the error in reconstructed moments as defined in (6.14).

Figure 6.5 shows a comparison between the eigenvector method and the Van-

dermondemethod in terms of relativemoment errors. No substantial differences
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Figure 6.5.: Distribution of the relative moment error resulting from the QR al-

gorithm with the eigenvector method (left) and the Vandermonde

method (right) solving for 6 and 16 moments.

in the shape of the distribution could be observed between the tested eigenvalue

algorithms. Thus, the LAPACK implementation of the QR algorithm is shown as

an exemplary eigenvalue algorithm in both cases. Interestingly, the eigenvector

method is virtually unaffected by the underlying moment sequence, even when

solving for 16 moments, whereas the Vandermonde method appears to yield

more accurate results with increasing distance to the moment space boundary.

Generally, the Vandermondemethod exhibits a higher frequency of larger errors

and, with an increasing number of moments, also a significantly larger mean er-
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ror in the region close to the moment space boundary. This is highlighted even

more clearly in Figure 6.6, which shows a comparison of the mean relative mo-

ment errors between all tested variants. Using only 6 moments, the difference

in mean errors is negligible, and all methods display an accuracy not too far

from machine precision. When solving for a larger number of moments close

to the moment space boundary, however, the Vandermonde method produces

relative errors that exceed those of the eigenvector method by several orders of

magnitude. As the distance to the critical region increases, the accuracy of the

Vandermonde method approaches that of the eigenvector method.

A comparison in terms of performance over the entire investigated range of

moment sets is shown in Figure 6.7. It reveals that the Vandermonde method

generally tends to be faster, albeit to a very minor extent in case of the Eigen3
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Figure 6.6.: Conditional geometric mean of relative moment errors from differ-

ent implementations to solve the eigenvalue problem (Subroutine II).
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Figure 6.7.: Number of executions per second of different implementations to

solve the eigenvalue problem (Subroutine II).

implementation. In contrast to Subroutine I, the superior efficiency of LAPACK
seems to compensate the overhead due to data conversion and interface calls

when computing eigenvalues only. Compared to the eigenvector method with

LAPACK, the Vandermonde method is about twice as fast. In terms of compu-

tational efficiency, the RRR algorithm does not appear to have any advantages

for the solution of the small tridiagonal symmetric eigenvalue problems arising

in the moment closure algorithm.

To summarize this section, it can be said that, for the investigated moment

sequences, the relative moment errors resulting from the calculation of Gaus-

sian quadrature rules from the Jacobi matrix by computing its eigenvalues and

eigenvectors is practically independent of the input moments. Solving the Van-

dermonde system instead of computing the eigenvectors could be an efficient

alternative in cases where only a few moment equations are solved or where

the distance to the moment space boundary is known to be large, e.g. in sys-

tems tending to a known equilibrium state satisfying that condition. The RRR

algorithm did not display any beneficial properties for this type of problem.
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6.3.3. Relative Contributions to Total Computational Costs

The last part of this numerical study deals with the question of which subrou-

tines contribute most to the total computational costs, which is essential infor-

mation needed to identify bottlenecks and to be able to properly optimize the

algorithm that is executed so many times during a simulation. Since computa-

tion times and the relative contributions of the three subroutines are heavily de-

pendent on the specific form of the moment equations, the three representative

problems described in Section 6.2.3 were investigated, first, the Fokker-Planck

equation with a constant drag coefficient, second, the same equation only with a

velocity-dependent drag coefficient and third, hard-sphere collision. Only a sin-

gle numerical configuration with regard to subroutines I and II is shown here,

namely the LQMDA with the LAPACK implementation of the QR algorithm

computing both the eigenvalues and eigenvectors. The relative computational

costs for other combinations of numerical methods can be estimated using the

results of the previous investigations.

The results in terms of computation times are shown in Figure 6.8. Evidently,

the computational costs of Subroutine I are negligible in all cases. Accordingly,

the choice between LQMDA and the GWA to compute the Jacobi matrix should

hardly affect the overall performance in most cases.
2

When only first order

processes are present, the computational costs are mainly determined by the

solution of the eigenvalue problem, regardless of whether the specific opera-

tions are slightly more complex. However, the moment closure may become

dominant in the presence of second-order processes as the number of moments

increases.

As a concluding remark, it should be stressed that the results presented here

can only be interpreted qualitatively due to the strong dependence on the phys-

ical problem. Even though representative terms were chosen for first-order and

second-order processes, highly dynamicmodular codesmay be significantly less

efficient and lead to a larger contribution of Subroutine III. However, the results

2
Some QBMMs may involve multiple executions of Subroutine I before solving the eigenvalue

problem in Subroutine II, e.g. the EQMOM (see Section 3.5.2) with the improved root search algo-

rithms due to Pigou et al. [126] where the recurrence coefficients of orthogonal polynomials are

repeatedly computed in an iterative procedure.
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with a velocity-dependent drag coefficient (center) and hard-sphere

collision (right).

above justify the generalization that, for performance optimization, the compu-

tation of the Jacobi matrix from a set of moments is secondary while the solution

of the eigenvalue problem to compute the Gaussian quadrature rule plays a ma-

jor role in terms of the overall performance of the quadrature-based moment

closure algorithm.

6.4. Summary and Conclusion

To revisit the questions raised in the very beginning of this chapter one by one,

the conclusions of this chapter can be summarized as follows:

1) The LQMDA and the GWA were identified as suitable methods to calcu-
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late the Jacobi matrix from moments and the QR and RRR algorithms to

solve the eigenvalue problem. Additionally, the possibility to solve a lin-

ear system of Vandermonde form to determine the quadrature weights

was considered as an alternative to computing the eigenvectors using the

mentioned methods.

2) For the computation of the recurrence coefficients of orthogonal polyno-

mials, the LQMDA displays the highest computational efficiency while

both tested methods are almost equally accurate for the investigated mo-

ment sequences. As for solving the eigenvalue problem, the QR algorithm

was found to be superior for the small eigenvalue problems appearing

in QBMMs. The approach solving the Vandermonde system tends to be

faster than computing the eigenvectors of the Jacobi matrix, though ac-

curacy may suffer when using this approach with a larger number of mo-

ments or with moment sequences in the more critical region of the mo-

ment space.

3) In general, simple implementations avoiding excessive data conversions,

data transfer and interface calls should be preferred for optimal perfor-

mance. This is particularly true for the algorithm to compute the Jacobi

matrix where the use of the MKL interface to LAPACK entails significant

overhead. When computing only the eigenvalues of the Jacobi matrix

that effect appears to be largely neutralized by the optimized efficiency of

LAPACK.

4) The computed Jacobi matrix can be expected to be less accurate the closer

the input moments are to an unrealizable moment set, i.e. a set corre-

sponding to no valid density function. The same applies to the calcula-

tion of the quadrature nodes andweights by finding the eigenvalues of the

Jacobi matrix and subsequently solving the Vandermonde system. In con-

trast, the computation of the complete eigendecomposition is apparently

unaffected in terms of accuracy.

5) The extent to which each of the subroutines contributes to the overall

computational costs of the algorithm is heavily dependent on the consid-

ered PBE. The contribution of the computation of recurrence coefficients
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can be expected to be negligible in most cases. The solution of the eigen-

value problem is dominant when only first-order processes are present

in the PBE, whereas computing the RHS of the moment equations deter-

mines the computational costs when solving a relatively large number

of moment equations derived from a PBE with second-order processes.

However, these statements rely on the efficient implementation of com-

mon physical models and should be understood as a qualitative conclu-

sion.

These results can be used to estimate the computational costs of common

univariate and multivariate QBMMs as well as new developments, such as the

GaG-QMOM introduced in Section 5.2, and help optimize the overall efficiency

of such methods.
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7.1. Summary

The work presented in this thesis has been intended to contribute to the ad-

vancement of QBMMs for population balances. This includes both the formu-

lation of physical models and the investigation and development of numerical

methods, with the main focus on the latter. The reported research can be di-

vided into three parts: First, the formulation of a commonly used model for

droplet breakup in the context of QBMMs and the numerical investigation with

different methods. Second, the derivation of a quadrature-based moment model

for the effects of fluid phase turbulence on dispersed particles and the develop-

ment of suitable methods for the numerical solution of the resulting system of

moment equations. Third, the numerical exploration and analysis of the core

algorithm of QBMMs in terms of performance and accuracy. The results and

major conclusions, which can be found in a more comprehensive form in the

concluding sections of the respective chapters, are summarized below.

For the numerical investigation of droplet breakupwith QBMMs in Chapter 4,

a quadrature-based moment model was first derived from the well-established

Reitz-Diwakar model, a relatively simple Lagrangian model for bag and shear

breakup, which are the breakup modes most frequently observed in dynamic

particulate systems such as sprays. A key feature is the simplifying assump-

tion that, for a specific breakup mode and given fluid properties, the fragments

formed as a result of breakup are of constant size. Mathematically, this cor-

responds to a degenerate fragment size distribution, which is represented ex-

actly by the QMOM. This property was exploited to successfully validate the

model with two simple configurations involving initial populations of droplet

with equal sizes. Finally, the model was applied to a more realistic initial popu-

lation with log-normally distributed droplet sizes. In addition to the QMOM, the
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Gamma-EQMOM, which uses Gamma-KDFs to reconstruct a continuous NDF

and calculate an arbitrarily large number of quadrature nodes, was also tested.

The numerical results showed that QBMMs are generally able to compute a

reasonably accurate approximation of the source terms in the moment equa-

tions derived from the Reitz-Diwakar model. The application of the Gamma-

EQMOM, however, did not result in enhanced accuracy, which can be attributed

to the investigated system tending to a three-point distribution as well as the in-

accurate representation of the initial log-normal distribution by Gamma-KDFs.

Generally, the results indicated that the solved system should consist of at least

six moment equations to obtain adequately accurate results.

The second major part of this work, presented in Chapter 5, was concerned

with the formulation of a quadrature-based moment model for the effects of

fluid turbulence on particle velocities and the identification and development

of suitable methods for the numerical solution. First, starting from a simplified

microscopic and the derivedmesoscopic description of turbulentmomentum ex-

change in the form of a nonlinear Fokker-Planck equation, the corresponding

system of moment transport equations was formulated for a spatially homoge-

neous system. The nonlinear and non-smooth integral terms were identified as

a source of potentially large errors when using the standard QMOM with an 𝑛-

point Gaussian quadrature. Theoretical considerations suggested that the signs

of those errors are primarily determined by the parity of 𝑛, whichwas confirmed

by numerical results. Based on this information, the standard QMOMwas mod-

ified using an alternative (2𝑛 − 1)-point quadrature rule that is formed by the

average of an ordinary (𝑛 − 1)-point Gaussian quadrature and an 𝑛-point anti-

Gaussian quadrature as proposed by Laurie [86]. The corresponding QBMM,

referred to as Gauss/anti-Gauss QMOM (GaG-QMOM), was shown to reduce

the initially large errors by one to two orders of magnitude compared to the

QMOM, as opposed to the EQMOM with Gaussian KDFs, which did not bring

any significant improvement in accuracy for the considered test cases. More-

over, a variation of the second-order strong-stability preserving Runge-Kutta

(RK2SSP) method was developed that guarantees the unconditional preserva-

tion of moment realizability in the presence of phase-space diffusion in spatially

homogeneous systems. It was shown to be a suitable alternative scheme in cases

where moment realizability is expected to be critical.
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The third part of the conducted research work, which was dealt with in Chap-

ter 6, focused on the numerical exploration of the core algorithm of most QB-

MMs, which is performed many millions to billions of times in large-scale sim-

ulations, in terms of performance and accuracy. Essentially, the algorithm can

be divided into three subroutines: first, computing the first 𝑛 pairs of recur-

rence coefficients of the orthogonal polynomials corresponding to a given se-

quence of 2𝑛 moments to assemble the associated symmetric tridiagonal Jacobi

matrix, second, solving the related eigenvalue problem to obtain 𝑛 nodes and

weights of the Gaussian quadrature, and third, applying the quadrature to ap-

proximate the integral terms and close the system of 2𝑛 moment equations. It

was found that available algorithms to compute the recurrence coefficients are

about equally sensitive to the input moment sequence. There are considerable

differences in performance, but the contribution to the overall computational

costs of the closure algorithm is negligible. The standard method to solve the

eigenvalue problem associated with the Jacobi matrix was found to be insen-

sitive to the input moment set in contrast to a less robust but slightly faster

alternative that involves solving a linear system of Vandermonde form. For rel-

atively simple physical problems, the overall computational costs were found

to be mostly determined by the eigenvalue problem, whereas closing the mo-

ment equations becomes important in the presence of more complex processes

with particle-particle interactions. The presented findings can help identify the

potentials of optimization and make QBMMs as efficient as possible.

7.2. General Conclusions

Based on the contents of this dissertation, the following general conclusions can

be inferred:

• Whenever the quantities of interest are macroscopic, QBMMs can serve

as a computationally efficient alternative to more detailed mesoscale ap-

proaches for the numerical simulation of particulate systems described by

PBEs. However, in contrast to computationally more expensive methods,

such as stochastic methods that are theoretically applicable to arbitrarily

complex models, QBMMs are limited to relatively simple mathematical
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relationships in low-dimensional internal-coordinate space.

• Numerical simulations of the many physical processes best described by

mathematical models involving non-smooth expressions, e.g. those stud-

ied in Chapters 4 and 5, may yield extremely inaccurate results when us-

ing common QBMMs. In such cases, special approaches are required, one

of which is the GaG-QMOM developed as part of this work.

• Moment realizability may be a critical issue not only with respect to phys-

ical transport, which has been the main focus of the related research [23,

77, 85, 147, 166, 167], but also transport in phase space. This must be taken

into account by using appropriate methods. A method specifically suited

to phase-space diffusion is the absolutely realizable variant of the RK2SSP

scheme proposed in Chapter 5.

• For the efficient solution of moment transport equations with QBMMs,

the primary focus should be on the fast solution of the eigenvalue problem

in the moment inversion procedure and, depending on the presence or

absence of second-order processes in the underlying PBE, the efficient

implementation of the moment source term evaluation.

7.3. Suggestions for Future Research

To conclude this thesis, some suggestions for future research topics are provided

below.

• Applications involving more complex integral expressions: For the most

part, the numerical studies conducted in the course of this work were

based on simplified models to enable a thorough analysis of the applied

numerical methods with respect to analytical reference solutions. Poten-

tially physically relevant effects resulting in more complex expressions in

the moment equations, e.g. a velocity-dependent drag coefficient in the

Fokker-Planck equation in Chapter 5, were neglected. The extension of

the models to more complex forms as well as the application and, if neces-

sary, adaptation of the developed numerical methods are possible research

tasks for the future.
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• Extension of the GaG-QMOM to Hausdorff and Stieltjes problems: It was
highlighted that the GaG-QMOM is only suitable for Hamburger prob-

lems as the outer nodes of the anti-Gaussian quadrature may be located

outside the support interval. Extending the method to NDFs with fi-

nite support [𝑎, 𝑏] (Hausdorff problem) and semi-infinite support [𝑎,∞)
(Stieltjes problem) to make it applicable to common internal coordinates

such as particle size is a possibly interesting subject of future research.

A possible approach to accomplish that is the combination with a Gauss-

Radau quadrature for Hausdorff problems or a Gauss-Lobatto quadrature

for Stieltjes problems to fix the outer quadrature nodes at the phase-space

boundaries.

• Extension to multivariate problems: Except for the model formulation in

Chapter 5, the presented research was limited to univariate problems.

However, many physical problems require a multivariate description, i.e.

multiple internal coordinates. Accordingly, the extension of the devel-

oped methods to multivariate problems is an interesting topic of future

research. While the necessary modification of the RK2SSP requires only

minor adjustments like the use of multivariate instead of univariate nor-

mal moments, the extension of the GaG-QMOM must be combined with

multivariate approaches such as the CQMOM. First considerations imply

that this is theoretically possible by raising the number of conditional mo-

ments to match the increased number of quadrature nodes. However, that

approach can be expected to aggravate the known problem of moment re-

alizability with multivariate QBMMs, another challenge that would have

to be met with novel numerical methods.

The setups for the conducted numerical studies as well as the software devel-

oped as part of this work can serve as a solid basis to approach these challenges.
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Nomenclature

Acronyms and abbreviations

BI Bisection with inverse iteration

CQMOM Conditional quadrature method of moments

DC Divide & Conquer

DEM Discrete element method

DNS Direct numerical simulation

DQMOM Direct quadrature method of moments

EQMOM Extended quadrature method of moments

FCMOM Finite-size domain complete set of trial functions method of

moments

FLOP Floating point operation

GPBE Generalized population balance equation

GWA Golub-Welsch algorithm

GaG Gauss/anti-Gauss

KDEM Kernel density element method

KDF Kernel density function

LES Large eddy simulation

LHS Left-hand side

LQMDA Long quotient-modified difference algorithm

MOMIC Method of moments with interpolative closure

NDF Number density function

PBE Population balance equation
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Nomenclature

PDA Product-difference algorithm

PDE Partial differential equation

PDF Probability density function

QBMM Quadrature-based moment method

QDA Quotient-difference algorithm

QMOM Quadrature method of moments

RANS Reynolds-averaged Navier-Stokes

RHS Right-hand side

RK2SSP Second-order strong-stability preserving Runge-Kutta

RKSSP Strong-stability preserving Runge-Kutta

RRR Relatively robust representations

SDE Stochastic differential equation

SGS Subgrid scale

Variables, functions, constants

B𝑘 Breakup in the 𝑘th moment equation

𝐶bag Reitz-Diwakar model constant for bag breakup limit

𝐶𝑑 Drag coefficient

𝐶shear Reitz-Diwakar model constant for shear breakup limit

𝐶𝑡 Model constant for turbulence-induced phase space diffusion

model

C(·) Physical diffusion coefficient matrix

𝐷bag Reitz-Diwakar model constant for bag breakup rate

𝐷shear Reitz-Diwakar model constant for shear breakup rate

D(·) Diffusivity matrix in internal-coordinate space

𝐺𝑛 (·) 𝑛-point Gaussian quadrature

Gamma(·) Gamma distribution

𝐼 (·) Integral functional defined in (3.15)

164



J𝑛 Truncated Jacobi matrix of size 𝑛

J∗𝑛 Modified (anti-Gauss) truncated Jacobi matrix of size 𝑛

𝑀𝑘 Absolute moment of order 𝑘

M𝑛 Hankel moment matrix of size 𝑛

𝑁 Number of internal-coordinates

𝑁𝑝 Number of particles

N(·) Normal distribution

Q𝑘 (·) Quadrature approximation of the collision source term in the

𝑘th moment equation

𝑅𝑛 (·) Error of 𝑛-point quadrature rule

S(·) Source term in the PBE for discontinuous processes

𝑼 Lagrangian fluid velocity

𝑼 Lagrangian resolved fluid velocity

𝑼′
Lagrangian turbulent fluid velocity fluctuation

𝑉 Lagrangian particle velocity (1D)

𝑽 Lagrangian particle velocity

𝑊 1D-Wiener process with increment d𝑊

𝑾 Wiener process with increment d𝑾

𝑿 Lagrangian particle position

𝑎(·) Particle acceleration (1D); phase-space advection velocity (1D)

𝑎∗ (·) Noise-induced advection function in Fokker-Planck equation

(1D)

𝒂(·) Particle acceleration; phase-space advection velocity

𝒂∗ (·) Noise-induced advection function in Fokker-Planck equation

erf(·) Error function

𝑑 Particle diameter

𝑑 (·) Diffusivity in phase space (1D)

𝑘𝑡 Turbulent kinetic energy

𝑓 (·) NDF

𝑓𝑠𝑡 (·) Steady-state NDF
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Nomenclature

𝑙0 Integral length scale

𝑙𝑡 Characteristic turbulence length scale

𝑚𝑘 Moment of order 𝑘

𝑚𝑘1 ,𝑘2 ,...,𝑘𝑁 Multivariate moment of order (𝑘1, 𝑘2, . . . , 𝑘𝑁 )
𝑚̇𝑘 Moment source term of order 𝑘

𝑚̇𝑘1 ,𝑘2 ,...,𝑘𝑁 Multivariate moment source term of order (𝑘1, 𝑘2, . . . , 𝑘𝑁 )
𝑚̃𝑘 (·) Moment of normal distribution

𝒎𝑝 Sequence of integer moments up to order 𝑝

𝑝𝑘 (·) General polynomial of degree 𝑘

𝑝
(1)
𝑖
(·) One-particle PDF of 𝑖th particle

𝑝 (𝑁𝑝 ) (·) 𝑁𝑝-particle PDF

𝑟reg (·) Radius of regularity

𝑠𝑖 𝑗 Mixed moments used in the LQMDA / Wheeler algorithm

sgn(·) Sign function

𝑡 Time

𝑢 Fluid velocity (1D)

𝒖 Fluid velocity

𝒖 Resolved fluid velocity

𝒖′
Turbulent fluid velocity fluctuation

𝑢𝑟 Relative velocity

𝑣 Phase-space variable for particle velocity (1D)

𝑤(·) General weight function of orthogonal polynomials

𝑤 𝑗 The 𝑗th weight of a quadrature rule

𝒗 Phase-space variable for particle velocity vector; general ad-

vection velocity

𝒙 Point in physical space

Γ(·) The gamma function

Δ LES filter width

Δ𝑡 Time step size
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Θ(·) Heaviside step function

𝚵 Random variable in internal-coordinate space

𝚺(·) Noise coefficient matrix in 3D-Langevin equation

𝛼𝑘 Recurrence coefficient of orthogonal polynomials

𝛽(·) Fragment size distribution from breakup

𝛽𝑘 Recurrence coefficient of orthogonal polynomials

𝛾 Advection constant in Fokker-Planck equation

𝛿(·) Dirac delta function

𝛿𝜎 (·) KDF with parameter 𝜎 used by the EQMOM

𝜖𝑡 Turbulent energy dissipation rate

𝜂 Kolmogorov length scale

𝜈(·) Breakup rate

𝜈𝑒 Effective viscosity

𝜈 𝑓 Kinematic fluid viscosity

𝜈𝑡 Eddy viscosity

𝜉 Internal coordinate

𝜉̂
bag

Critical droplet size for bag breakup

𝜉̂
shear

Critical droplet size for shear breakup

𝝃 Internal coordinate vector

𝜋𝑘 (·) Monic orthogonal polynomial of degree 𝑘

𝜋̃𝑘 (·) Orthonormal polynomial of degree 𝑘

𝜌 𝑓 Fluid density

𝜌𝑝 Particle density (specific mass)

𝜎 KDF parameter used by the EQMOM

𝜎(·) Noise function in the 1D-Langevin equation

𝜎𝑙 Liquid surface tension

𝜏bag Droplet lifetime in the bag breakup regime

𝜏shear Droplet lifetime in the shear breakup regime

𝜏𝑡 Characteristic turbulence time scale

167



Nomenclature

𝜏𝑝 Characteristic particle time scale

𝜙 Diffusion constant in Fokker-Planck equation

Sets, spaces, fields

B General support interval / field

M𝑝 The 𝑝th moment space

𝜕M𝑝 Boundary of the 𝑝th moment space

P𝑛 Set of real polynomials with degree up to 𝑛

R Set/field of real numbers

Ω Internal-coordinate space

Superscripts and subscripts

|𝐴 Anti-Gaussian quadrature

|𝐺 Gaussian quadrature

| 𝑓 Fluid

|𝑝 Particle

|𝑡 Turbulence

Dimensionless numbers

Oh Ohnesorge number

Re Reynolds number

Rep Particle Reynolds number

St Stokes number

We Weber number
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A. Appendix

A.1. Python Implementation of QBMMs

The numerical studies in Chapters 4 and 5 were carried out using the Python

package QuadMomPy, which has been developed by the author as part of this

work. The source code is available on

• GitLab: https://gitlab.com/puetzm/quadmompy,

• GitHub (mirror): https://github.com/puetzmi/quadmompy.

The versions used for the numerical investigations were

• version v0.9.10 (Git commit hash 01f87b0) in Chapter 4,

• version v0.9.8 (Git commit hash f9aa049) in Chapter 5.

The basic configurations for the study in Chapter 5 are also included as examples

in the code repository.

A.2. Supplementary Results for the Numerical
Investigation of Droplet Breakup

In addition to the results presented in Section 4.4, Figure A.1 shows the evolution

of the Sauter mean diameter (SMD) and the relative error over time, employing

the Gamma-EQMOM with different numbers of quadrature nodes. Using 100

instead of 10 second quadrature nodes does not lead to any visible improvement.

Figure A.2 shows the SMD and the relative error resulting from the QMOM

with up to 16 moments. The results display the general expected trend that

raising the number of moments leads to increased accuracy.
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Figure A.1.: SMD (top) and relative error (bottom) for Case 3, using the Gamma-

EQMOM with different numbers of second quadrature nodes.
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A.3. Central Absolute Moments of the Normal Distribution

A.3. Central Absolute Moments of the Normal
Distribution

It is commonly known that a normal distribution with mean 𝜇 and standard

deviation 𝑠 has the probability density function

𝑝(𝑥; 𝜇, 𝑠) = 1

√
2𝜋𝑠

exp

(︄
−1
2

(𝑥 − 𝜇)2
𝑠2

)︄
. (A.1)

With 𝜇 = 0 the raw absolute moments are equal to the central absolute mo-

ments. Considering the symmetry about the origin, they can be expressed as

𝑀𝑘 =

∞∫
−∞

|𝑥 |𝑘 𝑝(𝑥; 0, 𝑠) d𝑥 = 2

∞∫
0

𝑥𝑘 𝑝(𝑥; 0, 𝑠) d𝑥

=

√
2

√
𝜋𝑠

∞∫
0

𝑥𝑘 exp

(︄
−1
2

𝑥2

𝑠2

)︄
d𝑥.

(A.2)

According to [17] the analytical expression for the integral is

∞∫
0

𝑥𝑘 exp

(︄
−1
2

𝑥2

𝑠2

)︄
d𝑥 =

1

2

Γ

(︃
𝑘 + 1
2

)︃ (︂
2𝑠2

)︂ (𝑘+1)/2
(A.3)

Then the 𝑘th central absolute moment can finally be written as

𝑀𝑘 =
𝑠𝑘2𝑘/2
√
𝜋

Γ

(︃
𝑘 + 1
2

)︃
. (A.4)

A.4. Analytical Solution of the Stationary
Fokker-Planck Equation

Let A(𝑣) denote the advection function, which includes the drift-induced ad-

vection as well as the noise-induced advection and B(𝑣) the diffusion function.

Then the Fokker-Planck equation reads

𝜕 𝑓 (𝑣)
𝜕𝑡

= − 𝜕

𝜕𝑣

[︁
A(𝑣) 𝑓 (𝑣)

]︁
+ 1

2

𝜕2

𝜕𝑣2

[︁
B(𝑣) 𝑓 (𝑣)

]︁
. (A.5)
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Setting 𝜕 𝑓 (𝑣; 𝑡)/𝜕𝑡 = 0, the stationary NDF 𝑓𝑠𝑡 (𝑣) satisfies

2

d

d𝑣

[︁
A(𝑣) 𝑓𝑠𝑡 (𝑣)

]︁
=

d
2

d𝑣2

[︁
B(𝑣) 𝑓𝑠𝑡 (𝑣)

]︁
. (A.6)

Integration with respect to 𝑣 yields

2A(𝑣) 𝑓𝑠𝑡 (𝑣) + 𝐶1 =
d

d𝑣

[︁
B(𝑣) 𝑓𝑠𝑡 (𝑣)

]︁
, (A.7)

and consequently

2A(𝑣) 𝑓𝑠𝑡 (𝑣) + 𝐶1 = B(𝑣)
d 𝑓𝑠𝑡 (𝑣)
d𝑣

+ 𝑓𝑠𝑡 (𝑣)
dB(𝑣)
d𝑣

, (A.8)

where 𝐶1 is the constant of integration. By separation of variables one obtains

2

A(𝑣)
B(𝑣) d𝑣 +

𝐶1

B(𝑣) 𝑓𝑠𝑡 (𝑣)
d𝑣 =

d 𝑓𝑠𝑡 (𝑣)
𝑓𝑠𝑡 (𝑣)

+ dB(𝑣)
B(𝑣) (A.9)

and after integration

2

∫ A(𝑣)
B(𝑣) d𝑣 +

∫
𝐶1

B(𝑣) 𝑓𝑠𝑡 (𝑣)
d𝑣 + 𝐶2 = ln

[︁
𝑓𝑠𝑡 (𝑣)B(𝑣)

]︁
. (A.10)

Since 𝑓𝑠𝑡 must tend to zero in the limits of 𝑣→ ±∞, the second integral diverges
for any 𝐶1 ≠ 0. Thus, 𝐶1 must be zero and (A.10) becomes

𝑓𝑠𝑡 (𝑣) =
1

B(𝑣) exp
(︃
2

∫ A(𝑣)
B(𝑣) d𝑣 + 𝐶2

)︃
. (A.11)

Defining 𝐶 := exp(𝐶2), one finally obtains

𝑓𝑠𝑡 (𝑣) =
𝐶

B(𝑣) exp
(︃
2

∫ A(𝑣)
B(𝑣) d𝑣

)︃
, (A.12)

where𝐶 is the normalization constant that is chosen such that

∫
R
𝑓𝑠𝑡 (𝑣) d𝑣 = 𝑚0,

i.e.

𝐶 = 𝑚0

[︄∫
R

1

B(𝑣) exp
(︃
2

∫ A(𝑣)
B(𝑣) d𝑣

)︃
d𝑣

]︄−1
. (A.13)

Substitution of the general functions with the advection and diffusion coeffi-

cients given in Section 5.1

A(𝑣) = −𝛾 |𝑣 | 𝑣⏞ˉ⏟⏟ˉ⏞
Drift-induced advection

+ 𝜙2

4

sgn(𝑣)⏞ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ⏞
Noise-induced advection

, (A.14)

B(𝑣) = 𝜙2 |𝑣 | , (A.15)
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and integration of the exponent in (A.12) yields

𝑓𝑠𝑡 (𝑣) =
𝐶

𝜙2
√︁
|𝑣 |

exp

(︃
−2 𝛾

𝜙2
|𝑣 |

)︃
, (A.16)

where the normalization constant is

𝐶 = 𝑚0

[︄
Γ

(︃
1

4

)︃
𝜙5/2𝛾−1/4

]︄−1
. (A.17)

Then the exact moments associated with (A.16) can be expressed as

𝑚𝑠𝑡 ,𝑘 =

∫
R
𝑣𝑘 𝑓𝑠𝑡 (𝑣) d𝑣 =

1 + (−1)𝑘
2

𝐶 Γ

(︃
1 + 2𝑘

4

)︃
𝜙4

𝛾

(︃
𝛾

𝜙2

)︃ (3−2𝑘 )/4
. (A.18)

With the exact stationary NDF, closed expressions for the integrals in the mo-

ment equations can be derived. For the equilibrium state, (5.22) can be written

as

d𝑚𝑠𝑡 ,𝑘

d𝑡
= 0 = 𝑚̇

(𝑎,𝑑)
𝑠𝑡 ,𝑘

+ 𝑚̇
(𝑎,𝑛)
𝑠𝑡 ,𝑘

+ 𝑚̇
(𝑑)
𝑠𝑡 ,𝑘

, (A.19)

where the terms on the RHS represent, from the left to the right, the change

of the 𝑘th moment due to drift-induced advection, noise-induced advection and

diffusion. For odd 𝑘 all terms on the RHS of (A.19) vanish due to symmetry. For

even 𝑘 analytical integration yields

𝑚̇
(𝑎,𝑑)
𝑠𝑡 ,𝑘

= −𝑘𝛾
∫
R
sgn(𝑣)𝑣𝑘+1 𝑓𝑠𝑡 (𝑣) d𝑣

= −𝐶𝑘 Γ

(︃
2𝑘 + 3

4

)︃ (︃
𝛾

𝜙2

)︃ (1/2−𝑘 )/2
,

𝑚̇
(𝑎,𝑛)
𝑠𝑡 ,𝑘

= 𝑘
𝜙2

4

∫
R
sgn(𝑣)𝑣𝑘−1 𝑓𝑠𝑡 (𝑣) d𝑣

=
𝐶𝑘𝜙2

4𝛾
Γ

(︃
2𝑘 − 1

4

)︃ (︃
𝛾

𝜙2

)︃ (5/2−𝑘 )/2
,

𝑚̇
(𝑑)
𝑠𝑡 ,𝑘

= 𝑘 (𝑘 − 1) 𝜙
2

2

∫
R
sgn(𝑣)𝑣𝑘−1 𝑓𝑠𝑡 (𝑣) d𝑣

=
𝐶𝑘 (𝑘 − 1)𝜙2

2𝛾
Γ

(︃
2𝑘 − 1

4

)︃ (︃
𝛾

𝜙2

)︃ (5/2−𝑘 )/2
.

(A.20)
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A.5. Exactness of the Five-Node GaG-Quadrature
for the Stationary Case

For a (2𝑛 − 1)-node GaG-quadrature, 2𝑛 moments are required. Thus, in order

to compute the five-node quadrature rule the first six moments must be known.

For the steady-state solution, the exact moments are given in (5.63). They can

be expressed as (considering the identity Γ(𝑥 + 1) = 𝑥 Γ(𝑥))

𝑚0 = 𝐶Γ

(︃
1

4

)︃
𝜙5/2𝛾−1/4,

𝑚2 =
1

4

𝐶Γ

(︃
1

4

)︃
𝜙9/2𝛾−5/4,

𝑚4 =
5

16

𝐶Γ

(︃
1

4

)︃
𝜙13/2𝛾−9/4,

𝑚1 = 𝑚3 = 𝑚5 = 0.

(A.21)

Application of the Wheeler algorithm [143, 170] with the given moments yields

the recurrence coefficents of the first three polynomials orthogonal with respect

to 𝑓𝑠𝑡 :

𝛼0 = 𝛼1 = 𝛼2 = 0,

𝛽1 =
𝜙2

4𝛾
, 𝛽2 =

2𝜙2

𝛾
.

(A.22)

Thus, the modified Jacobi matrix can be written as

J∗
3
=

⎛⎜⎜⎜⎜⎝
𝛼0

√
𝛽1 0

√
𝛽1 𝛼1

√
2𝛽2

0

√
2𝛽2 𝛼2

⎞⎟⎟⎟⎟⎠
=

𝜙
√
𝛾

⎛⎜⎜⎜⎜⎝
0 1/2 0

1/2 0

√
2

0

√
2 0

⎞⎟⎟⎟⎟⎠
. (A.23)

Then, as described in Section 3.2, the nodes and weights of the Gaussian and

the anti-Gaussian quadrature result from the eigenvalues and eigenvectors of J2
(the upper left 2×2 submatrix of J∗

3
) and J∗

3
, respectively. The resulting combined
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GaG-quadrature rule is then (with averaged weights)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
1

2

𝜙
√
𝛾

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3
−1
0

1

3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑤1

𝑤2

𝑤3

𝑤4

𝑤5

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
𝑚0

36

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

9

16

9

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (A.24)

where even indices correspond to the Gaussian quadrature and odd indices cor-

respond to the anti-Gaussian quadrature. Applying this quadrature rule, the in-

tegral terms on the RHS of themoment equations can be closed. Considering the

analytical expressions in (A.20) for the integral terms in the stationary case, the

quadrature error can be calculated for each term. Using the same superscripts

as in (A.20) to indicate the drift-induced advection, noise-induced advection and

diffusion, the errors in the second moment equation are

𝑅 (𝑎,𝑑) = 𝑚̇
(𝑎,𝑑)
𝑠𝑡 ,2

−
5∑︂
𝑗=1

−2𝑤 𝑗𝛾 sgn(𝑣 𝑗 )𝑣3𝑗 =
1

2

𝑚0𝜙
3

√
𝛾
− 3

2

𝑚0𝜙
4 Γ(3/4)

𝛾 Γ(1/4) ,

𝑅 (𝑎,𝑛) = 𝑚̇
(𝑎,𝑛)
𝑠𝑡 ,2

−
5∑︂
𝑗=1

2𝑤 𝑗

𝜙2

4

sgn(𝑣 𝑗 )𝑣 𝑗 = −1
6

𝑚0𝜙
3

√
𝛾
+ 1

2

𝑚0𝜙
4 Γ(3/4)

𝛾 Γ(1/4) ,

𝑅 (𝑑) = 𝑚̇
(𝑎,𝑛)
𝑠𝑡 ,2

−
5∑︂
𝑗=1

2𝑤 𝑗

𝜙2

2

sgn(𝑣 𝑗 )𝑣 𝑗 = −1
3

𝑚0𝜙
3

√
𝛾
+ 𝑚0𝜙

4 Γ(3/4)
𝛾 Γ(1/4) .

(A.25)

It is evident that none of the integrals is exactly represented by the quadrature,

as expected. However, the errors cancel each other out, i.e.

𝑅 (𝑎,𝑑) + 𝑅 (𝑎,𝑛) + 𝑅 (𝑑) = 0, (A.26)

which results in exact moments. The same is true for the fourthmoment, though

not explicitly shown here.

A.6. Computational Costs of the GaG-QMOM

It is stated in Chapter 5 that the proposed variation of the QMOM, namely

the GaG-QMOM, causes only moderate computational overhead, which is il-

lustrated in Figure A.3. It shows the computational costs of the GaG-QMOM in
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Figure A.3.: Computational costs of the GaG-QMOM compared to the standard

QMOM in terms of the mean computation time (based on 10
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exe-

cutions per moment set) for each step of the moment closure algo-

rithm (top) and the relative overhead, i.e. the factor by which the

GaG-QMOM increases the computation time with respect to the
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terms of absolute computation time and relative computational overhead com-

pared to the QMOM, using the same set of 10
5
test moments as in the numerical

investigations in Chapter 6 and the system of moment equations derived from

the Fokker-Planck equation with a constant drag coefficient (5.22). The maxi-

mum factor of increase in total computation time is shown to be about 1.8 when

solving for 20 moments, which can be deemed moderate considering the gain in

accuracy presented in Section 5.4. However, it should be noted that this factor

depends on the underlying PBE. The overhead for more complex PBEs (pos-

sibly including second-order processes) can be estimated using the results in

Section 6.3.3.

A.7. C++ Implementation for Performance and
Accuracy Measurements

The source code that was implemented for the numerical study in Chapter 6 is

available on

• GitLab: https://gitlab.com/puetzm/qbmm-profiling-tools,

• GitHub (mirror): https://github.com/puetzmi/qbmm-profiling-tools

The used configurations are provided on

• GitLab: https://gitlab.com/puetzm/qbmm-profiling-study

• GitHub (mirror): https://github.com/puetzmi/qbmm-profiling-study

Table A.1 lists the versions that were used to obtain the results presented in Sec-

tion 6.3. Information on the versions of the most important third-party software

and libraries used to develop and build the applications is given in Table A.2.

The results in Section 6.3 were produced by applications built with the Intel®

compiler. To rule out compiler-specific effects that would limit the general va-

lidity of results, the GNU compiler was also tested on selected cases. Moreover,

since most of the numerical investigations were conducted running multiple

configurations simultaneously on six cores, it was ensured that the use of mul-

tiple cores does not lead to any bottlenecks resulting in substantial differences
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Table A.1.: Code versions used for the different parts of the numerical study in

Chapter 6.

Part of the numerical study Version Git commit hash

Subroutine I: Computation of the

Jacobi matrix (Section 6.3.1)

v0.3.1 c26c03c

Subroutine II: Solution of the ei-

genvalue problem (Section 6.3.2)

v0.3.1 c26c03c

Relative contributions to compu-

tational costs (Section 6.3.3)

v0.3.2 0e453ec

Table A.2.: Versions of major third-party software and libraries used for the

study in Chapter 6.

Software / library Version

Intel®oneAPI Math Kernel Library 2022.2.0

LAPACK 3.10.1

Eigen 3.4.0

Intel®oneAPI DCP++/C++ Compiler 2023.0.0

GNU Compiler Collection 11.3.0

from the single-core computation, whichwould invalidate themeasured compu-

tation times. Figure A.4 shows the executions per second for solving the eigen-

value problem (Subroutine II) comparing the performance of the Intel® build

using one/six cores and the GNU build using six cores. It is evident that compi-

lation with theGNU compiler as well as simultaneous computations onmultiple

cores result in a slightly decreased performance, though not to an extent that is

significant with regard to the conclusions following from Chapter 6.
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Figure A.4.: Number of executions per second of implementations to solve the

eigenvalue problem (Subroutine II), built with different compilers

and using different numbers of cores simultaneously.
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