Entwicklung CMOS kompatibler Oberflächenwellenfilter (SAW) basierend auf Aluminiumnitrid für die Biosensorik und drahtlose Datenkommunikation

Von der Fakultät für Mathematik, Naturwissenschaften und Informatik der Brandenburgischen Technischen Universität Cottbus

zur Erlangung des akademischen Grades

Doktor der Ingenieurswissenschaften (Dr.-Ing.)

genehmigte Dissertation

vorgelegt von

Diplom - Ingenieur (FH)

Udo Christian Kaletta

geboren am 05. Dezember 1982 in Rüdersdorf bei Berlin

Erster Gutachter:Prof. Dr. rer. nat. Thomas SchroederZweiter Gutachter:Prof. Dr. rer. nat. habil. Götz SeiboldDritter Gutachter:Dr. rer. nat. habil. Christian Wenger

Bibliographische Beschreibung und Referat

Kaletta, Udo

Entwicklung CMOS kompatibler Oberflächenwellenfilter (SAW) basierend auf Aluminiumnitrid für die Biosensorik und drahtlose Datenkommunikation Doktorarbeit, Brandenburgische Technische Universität Cottbus 2014, 132 Seiten, 86 Abbildungen, 9 Tabellen, 131 Literaturangaben

Ziel:

Das Ziel ist die Entwicklung von AlN basierten SAW Filtern mit Hilfe von CMOS kompatiblen Materialien und Schichtkonfigurationen.

Inhalt:

- Untersuchung und Auswertung des Wachstums / der Kristallqualität von AlN auf verschiedenen Reinraummaterialien
- Ermittlung wichtiger elektroakustischer Parameter mit Hilfe von FEM Simulationen akustischer Wellenmoden in CMOS kompatiblen Schichtsystemen
- Elektrische Messung und Auswertung verschiedener SAW Filter mit unterschiedlichen Schichtsystemen
- > Untersuchungen zum elektromagnetischen Crosstalk von SAW Filtern
- Vorstellung der Messdaten von optimierten CMOS kompatiblen diskreten SAW Filtern

Selbstständigkeitserklärung:

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbstständig angefertigt und nur die angegebenen Quellen verwendet habe.

.....

.....

Ort, Datum

Udo Kaletta

Danksagung

Diese Doktorarbeit entstand in der Materialforschungsabteilung des Leibniz-Institut für innovative Mikroelektronik (IHP GmbH) in Frankfurt (Oder).

An dieser Stelle möchte ich mich bei allen herzlich bedanken, die mich während dieser Arbeit fachlich oder persönlich unterstützt haben.

Besonders bedanken möchte ich mich bei Herrn Dr. rer. nat. habil. Christian Wenger für die Vergabe des interessanten Themas und für die fachliche und persönliche Unterstützung während der ganzen Zeit. Bedanken möchte ich mich auch bei Herrn Prof. Dr. rer. nat. Thomas Schroeder für die Annahme als Doktorand und die Unterstützung beim vorangegangenen Promotionsstudium an der BTU Cottbus sowie bei Dr. Paulo Santos für die nützlichen Hinweise zum Thema SAW Technik. Danken möchte ich auch Herrn Prof. Dr. rer. nat. habil. Götz Seibold für die Übernahme der Arbeit als zweiter Gutachter. Bedanken möchte ich mich ebenso für die zeitaufwändige Arbeit des Korrekturlesens und die Betreuung dieser Arbeit.

Speziell bedanken möchte ich mich auch bei Mirko Fraschke, Dirk Wolansky, Steffen Marschmeyer, Jürgen Drews, Philip Kulse, Andreas Krüger, Marco Lisker, Alexander Scheit und der ganzen Process Research Gruppe für die Einführung und Unterstützung in den komplexen Bereich der verschiedenen Reinraumprozesse. Dadurch erst konnten wichtige technologisch anspruchsvolle Ideen in Form von fertigen Prozessschritten umgesetzt werden.

Bedanken möchte ich mich auch bei den Mitarbeitern der Circuit Abteilung für die Leihgabe verschiedener elektrischer Geräte ohne die wichtige Messungen hätten nicht gemacht werden können.

Ein großer Dank gehört auch Christian Wipf für die Unterstützung bei den S-Parameter Messungen der SAW Filter, Jens Katzer für die Ionenstrahl-Arbeiten und Gabriele Morgenstern für die Rasterelektronenmikroskop-Aufnahmen sowie dem ganzen Team der In- und Off-line Charakterisierung.

Bedanken möchte ich mich auch bei allen Mitarbeitern der Materialforschungsabteilung sowie auch der Technologieabteilung für die stete fachliche Unterstützung sowie die schnelle Bereitstellung von wichtigen Informationen rund um die in dieser Arbeit verwendeten Geräte und Anlagen.

Danken möchte ich auch meiner Freundin Anja, meinen Eltern und meiner Schwester die mich während dieser Arbeit immer unterstützt und motiviert haben.

Kurzfassung

Einleitung: Akustische Oberflächenwellenfilter (SAW Filter) finden in zahlreichen drahtlosen und drahtgebundenen Kommunikationstechnologien sowie in der Sensorik ihren Einsatz. Dabei führt der Trend hin zu immer preiswerteren und kompakteren Lösungen mit noch mehr Funktionalität und Stromverbräuchen. Die Anwendungen erstrecken noch geringeren sich dabei von ultraenergiesparenden Kommunikationssystemen (z. B. für Sensorknoten) bis hin zu preiswerteren Multisensorarrays in der Sensorik (z. B. Biosensoren) sowie auf einem Chip integrierten Mikrofluidik Systemen (z. B. Mikroliterpumpen). Eine Lösung stellt die Integration der SAW Filter auf einem Chip zusammen mit integrierten Schaltkreisen (IC) in der sogenannten komplementären-Metall-Oxid-Halbleiter (CMOS) Technologie dar. Da es sich hierbei um ein neues Forschungsgebiet handelt und nur wenige Forschergruppen auf diesem Gebiet arbeiten sind umfangreiche wissenschaftliche Untersuchungen notwendig, um eine vollständige Integration der SAW Filter zu ermöglichen. Das reinraumkompatible piezoelektrische Material mit einem ausreichend hohen einzige (K^2) elektromechanischen Kopplungsfaktor sowie einer hohen akustischen Ausbreitungsgeschwindigkeit (v_{AIN} = 5760 m/s [Bu 2006]) für hohe Arbeitsfrequenzen (bis ~6 GHz) ist dabei Aluminiumnitrid (AIN). Dafür muss es hoch c-achsenorientiert (<2°) aufgewachsen werden. Ein großes Problem bei der Integration ist das elektromagnetische Übersprechen (Crosstalk), welches besonders auf den für die CMOS Technologie notwendigen niederohmigen Siliziumsubstraten auftritt.

<u>Ziel:</u> Diese Doktorarbeit untersucht die Möglichkeit der Integration von AIN basierten SAW Filtern mit Hilfe von diskreten Bauelementen, aufgebaut mit CMOS kompatiblen Schichtsystemen, in Hinblick auf eine spätere CMOS kompatible Vollintegration.

<u>Ergebnisse:</u> Es konnte gezeigt werden, dass AIN basierte Filter mit Hilfe von CMOS kompatiblen Materialien und Prozessschritten hergestellt werden können. Außerdem konnte gezeigt werde, dass AIN sehr gut (full width at half maximum, FWHM: 1,27° - 1,9°) c-achsenorientiert aufgewachsen werden kann. Umfangreiche Simulationen, die mit Hilfe der finiten Element Methode (FEM) durchgeführt wurden, zeigten akustische Wellen (Rayleighwelle R0 und an der Oberfläche geführte Volumenwelle R1) mit Geschwindigkeiten von circa 4200 m/s (R0) bzw. 5200 m/s (R1) im technisch relevanten Frequenzbereich (~2,4GHz). Es wurde festgestellt, dass die akustische Reflektivität von Wolfram basierten Fingerelektroden circa ein bis zwei Größenordnungen höher liegt als bei Aluminium basierten Elektroden. Hergestellte SAW Filter zeigten maximale Resonanzfrequenzen von 3,3 GHz bei einer Wellenlänge von 1,68 μm, diese können noch auf bis zu 6,6 GHz bei einer minimalen Wellenlänge von 0,8 μm gesteigert werden. In dieser Arbeit konnte erstmals ein elektromagnetisches Übersprechen (Crosstalk) von unter -65 dB auf standardmäßig

- 5 -

niederohmigen Siliziumsubstraten gezeigt werden. Erste optimierte SAW Filteranwendungen zeigten typische Frequenzantworten mit guter Performance.

Abstract

Introduction: Surface acoustic wave filters (SAW filter) are widely distributed in wireless and wired communication technologies as well as in sensor technology. The trend leads to still cheaper and more compact solutions with more functionality and even lower power consumption. The applications extend from ultra-energy-efficient communication systems (e. g. for sensor nodes) to less expensive multi-sensor arrays in sensors (e. g. biosensors) as well as microfluidic systems integrated on a chip (such as microliters pumps). One solution is the integration of SAW filters on a single chip with integrated circuit (IC) in the so-called complementary metal oxide semiconductor (CMOS) technology. Since this is about a new area of research and only a few research groups are working on this area it is necessary to perform extensive scientific studies in order to allow a complete integration of SAW filters. The only cleanroom compatible piezoelectric material with a sufficient electromechanical coupling coefficient (K²) as well as high acoustic velocity ($v_{AIN} = 6000 \text{ m/s}$ [Bu 2006]) for high working frequencies (up to ~6 GHz) is aluminum nitride (AIN). For this reason it must be grown highly c-axes oriented (<2%). A major problem in the integration is the electromagnetic crosstalk which occurs particularly on low resistive silicon substrates (~10 Ω m) which are necessary for the CMOS technology.

<u>Aim</u>: This thesis examines the possibility to integrate AIN-based SAW filters using discrete components, built with CMOS compatible layer systems, for a subsequently full CMOS compatible integration.

<u>Results:</u> It was shown that AIN-based filters can be produced using only CMOS compatible materials and process steps. It was shown that AIN could be grown highly c-axes oriented (1.27° - 1.9°). Extensive simulations using the finite element method (FEM) have been carried out on acoustic waves (Rayleigh wave R0 and guided bulk wave R1) at speeds of about 4200 m / s (R0) and 5200 m / s (R1) in the technical relevant region (~ 2.4 GHz). It was found that the acoustic reflectivity of tungsten-based electrode fingers is around one to two orders of magnitude higher than that of aluminium-based electrodes. Produced SAW filters exhibited a maximum resonant frequency of 3.3 GHz at a wavelength of 1.68 μ m; it can be increased up to 6.6 GHz with a minimum wavelength of 0.8 μ m. In this work, an electromagnetic crosstalk (crosstalk) of less than -65 dB was presented the first time, is shown on standard low-silicon substrates. First optimized SAW filter applications showed typical frequency responses with good performance.

- 7 -

Inhaltsverzeichnis

INHALTSVERZEICHNIS 8 -		
ABKÜRZUNGEN UND SYMBOLE		
1. EIN	NLEITUNG	14 -
1.1	Motivation	14 -
1.2	SAW HISTORIE UND DISKRETE SAW ANWENDUNGEN	15 -
1.3	Monolithische SAW Filter Integration	17 -
1.4	ZIELSETZUNG DER ARBEIT	19 -
2. GR	RUNDLAGEN	21 -
2.1	Aluminiumnitrid und der piezoelektrische Effekt	21 -
2.2	Der Interdigitalwandler	25 -
2.3	Delta-Funktionsmodell / Ideale Frequenzantwort	28 -
2.4	REFLEXIONSMECHANISMEN UND REFLEKTIVITÄT	31 -
2.5	STOPBAND UND COM-MODEL	32 -
2.6	DIE AKUSTISCHE RAYLEIGH WELLE	37 -
2.7	Elektroakustische Parameter	39 -
2.7	7.1 Elektromechanischer Kopplungsfaktor	39 -
2.7	7.2 Widerstand / Admittanz eines Wandlers	40 -
3. SA	W ENTWÜRFE UND ANWENDUNGEN	45 -
3.1	SAW VERZÖGERUNGSLEITUNG	45 -
3.2	SAW Korrelator	46 -
3.3	SAW TRANSPONDER	47 -
3.4	RESONATOR UND BANDPASSFILTER	- 48 -
3.5	CHIRPFILTER	49 -
4. EX	PERIMENTELLE AUFBAUTEN UND INTEGRATIONSKONZEPT	51 -
4.1	XRD Messaufbau	51 -
4.2	AFM MESSAUFBAU	52 -
4.3	TEM MESSAUFBAU	53 -
4.4	REM MESSAUFBAU	54 -
4.5	S-Parameter Messplatz	56 -
4.6	Impuls Messplatz	58 -
4.7	C-V / C-F Messplatz	59 -
4.8	INTEGRATIONSKONZEPT UND TECHNOLOGISCHE HERAUSFORDERUNGEN	60 -
4.9	ENTWURF DER SAW BAUELEMENTE	66 -
5. ER	GEBNISSE DER MATERIALUNTERSUCHUNGEN	68 -
5.1	XRD ANALYSE DER ALN SCHICHT	68 -
5.2	AFM / TEM ANALYSE	70 -
6. FEI	M SIMULATIONEN DER SAW FILTER	73 -
6.1	Simulierte Modenformen	74 -
6.2	Berechnete Dispersionskurven	75 -
6.3	BERECHNETE REFLEKTIVITÄT	77 -

6.4	Berechneter Kopplungsfaktor	79 -
7. ELEK	KTRISCHE MESSUNGEN VON SAW VERZÖGERUNGSLEITUNGEN	81 -
7.1	Allgemeine Untersuchungen	81 -
7.1.1	1 Variation der Filterparameter	85 -
7.1.2	2 Einfluss des Substratwiderstandes	- 87 -
7.1.3	3 Elektromechanischer Kopplungsfaktor	- 88 -
7.1.4	4 Einfluss der Filterorientierung auf dem Si - Substrat	90 -
7.2	UNTERSUCHUNGEN ZUM ELEKTROMAGNETISCHEN ÜBERSPRECHEN	92 -
8. OPT	TIMIERTER DISKRETER SAW FILTER	99 -
8.1	S-Parameter Messung	99 -
8.2	IMPULSMESSUNG	101 -
9. ZUS	AMMENFASSUNG	103 -
9.1	Diskussion	103 -
9.2	AUSBLICK	106 -
10. W	VISSENSCHAFTLICHE SICHTBARKEIT	110 -
10.1	PUBLIKATIONEN IN REFERIERTEN ZEITSCHRIFTEN	110 -
10.2	Konferenzpublikationen	111 -
10.3	Konferenzpräsentationen	111 -
10.4	Betreute Abschlussarbeiten	112 -
10.5	AUSZEICHNUNGEN	112 -
ABBILDU	NGSVERZEICHNIS	118 -
TABELLEN	NVERZEICHNIS	124 -
QUELLEN		125 -

Abkürzungen und Symbole

<u>Abkürzungen</u>

AFM	Atomic Force Microscope
Al	Aluminium
AlCu	Aluminium Kupfer
AIN	Aluminiumnitrid
Au	Gold
BEOL	Back-end-of-line
BERT	Bit Error Rate Tester
BPSK	Binary Phase Shift Keying
C ₄ H ₁₃ NO	Tetramethylammoniumhydroxid
CDMA	Code Division Multiple Access
СМР	Chemisches Mechanisches Polieren
СОМ	Coupling of Modes
COM _{sc}	vereinfachtes COM Model
dB	Dezibel
DC	Gleichspannung
DUT	Device Under Test
EMF	Elektromagnetisches Feld
EN	Elektronegativität
FFT	Fast Fourier Transformation
FEOL	Front-end-of-line
FEM	Finite Elemente Methode
FPW	flexural plate wave
FWHM	Full Width Half Maximum
GI.	Gleichung
GSG	Ground – Signal - Ground
HNV	Hauptzipfel - Nebenzipfelverhältnis
IC	integrated circuit
ID	Identification
IDT	Interdigitalwandler
IL	Insertion Loss

ISM	Industrial, Scientific and Medical
LiNbO ₃	Lithiumniobat
LiTaO ₃	Lithiumtantalat
N ³⁻	Stickstoffanion
S-Parameter	Streuparameter
SAW	Oberflächenwellen
SEM	Secondary Electron Microscope
Si	Silizium
SiGe- BiCMOS	Silizium-Germanium bipolar komplementäre
	Metalloxid Halbleiter Technologie
SiO ₂	Siliziumdioxid
Si ₃ N ₄	Siliziumnitrid
SMU	Source Measurement Unit
SSBW	Surface Skimming Bulk Wave
ТВ	Time - Band
TEM	Transmission Electron Microscope
Ti	Titan
TiN	Titannitrid
TTS	Triple Transit Signal
UWB	Ultra Wide Band
W	Wolfram
W-LAN	Wireless Local Area Network
XRD	X - Ray Diffraction
ZnO	Zinkoxid

<u>Symbole</u>

A _{IDT}	IDT-Fläche	m²
A _n	Gewichtungsfaktor	-
а	Gitterkonstante AIN	m
a _F	Fingerbreite, Fingerabstand	m
В	Bandbreite	Hz
B _a	Blindleitwert	S
B _w	Bandbreite zwischen den ersten Nullstellen	Hz
C	Gitterkonstante AIN	m
C ₀	Gitterkonstante AIN in Ruhelage	m
C _F	Gitterkonstante AIN c-Achse gestaucht / gestreckt	m
C _{ijkl}	Elastizitätstensor	-
C _P	Kapazität pro Fingerpaar	F
C _T	Kapazität des kompletten Wandlers (IDT)	F
d	Gitterperiode	m
d _{hkl}	Abstand Kristallebenen	m
d _{IDT}	Abstand IDT zum Substrat	m
D _i	dielektrische Verschiebung	As/m ²
Е, Е _ј	elektrisches Feld	V/m
e _{ijk}	piezoelektrischer Tensor	-
F	Kraft	Ν
f	Frequenz	Hz
f ₀	Mittenfrequenz	Hz
f _R	Resonanzfrequenz	Hz
Ga	Strahlungsleitwert	S
h	Schichtdicke	m
H(f)	Frequenzantwort	-
k	Kreiswellenzahl	m⁻¹
k _w	Wellenvektor	m⁻¹
K ²	Kopplungsfaktor	-
L	IDT Abstand	m

m	Metallisierungsverhältnis	-
Ν	Fingeranzahl	-
N _P	Anzahl Fingerpaare / Anzahl der Perioden einer IDT	-
Q	Gütefaktor (auch Güte, Resonanzschärfe genannt)	-
R _a	Wirkwiderstand	Ω
R _{max}	maximale Rauigkeit	m
R _{QMW}	quadratischer Mittelwert der Rauigkeit	m
S _{jk}	Deformationstensor	-
t	Zeit	S
т	Gesamtlänge eines Wellenzuges	m
T _{ij}	mechanische Spannungstensor	N/m²
U	elektrische Spannung	V
U _{Ein}	Eingangsspannung	V
U _{Aus}	Ausgangsspannung	V
V	akustische Geschwindigkeit	m/s
V _m	kurzgeschlossene akustische Geschwindigkeit	m/s
V _R	Rayleighwellengeschwindigkeit	m/s
Vt	Scherwellengeschwindigkeit	m/s
W _A	akustische Appertur	m
X _a	Blindwiderstand	Ω
Y	komplexer Leitwert	S
Z	komplexer Widerstand, Impedanz	Ω
λ	Wellenlänge	m
υ	Wellenzahl	m⁻¹
U _{SC}	Wellenzahl für kurzgeschlossene Finger	m⁻¹
εγ	Dehnungsverhältnis in y-Richtung	-
ε _{ij}	Permittivitätstensor	F/m
λ	Wellenlänge	m
ρ	Dichte	kg/m3
δ	Verstimmungsfaktor	-
κ	Reflektivität	-
К _Р	Reflektivität einer Gitterperiode	-

1. Einleitung

1.1 Motivation

Seit der Entwicklung moderner elektronischer Geräte und Kommunikationsverfahren wie Mobiltelefone, Β. drahtloses Internet (W-LAN), Sensoren (z. Biosensoren) und Satellitenkommunikation in der Kommunikations- und Mediengesellschaft müssen elektrische Signale erzeugt, verarbeitet und gefiltert werden. Die dabei auftretenden Arbeitsfrequenzen liegen meist im Gigahertz (GHz) Bereich (z. B. Mobiltelefonfrequenz in Deutschland 1,8 GHz, E-Netz). Einen besonderen Beitrag zu dieser rasanten Entwicklung leisten Mikrochips sowie sogenannte diskrete (separate) Oberflächenwellenfilter (engl. surface acoustic wave, SAW) die meist zur exakten Signaltrennung eingesetzt werden. Durch diese zwei sehr wichtigen Bauelemente wurde erst die moderne Kommunikations-Technologie ermöglicht. Dabei führt der Trend hin zu noch preiswerteren und kompakteren Lösungen mit noch mehr Funktionalität und noch geringerem Stromverbrauch. Der daraus resultierende Entwicklungsdruck führt zu neuartigen Ideen, um diese Ziele zu erreichen. Eine sehr interessante Möglichkeit ist eine Integrierung der SAW Filter auf den Mikrochip (monolithische Integration, siehe Abbildung 1-1).

Abbildung 1-1: Separater IC und SAW Filter werden kombiniert auf einem einzigen Chip realisiert.

Dabei entstehen eine Reihe wichtiger Verbesserungen und Vorteile für chipbasierte Anwendungen:

- Energieeinsparung für z. B. energieautarke Sensorsysteme, da spezielle passive SAW Filter eingesetzt werden können (ideal für sog. Ultra Low Power Anwendungen)
- SAW Filter mit hohen Arbeitsfrequenzen (~ 3GHz 6GHz, durch Auflösungsgrenze der Lithografie vorgegeben)
- robuste, komplexe schnelle Signalgenerierung / -verarbeitung mit SAW Bauelement ohne aufwendige Transistorschaltungen
- Vermeidung von parasitären Kontaktstellen (die beim Verbinden von Mikrochip mit diskreten SAW Filtern auftreten würden), die zu Performanceverlusten führen
- Kostengünstige Herstellung, da keine Verbindungstechnik (Bonden usw.) zwischen den Bauelementen erforderlich ist
- Programmierbare hardwarekodierte SAW Sender und Empfängersystem für sichere und störungsfreie drahtlose Kommunikation in vielgenutzten Frequenzbändern
- Herstellung von passiven Filteranwendungen mit hoher Güte Q (Q > 1000, Maß für die Resonanzschärfe) für direkte ausgezeichnete Signaltrennung direkt auf dem Chip
- geringerer Platzbedarf da Chip und SAW Filter in einem einzigen Gehäuse
- evtl. schnellere Datenverarbeitung

1.2 SAW Historie und diskrete SAW Anwendungen

Der Beginn der SAW Technik entsprang den 1965er Jahren als White und Voltmer an der University of California erstmals dünne kammartig ineinander geschobene Metallelektroden (Interdigitalwandler, IDT) auf piezoelektrischen Materialien abschieden und durch eine angelegte Wechselspannung erstmals Oberflächenwellen anregten [Whit 1965]. Dabei werden ein Interdigitalwandler für die Erzeugung der Oberflächenwelle aus einem elektrischen Signal und ein zweiter Wandler für die Rücktransformation der mechanischen Welle in ein elektrisches Signal eingesetzt (direkter und indirekter Piezoeffekt). In Abbildung 1-2 ist ein typischer SAW Filter mit diesen Wandlern dargestellt. Da sich die mechanische Welle zwischen den Wandlern langsamer ausbreitet als eine elektromagnetische Welle in einem Leiter, wird dieser Aufbau auch als Verzögerungsleitung (engl. delay line) bezeichnet und als Signalverzögerungsglied für Analogsignale eingesetzt [Faso 1984].

Abbildung 1-2: Grundlegender Aufbau einer SAW Verzögerungsleitung mit dem Sendewandler (IDT 1) auf dem piezoelektrischen Substrat, der über den indirekten piezoelektrischen Effekt mechanische Oberflächenwellen erzeugt. Diese werden am Empfangswandler (IDT 2) über den direkten piezoelektrischen Effekt wieder in ein elektrisches Signal umgewandelt.

Durch entsprechende Veränderungen im Entwurf solcher Wandler lassen sich eine Vielzahl an Anwendungen und Signalformen generieren die konventionellen Techniken in vielerlei Hinsicht überlegen sind. Eine der Vorteile dieser Technik ist die Möglichkeit komplexer Signalerzeugung und Signalverarbeitung auf kleinem Raum mit nur einem SAW Filter ohne aufwendige Schaltungstechnik. Der typische Frequenzbereich der verschiedenen Anwendungen in der Industrie und Wissenschaft liegt in einem Bereich von 10 MHz bis circa 5 GHz [Camp 1998], [Kirs 2006]. Es entstanden Anwendungen als Zwischenfilter im Bereich der Fernseher, Mobiltelefone und Satellitenempfänger [Morg 1985], [Camp 1998]. Dabei gibt es u. a. den Vorteil des geringeren Platzbedarfs gegenüber LC-Kombinationen. Weitere Anwendung finden SAW Filter als frequenzbestimmender Resonator mit einer sehr hohen Güte (> 1000) in Oszillatorschaltkreisen sowie in Radarund Kommunikationsanwendungen zur Pulskompression (Chirp Filter) [Yanf 2009], [Morg 1985], [Huem 1998]. Mit SAW Korrelatoren lassen sich spezielle Hardwarekodierungen erzeugen so dass nur ausgewählte Geräte auch in rauer Industrieumgebung (mit vielen elektromagnetischen Störsignalen) sicher drahtlos miteinander kommunizieren können [Hasc 2002]. In den letzten Jahren hat sich auch zunehmend das Feld der aktiven und passiven SAW Sensorik entwickelt [Lind 2008], [Wang 2008], [Mits 2008], [Fu 2010]. Neben den vielen Gassensoranwendungen [Cali 1997] werden nun auch zunehmend (mit bestimmten Wellentypen) SAW Flüssigkeitssensoren in der Forschung und Entwicklung evaluiert [Gaso 2009], [Moll 2007], [Freu 2001]. Die SAW Sensoren werden zum Messen vieler physikalischer Größen eingesetzt. Neben der Temperatur [Li 2010], Beschleunigung, Kraft, Masse und Viskosität [Roac 2007] können sie unter anderem auch zur Druckmessung [Li 2010] eingesetzt werden. Darüber hinaus existieren mittlerweile viele SAW Biosensoren (basierend auf der Massedetektion) im Forschungsstadium mit und ohne spezieller Immobilisierungsschichten. Diese detektieren u. a. Hepatitis B Antikörper (im Vollblut) [Lee 2009], E. coli Bakterien [Moll 2007] und werden zur DNA Analyse [Papa 2009] eingesetzt. Die Vorteile der SAW Biosensoren sind die schnelle Echtzeitmessung (wenige Minuten) von der Immobilisierungsschicht abhängiger Pathogene, sowie die Möglichkeit der preiswerten parallelen Multiparameteranalyse durch SAW Sensorarrays. Eine weitere Möglichkeit ist der Einsatz in der Mikrofluidik, bei der die Oberflächenwellen zum Flüssigkeitstransport sowie zur Mischung kleinster Flüssigkeitsmengen eingesetzt werden [Fu 2012].

Des Weiteren wird auch der Einsatz von SAW Filtern in sogenannten Einzel-Photon Quellen mit veränderbarer Emissionsenergie u. a. für die Quantenkryptografie [Yuan 2007], [Dixo 2010] evaluiert [Gell 2006], [Gell 2007], [Piaz 2009], [Cout 2009]. Weitere Einsatzgebiete sind passive ID Tags [Ples 2010], [Härmä 2008], [Sald 2008] sowie Signalverzögerungsleitungen in der Fernsehempfangstechnik, Audio-Technik sowie in wissenschaftlichen Geräten und der Hochfrequenztechnik [Morg 1985], [Camp 1998]. In Tabelle 1 sind die Anwendungen kondensiert dargestellt.

Tabelle 1: Darstellung verschiedener SAW Anwendungen

"Elektronik"	Sensorik
- Spreizband-Verfahren (CDMA, Korrelator)	- Biosensor für Multiparameteranalyse
- Mobiltelefon, W-LAN ect. (Bandpassfilter)	(Massesensor)
- Signalverzögerung (Verzögerungsleitung)	- Mikrofluidik (Mikropumpe)
- Radar, Kommunikation (Chirpfilter)	- Temperatur-, Fotosensor
- ID Transponder	- Druck-, Beschleunigungssensor
- Quantenkryptografie (Einzel-Photon Quellen)	- SAW Touchscreen

1.3 Monolithische SAW Filter Integration

Bei den voran genannten Anwendungen kommen diskrete SAW Filter zum Einsatz, die mit Hilfe der Lift-off Technik hergestellt werden [Buls]. Meist werden dafür einkristalline piezoelektrische Substraten im MHz-Bereich bis an den GHz-Bereich mit recht niedrigen akustischen Ausbreitungsgeschwindigkeiten eingesetzt (z. B. LiNbO₃ ~3650 m/s [Adle 1994]). Wie eingangs bereits motiviert, besteht jedoch Interesse an integrierten SAW Filtern im GHz Bereich (2 – 6GHz). Diese Art der Fertigung hat den Vorteil auch spezielle Wellentypen zu erzeugen, die ohne diese Technologie nicht oder nur mit viel Aufwand (spezielle Kristallschnitte) produziert werden können (wie Lamb-Wellen und Love-Wellen [Ball 1997]).

Zwei verschiedene Piezoelektrika, Zinkoxid (ZnO) und Aluminiumnitrid (AIN), können zur Herstellung integrierter / diskreter SAW Filter Prototypen eingesetzt werden [Mort 2002], [Elma 2003], [Haki 2004], [Furu 2005], [Lin 2010] [Sant 2012] mit Resonanzfrequenzen von bis zu 5 GHz [Kirs 2006]. Die bis jetzt erreichte Filterperformance ist jedoch noch zu optimieren. Da Zink in der Halbleiterindustrie ein ungewollter Dotierstoff ist (schnell streuendes Ion) und ZnO nur geringe akustische Ausbreitungsgeschwindigkeiten von etwa 2500 m/s [Du 2008] (und damit geringe Resonanzfrequenzen < 1.5 GHz) besitzt, ist eine Fokussierung auf AlN (mit seiner hohen Ausbreitungsgeschwindigkeit von circa. 5760 m/s [Taka 2002], [Bu 2006]) sinnvoll. Ein weiterer Vorteil von AlN ist die große Bandlücke von 6 eV sowie der große elektrische Widerstand. Dabei ist ZnO auch hier im Nachteil mit einer Bandlücke von nur circa 3 eV, dadurch besteht das hohe Risiko einer stark ansteigenden Leitfähigkeit bei leichten stöchiometrischen Missverhältnissen (z. B. bei zu hoher Zn Konzentration) [Trol 2004]. Diese höhere Leitfähigkeit hat größere Verluste und einen negativen Einfluss auf den elektromechanischen Kopplungsfaktor zur Folge.

Aufgrund der Komplexität des Schichtaufbaus (das komplette Schichtsystem bestimmt die Filtereigenschaften) und der beschränkten Auswahl an CMOS kompatiblen Materialien ergeben sich technologische Herausforderungen bei der Integration (Abbildung 1-3).

Abbildung 1-3: (a) Einfacher Aufbau diskreter SAW Filter mit monokristallinen piezoelektrischen Substraten (IDT nicht dargestellt), (b) komplexer Aufbau der bei einer monolithischen Integration entsteht, mit texturiertem (nanokristallinen) c-Achsen orientiertem piezoelektrischem AIN.

Eine weitere Herausforderung ist das Herstellen von besonders gut orientierten piezoelektrischen Schichten auf verschiedenen Materialien, wie z. B. SiO₂, Si₃N₄, Si(100), W.

Weitere Integrationprobleme entstehen durch die Verwendung von standardmäßigen niederohmigen Siliziumsubstraten, welche zu sogenanntem elektromagnetischem Übersprechen (engl. crosstalk, ein Störsignal welches nicht über den akustischen Pfad läuft sondern über das Silizium) führen. Außerdem gibt es weitere Herausforderungen durch die Schichtdickenvariationen der piezoelektrischen Schicht auf 8 Zoll Wafern aufgrund des Abscheideprozesses, sowie das durch die Technologie vorgegebene maximal mögliche Temperaturbudget von 400°C für die Schichtabscheidung.

1.4 Zielsetzung der Arbeit

Die vorliegende Arbeit stellt sich den Herausforderungen, die bei einer CMOS kompatiblen Integration von SAW Bauelementen auftreten. Es wird die Möglichkeit der Integration anhand erster diskreter Filter mit der ausschließlichen Verwendung von in Silizium-Germanium bipolar komplementären Metalloxid Halbleiter (SiGe-BiCMOS) Technologie Prozessen verwendeten Schichtmaterialien untersucht. Dafür werden in dieser Arbeit viele neue Prozesschritte entwickelt, sowie erste zahlreiche diskrete SAW Bauelemente entworfen. Für eine spätere Vollintegration (mit Transistoren) zeigt Abbildung 1-4 den schematischen BiCMOS Technologie-Aufbau mit einem

Abbildung 1-4: BiCMOS Technologiestapel mit Front-end-of-line (FEOL) / Back-end-of-line (BEOL) mit der möglichen Position eines vollintegrierten SAW Filters (rote Markierung) im BEOL.

vollintegrierten SAW Filter (in Rot) im "Back-end-of-line" (BEOL). Dabei wird AIN als piezoelektrisch aktive Schicht eingesetzt. Da es sich bei der SAW-Filter Integration um eine Technologie mit mechanischen Verformungen handelt, muss der Bereich über dem Filter freigehalten werden, da sonst die Filter nicht funktionieren würden (vollständige Dämpfung der akustischen Welle). Nachfolgend sind die wichtigsten Fragen, die diese Arbeit für eine BiCMOS kompatible SAW-Filter Herstellung klären soll, dargestellt:

- **Frage 1:** Mit welcher Güte lässt sich das piezoelektrische AlN auf den für die Integration wichtigsten Schichtmaterialien c-Achsen orientiert abscheiden?
- **Frage 2:** Welche akustischen Wellenmoden treten in dem Schichtsystem auf und wie verändern sich die Eigenschaften bei Schichtdickenvariationen?
- Frage 3: Wie lässt sich das ungewollte elektromagnetische Übersprechen (engl. crosstalk) auf den standardmäßig verwendeten niederohmigen (10 Ωcm) Siliziumwafern für SAW Filter verringern?

Um diese Fragen zu klären, werden in den Kapiteln 2 -3 die dafür notwendigen Grundlagen erläutert. Das Kapitel 4 beschäftigt sich mit den experimentellen Aufbauten, die für die unterschiedlichen Messungen erforderlich waren. Im Kapitel 5 werden neben der Beantwortung der ersten Frage auch aufgetretene technologische Herausforderungen, die bei der Herstellung auftraten, erläutert sowie deren Lösungen präsentiert. Im Kapitel 6 werden FEM Simulationen vorgestellt, die das Schichtsystem AIN/SiO₂/Si(100) mit W-/AI- basierten IDT Elektroden charakterisieren (akustische Modenformen, Dispersionskurven, Kopplungsfaktor sowie Reflektivität) und somit Frage zwei beantworten. Die ersten elektrischen Messwerte von Verzögerungsleitungen, sowie die kontinuierliche Verbesserung der Filter-Performance und Crosstalk-Untersuchungen werden in den Kapiteln 7 - 8 vorgestellt. Im Kapitel 9 sind bereits erste diskrete SAW Anwendungen präsentiert. Das Kapitel 10 fasst alle Ergebnisse zusammen und präsentiert die Antwort auf die dritte Frage. Im Anhang A werden Untersuchungen zur Polarisation von AlN vorgestellt. Der Anhang B beschäftigt sich mit den erstellten SAW Filter Design-Programmen die im Rahmen dieser Arbeit entstanden sind.

2. Grundlagen

2.1 Aluminiumnitrid und der piezoelektrische Effekt

Der in dieser Arbeit verwendete piezoelektrische Dünnfilm besteht aus Aluminiumnitrid (AIN), der als hexagonale Gitterstruktur (Wurtzit Struktur) der Raumgruppe P6₃mc abgeschieden wird. Die Wurtzit Struktur ist ein lonengitter, in dem die Stickstoffanionen (N³⁻) aufgrund der größeren Elektronegativität (EN) von 3,07 [Raus 1986] die Elektronen stärker an sich binden als die Aluminiumkationen mit einer EN von 1,61 (Al³⁺) [Raus 1986] und negativ geladen wirken. Die Struktur der Einheitszelle ist in Abbildung 2-1a dargestellt. Abbildung 2-1b zeigt das hexagonale AIN Gitter in c-Achsenrichtung ([0001]). In Abbildung 2-1c ist das gedrehte AIN Gitter in [11-20] Richtung zu sehen mit den typischen hexagonalen Ringen (Ringe nicht geschlossen dargestellt).

Abbildung 2-1: (a) Einheitszelle des hexagonalen AlN. (b) Hexagonales AlN Gitter in c-Achsenorientierung ([0001]) mit Gitterkonstante c. (c) Um 90° von unten nach oben gedrehtes hexagonales AlN Gitter in [11-20] Richtung mit Gitterkonstante a.

Der piezoelektrische Effekt tritt in Kristallen ohne Symmetriezentrum auf (keine Inversionssymetrie). Bei texturierten (polykristallinen) c-achsenorientierten AIN Dünnschichten tritt dieser Effekt nur in c-Achsenrichtung auf, da die aufgewachsenen AIN Säulen in der Ebene zufallsmäßig gedreht aneinander anliegen. Abbildung 2-2a zeigt die Asymmetrie im AIN Kristallgitter in c-Achsenrichtung welche die polare Achse darstellt. Dabei ist das resultierende Dipolmoment der übereinanderliegenden positiven und negativen Ladungsschwerpunkte gleich null (Anhang A). In Abbildung 2-2b ist der direkte piezoelektrische Effekt für Druck bzw. Zugkraft dargestellt (Simulationsergebnisse dazu im Anhang A). Dabei wird durch diese Kräfte eine Verschiebung der positiven und negativen Ladungszentren bewirkt und es entsteht ein elektrisches Dipolmoment (in den hexagonalen Ringen in Rot dargestellt). Aus diesem Grund kommt es zu einer elektrischen Polarisation (in Rot an den Kraftvektoren dargestellt) und makroskopisch zu einer messbaren Spannung.

Abbildung 2-2: (a) Darstellung der Kristallasymmetrie in c-Achsenrichtung (links / Mitte). (b) Direkter piezoelektrischer Effekt durch Zug- bzw. Druckkraft.

Der inverse piezoelektrische Effekt ist dem direkten Piezoeffekt ähnlich. Dabei wird eine elektrische Spannung U angelegt, so dass ein elektrisches Feld E in c-Achsenrichtung hervorgerufen wird. Dabei werden die beiden Ladungsschwerpunkte verschoben und es kommt zur Ausbildung einer Coulomb-Kraft zwischen diesen Ladungsschwerpunkten welche das Kristallgitter in c-Achsenrichtung staucht bzw. streckt bis kein Dipolmoment mehr vorhanden ist.

Bei diesen Deformationen wird aufgrund der elastischen Eigenschaften eine Deformation in allen drei Raumrichtungen hervorgerufen. Aus diesem Grund drückt man die erweiterte dielektrische Verschiebung D_i für Piezoelektrika als Tensorgleichung

$$D_i = \varepsilon_{ij} E_j + e_{ijk} S_{jk}$$
 Gl. 2-1

aus. Dabei ist ε_{ij} der Permittivitätstensor, E_j das elektrische Feld, e_{ijk} der piezoelektrischer Tensor und S_{jk} der Deformationstensor. Dabei stehen die Indizes ijk für die jeweiligen Raumrichtungen im piezoelektrischen Kristall. Der mathematische Zusammenhang für den mechanischen Spannungstensor T_{ij} in Piezoelektrika ist in der Tensorgleichung

$$T_{ij} = c_{ijkl} S_{kl} - e_{kij} E_k$$
 GI. 2-2

zusammengefasst und stellt eine Erweiterung des Hookschen Gesetzes ($T_{ij} = c_{ijkl} \cdot S_{kl}$) dar. Dabei ist c_{ijkl} der Elastizitätstensor. Die beiden Gleichungen Gl. 2-1 und Gl. 2-2 werden auch als piezoelektrische Konstitutivgleichungen bezeichnet. Die maximale Anzahl an unabhängigen Komponenten des Elastizitätstensors beträgt aus Symmetrie- und Energieerhaltungsgründen 21. Durch die kristalline Symmetrie in Festkörpern tritt eine weitere Reduzierung der Anzahl unabhängiger elastischer Konstanten ein [Faso 1984]. Aus diesem Grund ergibt sich für den Elastizitätstensor des hexagonalen AlN folgende Matrizendarstellung (mit $C_{66} = \frac{1}{2}(C_{11} - C_{12})$) mit insgesamt 5 unabhängigen elastischen Konstanten:

$$C = \begin{pmatrix} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{13} & 0 & 0 & 0 \\ C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & (C_{11} - C_{12})/2 \end{pmatrix}$$

Ebenfalls aus Symmetriegründen ergeben sich für die anderen Tensoren folgende Matrizendarstellungen mit entsprechenden unabhängigen Komponenten:

$$e = \begin{pmatrix} 0 & 0 & 0 & 0 & e_{15} & 0 \\ 0 & 0 & 0 & e_{15} & 0 & 0 \\ e_{31} & e_{31} & e_{33} & 0 & 0 & 0 \end{pmatrix}$$

$$\boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_{11} & 0 & 0\\ 0 & \varepsilon_{22} & 0\\ 0 & 0 & \varepsilon_{33} \end{pmatrix}$$

Die zu den Matrizen gehörenden Materialwerte für hexagonales AIN sind in dem FEM Kapitel 6 zusammengefasst.

2.2 Der Interdigitalwandler

Interdigitalwandler (IDT) besteht kammartig ineinander Der aus geschobenen Metallelektroden [Otte 2002], die mit einer harmonischen Wechselspannung (Ausnahmen z.B. Sender SAW Korrelator/Chirpfilter mit Gleichspannungspuls) betrieben werden. Abbildung 2-3 zeigt eine Momentaufnahme (ohne und mit angelegter Spannung) mit dem resultierenden elektrischen Feld, sowie den Bewegungsrichtungen der zwei dargestellten Metallelektroden auf c-Achsen orientiertem AIN. Diese mechanische Auslenkung beruht auf dem im vorherigen Kapitel vorgestellten indirekten piezoelektrischen Effekt. Dabei tritt aufgrund der elastischen Eigenschaften nicht nur eine Auslenkung in y-Richtung auf, sondern auch eine kleinere Auslenkung in x-Richtung. Bei einer anschließenden Umpolung entsteht aufgrund dieser elastischen Eigenschaften der AIN Schicht eine elliptische Partikelbewegung (Auslenkungen im Bereich von 1 nm in y-Richtung). Diese Form der Welle wird nach ihrem Entdecker J. W. Strutt Rayleigh auch als Rayleigh Welle bezeichnet (Details dazu siehe Kapitel 2.6).

Abbildung 2-3: Prinzip des Interdigital Wandlers, durch den indirekten Piezoeffekt kommt es zu Auslenkungen des AlN vorrangig in y-Richtung (große Pfeile) und zu einem kleinen Teil in x-Auslenkung (siehe Kapitel 2.6), Die Richtung der Auslenkung ist abhängig von der Richtung des elektrischen Feldes (kleine Pfeile). Dabei ist die Auslenkung (Eindringtiefe der Welle) aufgrund dieser Wandleranordnung (begrenztes Eindringen des E-Feldes) nur auf die Oberfläche beschränkt. Die Auslenkung der Welle ist zur besseren Sichtbarkeit überzeichnet dargestellt.

Die größte Effizienz der Anregung akustischer Wellen tritt um die Mittenfrequenz f_0 auf (Resonanzfall). Die Mittenfrequenz ist gegeben durch $f_0 = v/\lambda$, mit der akustischen Geschwindigkeit v (ergibt sich u. a. aus der elastischen Konstante und Dichte, $v=\sqrt{(c/\rho)}$) und der Wellenlänge λ . Die Wellenlänge ist bei dem in Abbildung 2-4 dargestellten Aufbau durch die zweifache Fingerperiode 2d

gegeben. Dabei werden die entstehenden Oberflächenwellen in beide Richtungen abgestrahlt (Bidirektionalität). Die akustische Geschwindigkeit wird maßgeblich durch das darunter liegende Material beeinflusst. Dabei liegt die Eindringtiefe bei etwa einer Wellenlänge, anhängig vom verwendeten Wellentyp [Ball 1997], [Camp 1998]. Da in dieser Arbeit Multischichtstapel mit verschiedenen Materialien zum Einsatz kommen, wird die resultierende akustische Ausbreitungsgeschwindigkeit durch den kompletten Schichtstapel beeinflusst.

Abbildung 2-4: Schematische Ansicht einer Wandlerstruktur (eine Sektion) mit einem Metallisierungsverhältnis von m = 0,5 (m = Fingerbreite/(Fingerbreite + Fingerabstand)) und bidirektionaler Wellenabstrahlung (die Wellen sind zur Illustration größer gezeichnet). Die Wellenlänge λ ist gleich dem zwei fachen der Gitterperiode d (im Falle m = 0.5 auch λ = 4a). Die akustische Strahlbreite ist durch die akustische Appertur (Fingerüberlapp) W_A gegeben.

Bei SAW Filtern sind etwa 10 - 200 Fingerpaare pro Interdigitalwandler notwendig, um eine optimale Wellenanregung zu erreichen (abhängig u. a. von Kopplungsfaktor, Elektrodenmaterial und anderen Designparametern). Wie im nachfolgenden Kapitel gezeigt wird, kann jeder dieser Wandlerfinger als diskrete Quelle für die Erzeugung einer Welle betrachtet werden [Camp 1998], [Ball 1997]. Dabei wird angenommen, dass die Kopplung zwischen dem elektrischen Feld und der mechanischen Auslenkung linear ist. Durch die Wandler kommt es dabei an der Mittenfrequenz zur konstruktiven Interferenz der Teilwellen aller Finger und zur Ausbildung einer resultierenden Gesamtwelle mit einer sich aufsummierten Amplitude (Abbildung 2-5) in beide Richtungen des Wandlers (ansteigende Pfeile). Wird von dieser Mittenfrequenz abgewichen, kommt es zu einer zunehmenden Inkohärenz und somit zu einer Abnahme der Amplitude. Die Frequenzantwort eines ungewichteten (alle Finger haben den gleichen Überlapp) folgt dabei einer sinX/X Funktion.

Abbildung 2-5: Rechtsseitig und linksseitig abgestrahlte Teilwellen überlagern sich im Resonanzfall durch konstruktive Interferenz zu resultierenden Gesamtwellen.

Neben der Grundfrequenz lassen sich auch höher harmonische Moden anregen. Aufgrund der vorliegenden Wandlergeometrie ("ein- Finger" IDT) mit entsprechend abwechselnder Polarität ist es jedoch nur möglich ungerade harmonische zu erzeugen (Abbildung 2-6). Der Grund dafür ist, dass die Maxima bzw. Minima der Welle bei Fingern unterschiedlicher Polarität nicht gleich sein können. Nur mit sogenannten "drei-Finger" IDTs kann man sowohl gerade als auch ungerade höhere Harmonische generieren. Dabei lässt sich über das Metallisierungsverhältnis m (m = Fingerbreite/(Fingerabstand + Fingerbreite)) die Anregung solch höheren Moden optimieren [Camp 1998].

Abbildung 2-6: Darstellung der Anregung von Oberflächenwellen bei der Grundfrequenz und bei der dreifachen (ungeraden) Grundfrequenz. Gerade höhere harmonische Frequenzen (zweifache Frequenz in Rot gestrichelt dargestellt) können aufgrund der Wandlergeometrie nicht angeregt werden.

2.3 Delta-Funktionsmodell / Ideale Frequenzantwort

Einfache Informationen über die Übertragungsfunktion (mit relativer Einfügedämpfung, keine Reflexionen/Massebeladung etc.) von SAW Filtern kann man mit Hilfe des sogenannten Delta-Funktionsmodells gewinnen [Rupp 1994]. Dieses Modell approximiert den Feldverlauf zwischen zwei gegensätzlich gepolten IDT Wandlerfingern, da eine exakte Berechnung der Feldverteilung zwischen zwei gegensätzlich gepolten Wandlerfingern sonst nur auf nummerischem Wege möglich ist [Tanc 1971], [Camp 1998]. Dabei wird angenommen, dass die Kopplung zwischen elektrischem Feld und Partikelauslenkung linear ist. Die wichtigste Annahme ist jedoch, dass die Wandlerfinger jeweils als Quelle einer einzelnen Teilwelle in Form einer Delta-Funktion beschrieben werden können (siehe Abbildung 2-7).

Abbildung 2-7: IDT mit den Delta-Funktionsquellen unter jedem einzelnen Wandlerfinger (ähnlich [Camp 1998]).

Durch die Summation der einzelnen Delta-Funktionsquellen kann man nun die resultierende Feldintensität eines Wandlers (IDT) bestimmen. Dafür wird wie in Abbildung 2-7 dargestellt der Referenzpunkt im Zentrum des Wandlers mit x = 0 bei ungerader Fingeranzahl N direkt mittig auf dem Finger bestimmt (bei gerader Fingeranzahl N mit Referenzpunkt zwischen den Fingern kommt man zum gleichen Ergebnis nur die Berechnung ist leicht aufwendiger) [Camp 1998]. An diesem Punkt werden nun alle Teilwellen aufsummiert. Diese Summation wird durch die nachfolgende Gleichung ausgedrückt [Camp 1998]:

$$H_1(f) = \sum_{n=-(N-1)/2}^{(N-1)/2} (-1)^n A_n e^{-ikx_n} , \qquad \text{Gl. 2-3}$$

wobei N-1 die Anzahl der Quellen ausdrückt, k = $2\pi/\lambda$ die Kreiswellenzahl ist, (-1)ⁿ die wechselnde Fingerpolarität und e^{-jkx} die Exponentialfunktion die die Phasenverschiebungsterme an den diskreten Punkten der Finger in x-Richtung (über die Länge des Wandlers) beschreibt. A_n ist ein Gewichtungsfaktor der einzelnen Quellen der sich bei unterschiedlicher Fingerüberlappung ändert und bei gleichbleibendem Fingerüberlapp mit A_n = 1 angegeben werden kann. Wenn man nun auf den Exponentialterm in Gl. 2-3 die Eulersche Beziehung anwendet, erkennt man, dass sich bei der Wahl des Referenzpunktes x=0 im Zentrum des Wandlers alle imaginären Terme aufheben und nur noch die reellen cos(ßx) übrig bleiben. Dies führt zu einer Kosinus-Serie die in der Nähe der Mittenfrequenz als sinX/X Funktion approximiert werden kann [Guil 1951]. Dieser mathematische Zusammenhang ist in Gl. 2-4 zusammengefasst mit einer hebbaren Nullstelle bei f = f₀ (ergibt sich aus der Regel von de L'Hospital). Eine Untersuchung von Gleichung Gl. 2-4 zeigt, dass die ersten Nullstellen unter und über f₀ bei sin(- π) bzw. sin(π) auftreten.

$$|H(\mathbf{f})| \approx \frac{\sin[N_P \pi (\mathbf{f} - \mathbf{f}_0) / \mathbf{f}_0]}{[N_P \pi (\mathbf{f} - \mathbf{f}_0) / \mathbf{f}_0]}$$
GI. 2-4

Daraus lässt sich schlussfolgern, dass für die Anzahl der Fingerpaare an diesen ersten Nullstellen N_p = $f_0/(f-f_0) = 2 \cdot f_0/B_W$ gelten muss (mit B_W = $2 \cdot (f-f_0)$) wobei B_W die Bandbreite zwischen den ersten zwei Nullstellen darstellt. Somit wird durch die Anzahl der Fingerpaare auch die -3 dB Bandbreite B bestimmt. Diese ergibt sich nach [Camp 1998] zu B \approx (B_W/2)·0,9. Abbildung 2-8 zeigt die sinX/X (sinc) Funktion für ungewichtete Wandler. Betrachtet wurde immer nur ein Wandler, nachfolgend soll noch die Übertragungsfunktion des gesamten SAW Filters dargestellt werden. Die gesamte Frequenzantwort H_G aus Eingangswandler und Ausgangswandler ergibt sich (durch die Superposition der Partialwellen) zu:

$$|H_G(f)| = |H_{Ein}(f)| \cdot |H_{Aus}(f)|$$
Gl. 2-5

Bei Wandlern mit gleichem Design (gleicher Fingerüberlapp etc.) welche bei Verzögerungsleitungs-Anwendungen häufig auftreten können diese zu

$$\left|H_G(f)\right| = \left|H(f)\right|^2$$

vereinfacht werden.

Abbildung 2-8: Frequenzantwort einer idealen Wandlerstruktur nach dem Deltafunktionsmodell. Bei der Mittenfrequenz f_0 (Punkt 1) führt die konstruktive Interferenz der Teilwellen zur größten Signalamplitude. Im Punkt 2 tritt destruktive Interferenz zwischen den Wellen auf, das resultierende Signal ist null. Weitere Frequenz-Abweichungen führen zu kleineren Nebenmaxima und weiteren destruktiven Interferenzen. Die grafische Darstellung links im Bild verdeutlicht die Beiträge an den beiden Punkten für einen Wandler der Länge $8 \cdot \lambda$ (8 Sektionen). Im Punkt 1 addieren sich alle Beiträge der einzelnen Sektionen (0° Phasendifferenz). Im Punkt 2 tritt zwischen den benachbarten Sektionen eine Phasendifferenz von 45° auf.

Gl. 2-6

2.4 Reflexionsmechanismen und Reflektivität

Neben der idealen Filterantwort treten in realen Strukturen Reflexionen der Wellen an den Fingern auf. Dabei gibt es nach C. K. Campell 4 verschiedene Typen von Reflexionsmechanismen die dem Reflexionsprozess in SAW Gittern zugeschrieben werden können [Camp 1998]:

- <u>Piezoelektrischer Kurzschluss (unter den Metallelektroden)</u>: Damit ist gemeint, dass eine ankommende Potentialwelle (die sich mit der mechanischen Welle ausbreitet) unter den Metallelektroden kurzgeschlossen wird. Dies führt zu einer Verringerung der akustischen Ausbreitungsgeschwindigkeit unter den Elektroden und somit zu einer Teilreflektion der Welle. Diese Art der Reflexion tritt naturgemäß nur signifikant bei Piezoelektrika mit einem großen Kopplungsfaktor K² auf (wie bei LiNbO₃ oder LiTaO₃).
- <u>Geometrische Diskontinuität:</u> Damit sind u. a. geometrische Stufen im ausbreitenden Material gemeint. Zusätzlich treten solche Reflexionen auch an den Kanten der aufgebrachten Elektroden auf. Für ST-quarz mit kleinem Kopplungsfaktor und Aluminium als Elektrodenmaterial ist dieser Effekt der bedeutendste [Camp 1998].
- 3. <u>Elektrische Regenerierung:</u> Damit ist gemeint, dass eine ankommende Welle in einer nicht kurzgeschlossenen Elektrode ein Zeit variierendes elektrisches Feld erzeugt, welches in den benachbarten Elektroden akustische Wellen, deren Amplituden entgegengesetzt sind, hervorruft. Dieser Effekt und der piezoelektrische Kurzschluss sind jedoch für Piezoelektrika mit kleinem K² (wie AlN oder ST-quarz) vernachlässigbar gering.
- 4. <u>Massebeladung:</u> Die Unterschiede in der Dichte und den elastischen Eigenschaften zwischen den Elektroden und dem piezoelektrischen Material ergeben eine Massebeladungs-Diskontinuität. Das führt auch zu einer Verringerung der akustischen Ausbreitungsgeschwindigkeit [Müll 2008]. Diese wird auch von der Fingerhöhe maßgeblich beeinflusst. Um diese Verluste bei entsprechenden SAW Anwendungen gering zu halten, werden für diese Fälle meist nur dünne (ca. 100 200 nm) Elektroden mit relativ geringer Materialdichte (wie Al) eingesetzt.

Die Anzahl an benötigten Fingern für vollständige Reflexion (z. B. im Falle von Resonatoren) ist dabei maßgeblich von dem hauptsächlich involvierten Reflexionsmechanismus abhängig. Wo der piezoelektrische Kurzschluss dominiert (wie bei LiNbO₃), reichen ein paar hundert Metallelektroden

aus. Dort wo die Massebeladung dominiert (wie bei AlN und ST-quarz), werden je nach verwendetem Elektrodenmaterial einige tausend Elektroden benötigt. Dabei ist die Reflektivität und deren Vorzeichen (Phasenlage) von einer Reihe an Designparametern abhängig [Camp 1998]:

1. verwendeter Schichtaufbau und Materialien;

2. Typ der verwendeten Elektroden und Geometrie (speziell single / split Finger sowie Metallisierungsverhältnis);

3. Anzahl der Elektrodenfinger;

4. Brechung und andere Verluste in der Gitterstruktur.

2.5 Stopband und COM-Modell

Der folgende Abschnitt soll auf den Begriff der sogenannten Stopbandecken führen die mit Hilfe der Finiten Elemente Methode (FEM) für ein gegebenes Schichtsystem simuliert werden können. Aus ihnen lassen sich weitere wichtige Parameter berechnen die einen tieferen Einblick in die elektrischen und akustischen Eigenschaften des gewählten Schichtsystems ermöglichen (siehe FEM Kapitel).

In periodischen SAW Strukturen wirkt die Reflektivität der Fingerelektroden als Störung auf eine ankommende Welle ein und es tritt Reflexion auf. Diese Reflexionen im Wandler sind miteinander gekoppelt. Eine besonders starke Reflexion (Bragg Reflektion) tritt dann auf, wenn die Gitterperiode der Hälfte der Wellenlänge entspricht ($\lambda = 2d$). Dies wird als Bragg Bedingung bezeichnet, in der alle reflektierten Teilwellen konstruktiv miteinander interferieren. Es dominieren zwei harmonische Eigenmoden das System (Abbildung 2-9), die anderen harmonischen sind vernachlässigbar klein [Ples 2000]. Diese Moden können als Kombinationen einer einfallenden Welle und einer reflektierten Welle interpretiert werden und führen um den Resonanzfall herum zu der Ausbildung eines Frequenzbandes (Stopband) wo beide Wellen miteinander gekoppelt sind (coupling-of-modes Model, COM-Modell). Diese Kopplung wird mathematisch durch die Hauptgleichungen des COM-Modells dargestellt sowie durch einen "Verstimmungsfaktor" δ der um die Mittenfrequenz f₀ (f₀ = v/(2d)) herum variiert wird [Ples 2000], [Rupp 1994], [Scho 1991].

$$\mathsf{COM} \begin{cases} \frac{dR(x)}{dx} = -j\delta R(x) + j\kappa S(x) + j\alpha U \\ \frac{dS(x)}{dx} = -j\kappa * R(x) + j\delta S(x) - j\alpha * U \\ \frac{dI(x)}{dx} = -2j\alpha * R(x) - 2j\alpha S(x) + j\omega CU \end{cases}$$
GI. 2-8

Mit γ der Dämpfung, R(x) und S(x) den langsam variierenden Feldern der einfallenden und reflektierten Welle in x-Richtung, I(x) die Stromstärke in x-Richtung, κ der Reflektivität (ohne Stern hinlaufende Welle mit Stern und negiert reflektierte Welle), α dem Wandler Koeffizient (ohne Stern hinlaufende Welle mit Stern negiert reflektierte Welle), C der Kapazität zwischen 2 Fingern pro Längeneinheit sowie U der Spannung die an den Wandler angelegt wird.

Es bilden sich zwei Grenzfrequenzen (mit den zwei unterschiedlichen Moden) die auch als Stopbandecken (engl. stopband edges) bezeichnet werden aus, die Reihenfolge der zwei akustischen Moden (Abbildung 2-9b) ist vom Vorzeichen der Reflektivität abhängig (siehe vorherigen Abschnitt über Reflektivität). Dabei tritt an einer Mode/Grenzfrequenz (Stopbandecke) konstruktive Interferenz auf und an der anderen Mode/Grenzfrequenz destruktive Interferenz auf. D. h. die Partikelauslenkung wird nur durch eine Mode dominiert. In diesem Frequenzband ist eine weitere Ausbreitung

Abbildung 2-9: (a) Konzentration der Energie (Partikelbewegung) der akustischen Wellen (grün) an den Stopband-Ecken 1 (konzentriert in den Fingern) und 2 (konzentriert zwischen den Fingern). (b) Schematische Darstellung der akustischen Moden für eine Wellenlänge an der einen und der anderen Ecke des Stopbandes. An einer Ecke mit antisymmetrischer Auslenkung über die Mittellinie (gestrichelte Linie) und an der anderen Ecke symmetrisch über die Mittellinie.

einer einfallenden Welle in Ausbreitungsrichtung (bei genügend hoher Reflexion!) nicht möglich, sie wird "gestoppt" (Abbildung 2-10). Es bildet sich bei genügend großer Anzahl an Reflektorelektroden (wie sie beim SAW Resonator eingesetzt werden) eine stehende Welle aus. Die Breite dieses Stopbandes ist durch die Reflektivität (siehe auch Kapitel Reflexionsmechanismen und Reflektivität) der einzelnen Finger gegeben (die Stoppbandbreite ist proportional zur Reflektivität). Beispielsweise führen Al-Finger aufgrund der geringeren Dichte zu einem kleineren Stopband als W- oder Au-Finger (höhere Massedichte) bei gleicher Fingergeometrie (wie später noch im FEM Kapitel gezeigt wird).

Abbildung 2-10: Schematische Darstellung einer einfallenden Welle und an den einzelnen Fingerelektrodenkanten reflektierten Welle (vollständige Reflektion durch genügend Finger / Reflektivität). Der gestrichelte Pfeil zeigt den Fall, dass ein Teil der einfallenden Welle nicht vollständig reflektiert wird und in Ausbreitungsrichtung weiter propagiert.

Um das Stopband mathematisch zu beschreiben, werden nach Plessky et al. kurzgeschlossene (sc = short circuit) Wandler angenommen (keine Spannung und kein Stromfluss) [Pless 2000]. Dadurch ergeben sich die vereinfachten COM Hauptgleichungen (COM_{sc}) zu:

$$\mathsf{COM}_{\mathsf{sc}} \begin{cases} \frac{dR(x)}{dx} = -j\delta R(x) + j\kappa S(x) \\ \frac{dS(x)}{dx} = -j\kappa * R(x) + j\delta S(x) \end{cases}$$
GI. 2-9

Damit lassen sich die Eigenmoden und die Dispersionsrelation bestimmen. Die Dispersionskurve liefert die Beziehung zwischen der Wellenzahl \tilde{u}_{sc} (Wellenzahl für kurzgeschlossene Finger) der langsam variierenden Felder der Eigenmoden und der Frequenz und kann in folgender Form, auch bekannt als COM Dispersionsrelation, ausgedrückt werden [Ples 2000]:

$$\widetilde{\nu}_{sc} = \sqrt{\delta^2 - \kappa^2}$$
 Gl. 2-10

Das Stopband liegt in der Frequenzregion in der die Bedingung $\delta \leq I\kappa I$ erfüllt ist [Ples 2000]. Das bedeutet, je größer die Reflektivität κ ist (siehe Kapitel 2.4) desto größer ist das resultierende Stopband. Wenn nun der Dämpfungsparameter γ in Gl. 2-7 vernachlässigt wird ergeben sich die untere und obere Stopbandecke aus den Nullstellen von Gl. 2-10 die durch Umformen (Gleichungen Gl. 2-11 - Gl. 2-13) folgen (Gl. 2-14 und Gl. 2-15):

$$\widetilde{\upsilon}_{sc} = \sqrt{\delta^2 - \kappa^2} = 0$$
 \longrightarrow $\delta = \pm \kappa$ Gl. 2-11

$$\frac{2 \cdot \pi \cdot (f_{sc} - f_0)}{\mathsf{V}} = \pm \kappa \qquad (\text{mit GI. 2-7 ohne Dämpfung } \gamma) \\ (\text{mit V} = \lambda \cdot f_0 = 2 \cdot d \cdot f_0) \qquad \text{GI. 2-12}$$

$$f_{sc} - f_0 = \pm \frac{\kappa \cdot 2 \cdot d \cdot f_0}{2 \cdot \pi} \qquad \longrightarrow \qquad f_{sc\pm} = f_0 \left(1 \pm \frac{\kappa \cdot d}{\pi} \right) \quad \text{Gl. 2-13}$$

$$f_{sc-} = f_0 \left(1 - \frac{\kappa \cdot d}{\pi} \right)$$
 Gl. 2-14

$$f_{sc+} = f_0 \left(1 + \frac{\kappa \cdot d}{\pi} \right)$$
 GI. 2-15

Dabei ist der normalisierte Wert κd ($\kappa d = \kappa_d$) der Reflektions-Koeffizient für eine Gitterperiode d (Fingerbreite + Fingerabstand). Durch Umformung der Gleichungen Gl. 2-14 und Gl. 2-15 lassen sich über die beiden Stopbandecken die akustische Geschwindigkeit v, die Mittenfrequenz f₀ (f₀=v/ λ) einer Welle sowie die Reflektivität (für eine Gitterperiode κ_d) des Schichtaufbaus (speziell der verwendeten Fingerelektroden) eines SAW Filters bestimmen.

$$v = d(f_{sc+} + f_{sc-})$$
 Gl. 2-16

$$\kappa_d = \kappa \cdot d = \pi \frac{f_{sc+} - f_{sc-}}{f_{sc+} + f_{sc-}}$$
Gl. 2-17

Dadurch ergibt sich die Resonanzfrequenz fr für periodische kurzgeschlossener Fingerelektroden zu:

$$f_r = \frac{\mathbf{V}}{2d} \left(1 + \frac{\kappa_d}{2\pi} \right) = f_0 \left(1 + \frac{\kappa_d}{2\pi} \right)$$
GI. 2-18

Die resultierende Partikelbewegung / Mode ist davon abhängig in welcher Richtung die Resonanzfrequenz von der Mittenfrequenz abweicht. Dies wird ausführlich in dem FEM Kapitel erläutert.
2.6 Die akustische Rayleigh Welle

Es gibt eine Vielzahl an akustischen Oberflächenwellentypen und akustischen Plattenmoden (APM), hier soll jedoch nur auf die für diese Arbeit wichtige Rayleighwelle eingegangen werden. Da diese in der einschlägigen Literatur ausführlich beschrieben ist wird diese hier nur kurz vorgestellt [Faso 1984]. Sie ist in der SAW Technik die bekannteste und eine der am häufigsten eingesetzten Wellenart überhaupt. Bereits 1885 wurde die Rayleighwelle von John William Strutt Rayleigh vorhergesagt und nach ihm benannt [Rayl 1885]. Die Partikelauslenkung solcher Wellen liegt elliptisch (mit transversaler und longitudinaler Komponente) in der Sagittalebene (Abbildung 2-11a) wobei die effektive Eindringtiefe der Welle etwa bei einer Wellenlänge λ liegt. Die Sagittalebene wird dabei von der x-Achse sowie dem Wellenvektor k_w aufgespannt (Abbildung 2-11b).

Abbildung 2-11: (a) Darstellung der drei verschiedenen Wellentypen. (a) Rayleighwelle breitet sich in z-Richtung aus, die Partikelauslenkung findet in der Sagittalebene (x- und z-Richtung) statt. (b) Partikelbewegung findet in der Sagittalebene statt, diese wird von der x- Achse und dem Wellenvektor k_w aufgespannt.

Dieser Wellentyp wird häufig in der SAW "Elektronik" (Bandpassfilter, Resonator, Korrelator etc.) und SAW Sensorik (Gassensor) eingesetzt. Dieser Wellentyp ist jedoch für Flüssigsensoranwendungen ungeeignet da es aufgrund der Partikelauslenkung aus der Oberfläche heraus zu einer starken Dämpfung der Welle in Flüssigkeiten kommt.

Bei vielen SAW Anwendungen kommen piezoelektrisch anisotrope Substrate zum Einsatz. Um jedoch die resultierenden Berechnungsprobleme zu vereinfachen, werden meist nichtpiezoelektrische isotrope Substrate angenommen (Wegfall elektrischer Randbedingungen und Gleichungen) [Faso 1984]. Durch Untersuchung der verbleibenden Gleichungen kommt man auf die sogenannte Rayleigh-Gleichung (Gl. 2-19):

$$\left(\frac{\mathbf{v}_R}{\mathbf{v}_t}\right)^6 - 8 \cdot \left(\frac{\mathbf{v}_R}{\mathbf{v}_t}\right)^4 + 8 \cdot \left(3 - 2 \cdot \frac{\mathbf{v}_t^2}{\mathbf{v}_l^2}\right) \cdot \left(\frac{\mathbf{v}_R}{\mathbf{v}_t}\right)^2 - 16 \cdot \left(1 - \frac{\mathbf{v}_t^2}{\mathbf{v}_l^2}\right) = 0 \qquad \text{Gl. 2-19}$$

Das elastische Verhalten eines isotropen nichtpiezoelektrischen Festkörpers ist dabei durch die unabhängigen elastischen Konstanten c_{11} und c_{12} sowie der Dichte ρ bestimmt. Die Höhe der Rayleighwellengeschwindigkeit v_R des isotropen Festkörpers folgt aus der Transversalgeschwindigkeit (auch Scherwellengeschwindigkeit genannt) $v_t = \sqrt{c_{11}/\rho}$ und Longitudinalgeschwindigkeit $v_l = \sqrt{c_{66}/\rho}$ (mit $c_{66} = (c_{11} - c_{12})/2$) der drei möglichen Volumenwellen (eine longitudinale und zwei Scherwellen). Diese drei Richtungen sind in Abbildung 2-11a dargestellt. Eine Bedingung für eine Oberflächenwelle ist das Abklingen der Partikelbewegung mit zunehmender Tiefe. Dafür muss die Bedingung $v_R/v_t < 1$ erfüllt sein. In realen isotropen Festkörpern liegen die Werte für das Verhältnis aus v_t/v_1 zwischen 0 und 0,7. In diesem Bereich liegen die Werte für v_R/v_t im Bereich 0,96 – 0,86. Die Geschwindigkeit v_R ist somit die geringste Ausbreitungsgeschwindigkeit und beträgt im Durchschnitt etwa 90% der transversalen Ausbreitungsgeschwindigkeit einer transversalen Volumenwelle. Dies ist ein sehr wichtiger Parameter der für eine erfolgreiche Identifizierung des Rayleighwellentyps bei den später in dieser Arbeit folgenden FEM Simulationen hilfreich ist.

2.7 Elektroakustische Parameter

2.7.1 Elektromechanischer Kopplungsfaktor

Bei der Ausbreitung einer Oberflächenwelle in einem piezoelektrischen Material ergibt sich eine zusätzliche rücktreibende Kraft durch die Piezoelektrizität. Diese entsteht durch das entgegengesetzte elektromagnetische Feld bei der Deformation durch die Welle (direkter Piezo-Effekt) und deren Rückwirkung durch den indirekten Piezo-Effekt. Dabei tritt eine zusätzliche "Versteifung" des Materials ein welche sich in einer höheren akustischen Ausbreitungsgeschwindigkeit v niederschlägt. Die Gleichungen Gl. 2-20 und Gl. 2-21 verdeutlichen diesen Zusammenhang.

$$V = \sqrt{\frac{c}{\rho}}$$
 (Material ohne Piezoelektrizität) Gl. 2-20
$$V = \sqrt{\frac{c \cdot (1 + K^2)}{\rho}}$$
 (Material mit Piezoelektrizität) Gl. 2-21

Die zusätzliche Konstante K^2 in Gl. 2-21 wird dabei als elektromechanischer Kopplungsfaktor bezeichnet. Dieser wird über die Materialparameter e (piezoelektrischer Koeffizient), c (elastische Konstante) und ε (dielektrische Permittivität) definiert (Gl. 2-22).

$$K^2 = \frac{e^2}{c \cdot \varepsilon}$$
 GI. 2-22

Um diesen Faktor auch experimentell bestimmen zu können wird zuerst die "ungestörte" (freie Oberfläche) Geschwindigkeit v eines SAW Filters bestimmt und nachfolgend die Geschwindigkeit v_m eines kurzgeschlossen (metallisierte) SAW Filters berechnet. Dabei wird eine wenige nm dicke Metallschicht aufgedampft. Mit Gleichung Gl. 2-23 ist der Kopplungsfaktor über die resultierende Geschwindigkeitsdifferenz definiert.

$$K^{2} = 2 \cdot \frac{\mathbf{V} - \mathbf{V}_{m}}{\mathbf{V}} = 2 \cdot \frac{\Delta \mathbf{V}}{\mathbf{V}}$$
 Gl. 2-23

Der Kopplungsfaktor ist somit ein Maß für die Effizienz der Umwandlung von elektrischer Energie in mechanische Energie und zurück.

2.7.2 Widerstand / Admittanz eines Wandlers

Um die elektrischen Verluste beim Betrieb von SAW Filtern zu minimieren, müssen diese eine Leistungsanpassung (geringere Signalreflexionen zurück zur Spannungsquelle) erhalten. Das bedeutet, dass die Widerstände des Eingangswandlers bzw. Ausgangswandlers dem der Spannungsquelle bzw. Messgerätes / nachfolgende Schaltung (meist 50 Ohm) angepasst werden müssen.

Eine Ausnahme ist der SAW Bandpassfilter wo eine kleine Fehlanpassung gewünscht ist um Welligkeiten im Durchlassbereich, verursacht durch das Signal dreifacher Laufzeit (engl. Triple Transit Signal, TTS), zu reduzieren.

Um die Filterimpedanz näherungsweise zu berechnen (bzw. Parameter wie die Fingerkapazität zu extrahieren) ist es notwendig die akustischen "Tore" durch eine gleichwertige elektrische Schaltung zu ersetzen [Hine 1993], [Camp 1998]. Dies wurde durch Smith et al. [Smit 1969] näherungsweise durch vereinfachte E-Feldverläufe beschrieben. Dafür wird der reale Feldverlauf in einen Querfeldverlauf oder in einen Längsfeldverlauf angenähert. Diese Zusammenhänge sind grafisch in Abbildung 2-12 zusammengefasst. Der Vorteil dieser Darstellung ist nun, dass jeder periodische Abschnitt durch einen äquivalenten elektrischen Schaltkreis dargestellt werden kann [Smit 1969]. Wobei zur Umwandlung der Kraft in elektrische Spannung und der akustische Geschwindigkeit in elektrischen Strom eine Variable das Wechselverhältnis (engl. turns-ration) als akusto-elektrischer Umformer eingesetzt wird.

Abbildung 2-12: Seitenansicht des realen Feldverlaufes (a), der Querfeldannäherung (b) sowie der Längsfeldnäherung (c) ähnlich [Smit 1969].

Die elektrischen Ersatzschaltbilder für die zwei Modelle sind in Abbildung 2-13 dargestellt.

Abbildung 2-13: Ersatzschaltbilder für das Querfeldmodel (a) und dem Längsfeldmodel (b).

Mit B_a dem Blindleitwert, G_a dem Wirkleitwert (auch als Strahlungsleitwert bezeichnet, engl. radiation conductance), X_a dem Blindwiderstand, R_a dem Wirkwiderstand und C_T der Wandlerkapazität.

Die Auswahl des jeweiligen Modells kann man mit Hilfe des Verhaltens bei Änderung des Wirkleitwertes durch die Variation der Fingeranzahl bestimmen. Dafür wurden 4 SAW Filter mit veränderter Fingeranzahl (mit sonst gleichen Parametern) hergestellt und die S-Parameter (Erklärung der S-Parameter-Messung siehe Kapitel 4.5) gemessen. Anschließend wurden die S-Parameter in ein Programm (RFSim99) eingelesen und der Widerstand sowie der Leitwert über ein Smith-Diagramm bestimmt

Die Berechnungen der Imittanzen (Konzept welches Impedanz und Admittanz verbindet) durch die beiden Modelle wird in den Gleichungen Gl. 2-24 sowie Gl. 2-25 wiedergegeben [Smit 1969].

$$Y(f_0) = G_a(f_0) + j[B_a(f_0) + 2 \cdot \pi \cdot f_0 \cdot C_t]$$
 Querfeld GI. 2-24

$$Z(f_0) = R_a(f_0) + jX_a(f_0) = R_a(f_0) + \frac{1}{j \cdot 2 \cdot \pi \cdot f_0 \cdot C_T} \quad \text{Längsfeld} \quad \text{GI. 2-25}$$

Mit Z dem komplexen Widerstand und Y dem komplexen Leitwert (Admittanz). Nach den Gleichungen Gl. 2-26 und Gl. 2-27 von Smith et al. [Smit 1969] muss nach dem Querfeldmodell der Wirkleitwert (auch als Strahlungsleitwert bezeichnet) G_a=1/R_a einer quadratischen Funktion gleichen (durch die Zunahme der Fingeranzahl) beim Längsfeldmodell muss der Wirkleitwert G_a bei Erhöhung der Fingeranzahl konstant bleiben.

 $G_{a}(f_{0}) = 8 \cdot K^{2} \cdot C_{P} \cdot f_{0} \cdot N_{P}^{2}$ Querfeld Gl. 2-26 $R_{a}(f_{0}) = \left(\frac{4}{\pi}\right) \cdot K^{2} \cdot \left(\frac{1}{2 \cdot \pi \cdot f_{0} \cdot C_{T}}\right)$ Längsfeld Gl. 2-27

Mit C_P der Kapazität pro Fingerpaar und N_P der Anzahl der Fingerpaare. Wie man in Abbildung 2-14 erkennt, erhält man für die Berechnung des Wirkleitwertes G_a eine Gerade, somit liegen die AlN basierten SAW Filter nahe an beiden Modellen. Die Werte für die aus den Gleichungen Gl. 2-26 und Gl. 2-27 errechneten Wandlerkapazitäten C_T liegen wie erwartet eng beieinander und sind proportional zu der Fingeranzahl, somit ergeben sich nur geringe Abweichungen zwischen den Modellen. Aus diesem Grund wurde in nachfolgenden Betrachtungen das wesentlich einfachere Querfeldmodell verwendet, um wichtige Parameter wie die Wandlerkapazität und den Kopplungsfaktor aus den S-Parameter Messungen zu bestimmen [Smit 1969].

Abbildung 2-14: Vergleich der beiden Näherungsmodelle mit Hilfe der an der Resonanzfrequenz gewonnenen Leitfähigkeiten für 4 SAW Filter mit variierter Fingeranzahl. Gezeigt werden die berechneten Kapazitäten für das Längsfeldmodell sowie für das Querfeldmodell.

Für Frequenzen in der Nähe der Resonanzfrequenz ergeben sich nach dem Querfeldmodell näherungsweise die Werte für den Strahlungsleitwert sowie für den Blindleitwert durch die Gleichungen Gl. 2-28 und Gl. 2-29 [Smit 1969]:

$$G_a(f) \cong G_a(f_0) \cdot \left(\frac{\sin x}{x}\right)^2$$

$$G_a(f) \cong G_a(f_0) \cdot \left(\frac{\sin 2x - 2x}{2x^2}\right),$$

$$G_a(f) \cong G_a(f_0) \cdot \left(\frac{\sin 2x - 2x}{2x^2}\right),$$

$$G_a(f) \cong G_a(f_0) \cdot \left(\frac{\sin 2x - 2x}{2x^2}\right),$$

mit x = $N_p \pi(f-f_0)/f_0$ und den Leitwerten G_a (f) sowie B_a (f) nahe der Resonanzfrequenz. Die Abbildung 2-15 zeigt einen Vergleich der Leitwerte zwischen einem SAW Filter auf einem sehr hochohmigen AlN-Einkristall [Bu 2006] (Abbildung 2-15a) sowie einem im Rahmen dieser Arbeit hergestellten Filter auf einem niederohmigen Si-Substrat (5-20 Ω cm, Abbildung 2-15b). Abbildung 2-15b zeigt die simulierte (Annahme eines hochohmigen Si-Substrates) und die experimentell gewonnene Admittanz (Strahlungsleitwert und Blindleitwert) für einen AlN basierten SAW Wandler (800nm AlN/W- IDT/600nm SiO₂/Si(100)) mit 75 Fingerpaaren nach dem Querfeldmodell auf einem niederohmigen Si-Substrat. Die Resonanzfrequenz ist 2,433 GHz, die akustische Appertur W_A beträgt 135 µm und die Kapazität pro Längeneinheit wurde zu 0,170 fF/µm berechnet. Die elektromagnetische Überkopplung durch das Substrat (speziell bei niederohmigen Substraten wie "Standard" Siliziumwafer) wurde zum besseren Vergleich im simulierten Falle zu Null angenommen (hochohmiges Substrat wie Abbildung 2-15a). Im realen Wandler (mit 5-200hm Siliziumwafer, niederohmiges Substrat) jedoch tritt starkes elektromagnetisches Überkoppeln ein, welches zu einer über den kompletten Frequenzbereich dauerhaft hohen Leitfähigkeit führt. Dieses elektromagnetische Übersprechen könnte größtenteils nur reduziert werden, indem teure hochohmige Siliziumwafer verwendet werden (ab 4000 Ohm) oder indem unter dem Wandler der Siliziumwafer teilweise bzw. komplett entfernt wird (technologisch schwierig zu realisieren). Deshalb können nur die Standard Wafer mit circa 10 Ω cm für eine CMOS Integration eingesetzt werden.

Abbildung 2-15: Vergleich zwischen typischen Werten von Filtern auf hochohmigen Substraten wie einkristallinem AlN und (in ähnlicher Form) kommerziell häufig benutzten LiNbO₃ und Werten von CMOS kompatiblen Filtern hergestellt auf niederohmigen Si-Substraten im Rahmen dieser Arbeit. (a) SAW Filter auf einem hochohmigen c-achsenorientierten AlN Einkristall [Bu 2006]. Berechnete Admittanz mit 90 Fingerpaaren und eine akustischen Appertur von 1300µm sowie einer Wellenlänge von 16µm. (b) Berechnete Admittanz für einen Wandler mit 75 Fingerpaare und einer akustischen Appertur von 135 µm. Der Kopplungsfaktor wurde mit 0.0043 angenommen. Der Pfeil zeigt an, dass bei Erhöhung des Widerstandes im Substrat auch die experimentell gewonnene Kurve sich immer mehr der simulierten Kurve (hochohmiges Substrat) annähern würde.

3. SAW Entwürfe und Anwendungen

In dieser Arbeit wurden für verschiedene Anwendungen unterschiedliche SAW Bauelemente entworfen. Diese unterteilen sich in 5 SAW Hauptfiltertypen und werden nachfolgend kurz vorgestellt.

3.1 SAW Verzögerungsleitung

Die erste Hauptgruppe ist die Verzögerungsleitung, die bereits in den vorangegangenen Abschnitten vorgestellt wurde. Mit ihr lassen sich wichtige Filterparameter bestimmen und optimieren. Daneben kann diese auch als Biosensor (Massesensor) [Lind 2008], [Cali 2012], [Nard 2012] eingesetzt werden indem man eine Immobilisierungsschicht zwischen den zwei Wandlern aufbringt. Die Schicht besteht dabei aus Fängermolekülen die nach dem "Schlüssel-Schloss Prinzip" eine bestimmte Spezies in Gasen [Past 2006] oder Flüssigkeiten [McHa 2002], [Tama 2003], [Mart 2004] an sich binden können. Durch diese zusätzliche spezifische Massebeladung auf der Oberfläche kommt es zu einer proportionalen Verringerung der Resonanzfrequenz. Es lässt sich dabei eine sehr sensitive (-19kHz mm² ng⁻¹ bei 2 GHz [Asso 2009] bzw. 10 pg/µl bei 200 MHz [Lee 2009]) und schnelle Messung (wenige Minuten) der Konzentration oder Anwesenheit eines bestimmten Stoffes durchführen. Als Array ausgeführt, lassen sich dabei sehr einfach Multiparametersensoren realisieren die simultan verschiedene Stoffkonzentrationen messen können. Die erhaltenen Messwerte werden mit einer nichtbehandelten Verzögerungsleitung über ein Mixer verglichen, um mögliche Temperaturschwankungen bzw. Einflüsse von Flüssigkeits-Viskositäten auszublenden. Dadurch ergibt sich ein Messsignal, welches nur durch die Massebeladung beeinflusst ist. Weitere Einsatzmöglichkeiten von SAW Verzögerungsleitungen sind Temperatursensoren [Odin 1991]. Häufig werden diese Filter auch zum sogenannten "acoustic streaming" ohne zweiten Wandler eingesetzt. Dabei geht es um die exakte Zerstäubung von µl oder nl Volumen mit Hilfe der mechanischen [Du 2008], [Qi Oberflächenwellen [Kuro 1997], 2011]. Eine weitere interessante Anwendungsmöglichkeit sind Beschleunigungssensoren [Fili 2009]. Diese basieren auf einer durch Beschleunigung auslenkfähigen dünnen Platte, die zur Sensitivitätssteigerung an einem Ende durch eine Masse beschwert ist. Auch wurde über den Antrieb von SAW Filtern mit nur einem Wandler von Mikromotoren berichtet [Shil 2012].

Abbildung 3-1: (a) Verzögerungsleitung für Grundlagenuntersuchungen, (b) Biosensoranwendung einer Verzögerungsleitung mit Referenzstrecke und Messstrecke (grün).

3.2 SAW Korrelator

Eine weitere wichtige Anwendung ist der SAW Korrelator [Moel 1999], der sogenannte Codemultiplexverfahren (CDMA) ermöglicht (Übertragung verschiedener Datenströme in einem gemeinsamen Frequenzbereich [King 1999]). Mit den Korrelatoren lassen sich Frequenz-, Amplituden- oder Phasenkodierte Filter für die drahtlose Datenübertragung realisieren, die eine komplexe Signalverarbeitung und Generierung in einer Einheit ermöglichen [Jone 1971], [Sche 1989], [Weig 1997], [Broc 2004]. Dabei lassen sie sich als passive Bauelemente herstellen, die ideal für "Ultra Low Power" Anwendungen in der drahtlosen Datenübertragungs-Technik sind. Der Gesamtcode ist dabei über einzelne als Sub-Bits oder Chips bezeichnete Einheiten zusammengesetzt. Dieser Gesamtcode wird z.B. phasencodiert (binary phase shift keying, BPSK) über ein Gleichspannungspuls (DC) am Eingangswandler über den Ausgangswandler im SAW Sender erzeugt. Nach dem "Einlesen" des gesamten Wellenzuges im Empfängerwandler wird dieses lange kodierte Signal als kurzer Schwingungspuls mit Haupt- und Nebenmaxima ausgegeben [Card 2004]. Das Verhältnis zwischen diesen Maxima wird dabei als Hauptzipfel – Nebenzipfel Verhältnis (HNV) bezeichnet. Je höher dieses ist, umso besser hebt sich das eigentliche Nutzsignal von ungewollten Störsignalen ab. Mögliche Kommunikationsfehler aufgrund unterschiedlicher Datenströme mehrerer Geräte im selben Frequenzbereich können nicht mehr auftreten. Die Höhe dieses HNV ist abhängig vom verwendeten Code [Hofm 1997], je geringer die Autokorrelation (bei leichter Verschiebung der Folge um die Zeit t) ist umso höher ist das HNV. Die sogenannten Barker Codes haben ein maximales HNV (HNV = Kodelänge), haben jedoch nur eine begrenzte Länge von maximal 13 Bit. Um auch

längere Codes zu finden, die ein maximales HNV haben, bedarf es spezieller Computerprogramme [Hofm 1997].

Abbildung 3-2: Schema einer SAW Korrelator Kommunikation mit Sender und Empfänger. Das vom Sender phasenkodierte Signal wird drahtlos übertragen und vom Empfänger als Impuls ausgegeben (korreliert).

3.3 SAW Transponder

SAW Transponder (SAW ID Tags) ermöglichen neben einer einfachen drahtlosen Identifizierung von in Geräten (oder anderen Dingen) verbauten Chips auch einfache passive Temperatur-, Druck-, Luftfeuchte- oder auch Biosensoren. Diese haben den Vorteil, dass eine einzigartige durch den Abstand der "Bit" Reflektoren vorgegebene Kodierung erzeugt werden kann und somit ihre Signalantwort bei ein und derselben Arbeitsfrequenz von anderen Sendern unterschieden werden kann. Da sie passiv ausgeführt werden können sowie sehr robust sind können sie für eine Vielzahl an Anwendungen (beispielsweise bei erhöhten Temperaturen bis ~400°C oder hohen Umdrehungszahlen oder Geschwindigkeiten im Automobil Bereich) eingesetzt werden. Gegenüber sogenannten IC Tags haben SAW basierte Tags einige entscheidende Vorteile [Ples 1995]:

- SAW Tags operieren mit kleinen RF Pulsen von circa 10 mW während IC Tags für den selben Abstand eine kontinuierliche Strahlung von einigen Watt benötigen
- SAW Tags Systeme haben eine größere Eindringtiefe in metallischen Gegenständen und Flüssigkeiten
- Aufgrund der geringeren Strahlungsleistungen sind die SAW Tag Lesergeräte nicht so störanfällig wie IC Tags Leser die mit einigen Watt bei den Bluetooth oder W-LAN Frequenzen abstrahlen.
- SAW Tags sind sehr robust und können entsprechend in sehr rauen Umgebungen eingesetzt werden (u.a. hohe Temperaturwiderstandsfähigkeit), IC Tags sind empfindlicher
- SAW Tags sind kleiner und können passiv betrieben werden
- SAW Tags Lesegeräte können simultan mehrere SAW Tags auslesen
- SAW Tags können neben der ID Funktion auch sehr einfach zusätzlich als Temperatursensor benutzt werden

Abbildung 3-3: Darstellung eines SAW ID Tags mit der ausgegebenen Signalantwort.

3.4 Resonator und Bandpassfilter

SAW Resonatoren ermöglichen eine geringere Einfügedämpfung aufgrund der Nutzung beider bidirektional abgestrahlten Wellen des Sendewandlers und sind eines der am häufigsten verwendeten kommerziellen SAW Bauelemente mit einer ganzen Reihe an verschiedenen Designs für verschiedene Anwendungen [Tans 1979], [Wright 1992], [Camp 1998]. Eines der Designs, der Zwei-Tor Resonator, ist in Abbildung 3-4a dargestellt. SAW Resonatoren werden u. a. in Oszillatorschaltkreisen für drahtlose Low-power Anwendungen (z. B. für Radar und Navigationssysteme [Mont 1988]) im und außerhalb des ISM Band als frequenzbestimmendes Bauteil eingesetzt da sie über eine sehr hohe Güte von bis zu 10.000 verfügen [Morg 1985] sowie eine sehr schmalbandige Frequenzantwort bei einer Resonanzfrequenz von bis zu 5 GHz [Sato 2001] besitzen. Daneben werden sie auch als sehr schmalbandige Filter zur Frequenzselektion eingesetzt. Dabei bildet sich im Gegensatz zu anderen SAW Filtern eine stehende Welle zwischen den zwei Reflektor Strukturen (links bzw. rechts der IDT Eingangs-/Ausgangswandler) aus [Riha]. Da sich ihre Resonanzfrequenz aufgrund von Temperaturschwankungen leicht verschieben kann werden für einige Anwendungen temperaturkompensierte Schichtsysteme bevorzugt [Lin 2009]. Durch spezielle Bauformen sind geringe Einfügedämpfungen von unter -1 dB möglich (auf LiNbO₃) [Dobe 1997].

Bandpassfilter sind wie die Resonatoren auch eine der am häufigsten kommerziell verwendeten SAW Bauelemente und werden zum Trennen von Signalen unterschiedlicher Frequenzen eingesetzt. Dabei ist ein spezielles IDT Design notwendig was die sinc Funktion aus dem Frequenzbereich in den Zeitbereich überträgt und somit eine scharfe Trennung (rechteckige Frequenzantwort) des Durchlassbereiches ermöglicht (siehe Abbildung 3-4b) [Haki 1980], [Vigi 1987], [Malo 2004], [Riha]. Um dies zu realisieren wurden spezielle Programme in Matlab geschrieben um mit deren Hilfe dieses spezielle IDT Design zu realisieren (siehe Anhang B).

Abbildung 3-4: (a) Zwei-Tor Resonator mit 100 bis einigen tausend Reflektor streifen, (b) Bandpassfilter mit einem sinc Fingerüberlapp.

3.5 Chirpfilter

Chirpfilter zeichnen sich durch eine Variation der Fingerbreiten und Abstände aus, dabei kommt es zu einem Signal was eine Variation der Wellenlänge und somit eine Variation der Frequenz aufweist [Hasc 2002]. Dabei ist die Gesamtlänge T des Wellenzuges durch die Gesamtlänge des Ausgangswandlers am Sender gegeben. Dieses frequenzausgespreizte Signal kann dann wieder in

einem Chirp Empfänger eingelesen und als komprimierter Schwingungsimpuls (auch als Chirppuls bezeichnet) ausgegeben werden [Yanf 2009]. Die Dauer T des im Sender ausgegebenen Signals entspricht der Länge des Ausgangswandlers. Die Breite des ausgegebenen Pulses am Empfänger ist abhängig von der Bandbreite B und ist circa 1/B [Morg 1985]. Das Verhältnis zwischen Eingangs- und Ausgangspuls am Empfänger wird als Kompressionsverhältnis bezeichnet und ist gleich zum Zeit-Bandbreite Produkt TB. Typische Werte für das TB liegen zwischen 50 und 500. Durch diese Technik lässt sich auf einfache Weise eine Ultra-Breitband Kommunikation (UWB) realisieren. Diese Technik ist u. a. ideal für drahtlose lokale Netze [Spri 1998]. Eine weitere wichtige Anwendung solcher Filter ist der Einsatz in Radarsystemen zur Pulskompression (ermöglicht bei kleineren eingesetzten Leistungen bessere Radarauflösung). Dabei kann eine lineare oder logarithmische Frequenzmodulation durch ein entsprechendes Wandler Design erreicht werden. Der Vorteil dieser Technik ist das durch spezielle Chirpfilter Designs sehr große Kompressionsverhältnisse von bis zu 10.000 erreicht werden können [Morg 1985], [Lone 1998]. Um diese speziellen Designs zu realisieren wurde ein Matlab – Programm geschrieben um diese Wandlerform zu realisieren (siehe Anhang B).

Abbildung 3-5: (a) Sender generiert das frequenzgespreizte Signal. (b) Empfänger nimmt Signal auf und gibt es als Puls aus.

4. Experimentelle Aufbauten und Integrationskonzept

4.1 XRD Messaufbau

Mit Hilfe der Röntgenbeugung (x-ray diffraction, XRD) wurde die Qualität der AIN c-Achsenorientierung untersucht. Für diese Untersuchungen wurde das Gerät SmartLab von der Firma Rigaku verwendet. Bei diesem Gerät wird eine Spannung von 45 kV zwischen dem Wolfram Filament und dem Kupfertarget angelegt (Abbildung 4-1).

Abbildung 4-1: Experimenteller XRD Aufbau.

Der Strom beträgt etwa 200 mA was einer umgesetzten Leistung von 9 kW entspricht. Elektronen aus dem Wolfram Filament werden mit einer Energie von 45 keV auf das Kupfertarget beschleunigt und erzeugen dort die Röntgenstrahlung. Dadurch wird neben der kontinuierlichen Bremsstrahlung auch die charakteristische Cu_{Kα} Strahlung des Kupfertargets erzeugt, welche der Bremsstrahlung überlagert ist. Diese treffen, über einen Spiegel, auf die Probe. Bei einer Messung wird der Einfallswinkel des Strahles θ auf die Probe durch Drehen der Apparatur (einfallender Strahl und Detektor werden gedreht, die Probe bleibt fest) variiert. Wenn die Bragg Bedingung (Gl. 4-1) erfüllt ist und sich die reflektierten Wellen an den einzelnen Kristallebenen konstruktiv überlagern lässt sich an dem Detektor eine stärkere Intensität beobachten.

$$n \cdot \lambda = 2 \cdot d_{hkl} \cdot \sin \Theta$$

Wenn die Intensität über dem zweifachen Einstrahlwinkelbereich (20) aufgetragen wird, ergibt sich ein kristallcharakteristisches Spektrum mit entsprechenden Intensitätsmaxima die jeweils für einzelne Kristallebenen stehen.

Das Kupfertarget hat, durch die Übertragung von W-Partikeln aus dem W-Filament, einen dünnen W-Film auf seiner Oberfläche. Dadurch kommt es zu einem schwachen zusätzlichen charakteristischen Signal der $W_{L\alpha}$ Linie welches von der Intensität etwa vier Größenordnungen unterhalb des $Cu_{K\alpha}$ Signals sichtbar ist und damit meist im Bereich des Rauschens liegt (nicht sichtbar bei der Messung). Jedoch kann es, bei ausreichend hoher Intensität des Signales, auch sichtbar werden. Die in dem Kapitel 5 dargestellten XRD Untersuchungen weisen solch eine Linie auf.

Neben den 20 Untersuchungen wurden auch sogenannte Rocking Kurven aufgenommen. Diese geben einen Aufschluss über die Güte der Kristallorientierung in einer bestimmten Kristallebene. Dabei bleibt der Winkel des einfallenden Strahls zu dem reflektierten Strahl zum Detektor konstant, nur die Probe wird gekippt und die auftretende Intensität vom Detektor gemessen.

Für weitergehende Informationen über den verwendeten XRD Aufbau sei auf das SmartLab Benutzerhandbuch verwiesen [Riga] sowie für das Messprinzip auf das Buch von Ulrich Pietsch et al. [Piet 2004].

4.2 AFM Messaufbau

Die in dieser Arbeit durchgeführten AFM Untersuchungen wurden mit dem NanoScope Dimension 5000 der Firma Veeco (Bruker) durchgeführt. Die Größe des Scanbereiches, bei den durchgeführten Untersuchungen, liegt bei 5 x 5 μ m².

Bei der Atomkraftmikroskopie (AFM) wird mit einer an einer kleinen Blattfeder (Cantilever) befestigten Spitze die Probenoberfläche abgetastet. Die in dieser Arbeit gezeigten AFM Untersuchungen wurden im sogenannten Tapping Modus durchgeführt (Abbildung 4-2). Dabei wird ein oszillierender Cantilever unterhalb seiner Resonanzfrequenz betrieben. Der typische Amplitudenbereich dieser Cantilever - Auslenkung liegt in einem Bereich von 20 bis 100 nm. Die Spitze "klopft" dabei bei ihrer untersten Auslenkung leicht gegen die Probenoberfläche. Dabei hält das Gerät diese maximale Amplitude der Auslenkung konstant. Dies geschieht über einen vom Cantilever reflektierten Strahl der auf einen Detektor geleitet wird (siehe Abbildung 4-2). Der Scanner fährt beim Abscannen der Probenoberfläche in vertikaler Richtung nach um die eingestellte Amplitude konstant zu halten und zeichnet damit die Oberflächentopologie auf [Veec 2003].

Abbildung 4-2: Aufbau der AFM Untersuchung im Tapping Modus [Veec 2003].

4.3 TEM Messaufbau

Mit Hilfe der Transmissionselektronenmikroskopie (TEM) ist es möglich sehr dünne (wenige Nanometer) Proben zu durchstrahlen, um Informationen zur Kristallkorngröße ect. zu gewinnen. Dabei werden, ähnlich wie beim Lichtmikroskop, Elektronen von einer Elektronenquelle ausgesendet und über ein elektronenoptisches Linsensystem (mit Magnetspulen aufgebaut) geleitet (findet im Hochvakuum statt). In der Probe werden die eintreffenden Elektronen (vom Elektronenstrahl) gestreut (Abbildung 4-2a und b). Wenn man an der Objektivblende nur die Elektronen passieren lässt, die nicht gestreut wurden, kann man nun einen massenabhängigen Kontrast feststellen, da Atome höherer Ordnungszahl sowie dickere Probenbereiche stärker streuen.

Die TEM Untersuchung wurde mit dem Tecnai OSIRIS der Firma FEI durchgeführt. Das maximale Punktauflösungsvermögen beträgt 0,26 nm. Die Beschleunigungsspannung liegt bei etwa 200 kV.

Abbildung 4-3: Funktionsprinzip mit Strahlverlauf des TEM (a) vor der Probe (b) nach der Probe [Will 1996].

4.4 REM Messaufbau

Mit der Rasterelektronenmikroskopie ist es möglich Aufnahmen im Nanometerbereich zu erstellen. Dabei treten Elektronen über eine Kathode aus und werden mit Hilfe einer Beschleunigungsspannung und eines elektronenoptischen Linsensystems als Elektronenstrahl punktweise über die Probenoberfläche gerastert. Durch die Einwirkung des Elektronenstrahls wird in dem bestrahlten Probenbereich eine vom Probenbereich abhängige Anzahl an Elektronen (Sekundärelektronen) emittiert und über einen Detektor auf einen Bildschirm dargestellt (Hell – Dunkelunterschiede auf dem Bildschirm). Diese Hell – Dunkelunterschiede werden als Topographiekontrast (mit Sekundärelektronen) bezeichnet. Dieser Kontrasteffekt ist abhängig von der Sekundärelektronenausbeute und des Rückstrahlkoeffizienten der Neigung der abzubildenden Fläche vom einfallenden Elektronenstrahl.

Das für die REM Aufnahmen in dieser Arbeit verwendete Rasterelektronenmikroskop ist das S-4500 von der Firma Hitachi. Das Gerät erlaubt bei einer maximalen Beschleunigungsspannung von 25 kV eine Vergrößerung von 250000 und erreicht ein Hochvakuum von $7 \cdot 10^{-4}$ Pa im Probenraum. Die Auflösung ist materialabhängig und liegt in einem Bereich von circa 1 – 5 nm [Hita 1995].

Abbildung 4-4: Aufbau des Hitachi S-4500 Rasterelektronenmikroskop [Hita 1995].

4.5 S-Parameter Messplatz

Mit Hilfe des Streuparameter (S-Parameter) Messplatzes ist es möglich, viele wichtige Parameter über die SAW Filter zu gewinnen. Wichtige Eigenschaften wie die Reflexion (S₁₁ und S₂₂) und Transmission (S₂₁ und S₁₂) des über einen Netzwerkanalysator in den SAW Filter eingespeisten Signales lassen sich damit darstellen. Wichtige Kenndaten wie Einfügedämpfung, Dämpfung Sperrbereich und Leistungsanpassung können erhalten werden. Des Weiteren ist es möglich in gewissem Rahmen (20°C bis 100°C) die Chuck - Temperatur zu variieren um somit Temperaturabhängigkeiten zu analysieren. Die maximale Auflösung (maximale Anzahl an Messwerten pro Kurve) des Netzwerkanalysators beträgt in einem gewählten Frequenzbereich etwa 3000 Werte. Dies ermöglicht eine sehr genaue und detaillierte Betrachtung der auftretenden Resonanzfrequenzen. Die Messung, in Reflexion und Transmission, erfolgt dabei über den Vergleich des in den SAW Filter eingespeisten Signales mit dem reflektierten bzw. transmittierten Signals und

Abbildung 4-5: S-Parameter Messplatz: (1) GSG Hochfrequenzspitzen, (2) Beheizbarer Chuck, (3) Mikroskop, (4) Vakuumhalter, (5) Agilent E8364A Netzwerkanalysator, kleines Bild zeigt die vergrößerten GSG Spitzen (an den blauen Haltern befestigt)

wird üblicherweise in Dezibel (dB) angegeben. Da es sich bei der Messung mit dem Netzwerkanalysator um Spannungsverhältnisse (Feldgröße) und nicht um Leistungsverhältnisse

(Energiegröße) handelt, tritt eine Halbierung der Spannung (bei Dämpfung) bei circa -6dB auf (und nicht wie bei Leistungsverhältnissen bei circa -3dB). In Gl. 4-2 ist dieser Zusammenhang mathematisch dargestellt:

$$A(dB) = 20 \cdot \log \frac{U_{Aus}}{U_{Ein}}$$
 GI. 4-2

Mit dem Verhältnis A in dB, der Eingangsspannung U_{Ein} und der Ausgangsspannung U_{Aus}.

Eine weitere wichtige Funktion des Netzwerkanalysators ist die Möglichkeit der zeitgesteuerten Signalauswertung. Dabei können gemessene $S_{21/12}$ -Parameter durch eine schnelle Fourier Transformation (FFT) in den Zeitbereich überführt werden um bestimmte Signale voneinander zu trennen. In Abbildung 4-6 ist ein solches Beispiel dargestellt. Das gemessene Signal (in schwarz) eines SAW-Filters (Abbildung 4-6 (a)) beinhaltet neben dem gewollten akustischen Signal auch elektromagnetisches Übersprechen (engl. Crosstalk) und soll von diesem getrennt werden. Dazu wird das akustische Signal in den Zeitbereich überführt (Abbildung 4-6 (b), in rot) und dort von dem wesentlich schnelleren übersprechenden Elektromagnetischen Feld (EMF, Abbildung 4-6 (b), in schwarz), welches sich größtenteils durch das Substrat und die Luft ausbreitet, getrennt. Anschließend erfolgt die Rücktransformation des reinen akustischen Signales in den Frequenzbereich wobei das elektromagnetische Übersprechen aus der Signalantwort eliminiert wurde. Dabei ist das typische sinc Verhalten eines ungewichteten SAW Filters zu erkennen (Abbildung 4-6 (a), in rot).

Abbildung 4-6: Methode der zeitgesteuerten Messung (a) S-Parametermessung (schwarz) wird in den Zeitbereich (b) überführt. Das Elektromagnetische Feldsignal Signal (schwarz) wird über eine zeitliche Eingrenzung "abgeschnitten", übrig bleibt das akustische Signal (rot). Dieses wird wieder in den Frequenzbereich überführt (rot).

4.6 Impuls Messplatz

Die Untersuchungen für die impulsgesteuerten Messungen wurden an einem speziellen multifunktionalen Messplatz durchgeführt (Abbildung 4-7). An diesem können Temperaturuntersuchungen von -60° bis +300° durchgeführt werden. Des Weiteren ist es auch möglich, Messungen unter dem Einfluss diverser Gase (O₂ und N₂) sowie im Vakuum bzw. mit Überdruck durchzuführen.

Abbildung 4-7: Impulsmessplatz: (1) Kameramonitor, (2) Kamera, (3) Keithley 4200-SCS Analysator, (4) Kühleinheit C60, (5) Vakuumkammer SÜSS MicroTec PMV200, (6) Agilent E8257D PSG Analog Signal Generator (7) Oszilloskop Tektronix TDS6154C (8) Anritsu MP1632C Digital Data Analyzer (9) Steuerungslabtop für den Impulsgenerator.

In dieser Versuchsanordnung wird der Si – Wafer auf dem Chuck in der Vakuumkammer (Abbildung 4-7 (a)) positioniert und mit ground - signal - ground (GSG) Spitzen kontaktiert. Diese werden dann mit dem Bit Error Rate Tester (BERT, SAW Filter Eingang, Abbildung 4-7) bzw. dem Oszilloskop (SAW Filter Ausgang, Abbildung 4-7) für die zeitaufgelöste Messung verbunden. Über den an den BERT angeschlossenen Frequenzgenerator ist es nun möglich die genaue Impulsbreite über die eingestellte Frequenz zu wählen. Mit Hilfe eines BERT ist es unter anderem möglich, einzelne Eingangspulse zum Testen von SAW Korrelator - Sendern im gewünschten Frequenzbereich (über den Agilent Analog Signal Generator) zu erzeugen. Außerdem ist es möglich komplexe kodierte Signale zu erzeugen um damit auch direkt SAW Korrelator - Empfänger zu untersuchen.

4.7 C-V/C-F Messplatz

Um die SAW – Filter genauer elektrisch zu charakterisieren wurden C-V und C-F Messungen an einer halbautomatischen Probenstation (Abbildung 4-8) durchgeführt. Dazu wurden Einzelspitzen verwendet um alle Strukturen sehr flexibel separat messen zu können. Mit dem Keithley 4200-SCS Analyser ist es möglich sehr sensitive Kapazitätsmessungen (>1 fF) durchzuführen. Um solch präzise Messungen durchzuführen sind spezielle Source Measurement Units (SMUs) zwischen Analyser und SAW - Filter geschaltet. Diese sind sehr präzise Netzteile die sehr hohe Auflösungen / Empfindlichkeiten ermöglichen. Mit ihnen lassen sich außerdem Frequenz-, Strom- und Spannungssweeps in eingestellten Grenzen realisieren.

Ein weiterer Vorteil des Gerätes und des Messaufbaus ist es, dass Spannungen von bis zu 30VDC angelegt werden können um das elektrische Durchschlagsverhalten von Schichten zu untersuchen. Außerdem lassen sich verschiedene Strukturen auf dem Wafer automatisch anfahren und messen. Zusätzlich lässt sich der Chuck durch eine Kühleinheit sowie eine eingebaute Heizung in dem Temperaturbereich von -40°C bis +250°C variieren.

Abbildung 4-8: (1) Cooling Unit (2) Cascade halbautomatische Probenstation (3) Kamera (4) Kamerabildschirm (5) Keithley 4200-SCS Analyser, kleines Bild zeigt die Messspitzen mit Wafer in der Probenstation

4.8 Integrationskonzept und technologische Herausforderungen

Das Integrationskonzept der Filter ist in Abbildung 4-9 dargestellt. Dabei wurden die bekannten Reinraummaterialien wie Si₃N₄, W, AlCu, Ti, TiN, SiO₂ sowie AlN eingesetzt. Außerdem mussten für die Herstellung der SAW Filter einige Prozesse (AlN-Ätzung, CMP, Metall-Abscheidung ect.) neu entwickelt bzw. modifiziert werden. Beispielsweise wurde, für die Herstellung der Wbasierten Fingerelektroden, ein abgewandelter Via-Prozess verwendet der die 100 nm dicken Elektroden ermöglichte.

Abbildung 4-9: (a) Draufsicht auf das SAW Filterdesign mit Schnittebene durch die Fingerelektroden sowie den Ground–Signal-Ground (GSG) Pads; Seitenansicht: (b) prinzipieller Aufbau mit unten liegenden Fingerelektroden und den verwendeten Materialien und in SiO₂ eingebetteten Wolframfingern.

Nachfolgend soll schematisch die Herstellung der diskreten SAW Bauelemente in einer Variante im Bi-CMOS Prozess gezeigt werden. Dabei soll anhand eines Schichtaufbaus der Herstellungs- und Entwicklungsprozess, mit den technologischen Herausforderungen, für die SAW Filter nachfolgend erläutert werden.

Zunächst wurde 600 nm amorphes SiO₂ auf dem Siliziumwafer abgeschieden und nachfolgend, über einen Lithographie Schritt, die etwa 100nm tiefen Elektrodengräben geätzt (Abbildung 4-10).

Abbildung 4-10: Erste Fertigungsschritte der SAW Filter mit der Abscheidung der 600 nm dicken amorphen SiO₂ Schicht und der anschließenden Ätzung der Gräben für die W-basierten Fingerelektroden.

Anschließend folgte die Wolfram Abscheidung für die Fingerelektroden. Dabei wurde das Wolfram über einen W-Polierschritt (chemical mechanical polishing, CMP) bis auf das Niveau der Elektrodengräben herunter poliert (Abbildung 4-11).

Abbildung 4-11: Beschichtung des Wafers mit Wolfram und anschließenden CMP Schritt zur Herstellung der Fingerelektroden.

Anschließend folgte, bei ersten Herstellungsversuchen, sofort die 760 nm dicke Metallschicht (Ti/TiN/AlCu/Ti/TiN) die zur Herstellung der Pads sowie der elektrischen Verbindung zwischen den Pads und den W-Elektroden diente. Dabei wurde die Metallschicht abgeschieden sowie mittels Ätzen strukturiert. Bei der strukturierenden Ätzung sollte, möglichst bündig mit dem SiO₂, auf den Wolframfingern gestoppt werden. Der Grund für diese Forderung einer möglichst geringen geometrischen Stufe war es, die daraus resultierende größere Einfügedämpfung (siehe Kapitel Reflexionsmechanismen und Reflektivität) des Filters zu minimieren. Jedoch zeigte sich, dass die sensible SiO₂ Schicht vor der aggressiven Metall Ätzung geschützt werden muss, da es zu einer starken Überätzung in das SiO₂ kam. Um die unter dem Metall befindliche SiO₂ Schicht bei der Metallstrukturierung zu schützen, wurde anfangs eine Si₃N₄ Stoppschicht zwischen dem Metall und den W-Elektroden eingesetzt. Dabei wurden 100 nm Si₃N₄ als Metallätzstoppschicht gewählt um eine hohe Selektivität bei der nachfolgenden Ätzung dieser Si₃N₄ Stoppschicht zum darunterliegenden Oxid zu gewährleisten. Es zeigte sich jedoch, dass die Selektivität der Metallätzung zum Si₃N₄ nicht

sehr hoch war und somit nach der Metallätzung trotz der Si₃N₄ Stoppschicht circa 300 nm tief in das darunterliegende Oxid hineingeätzt wurde (Abbildung 4-12). Die Fingerelektroden lagen somit 200 nm frei auf dem Oxid und nicht, wie angedacht, direkt eingebettet im Oxid.

Abbildung 4-12: (a) SEM Aufnahme nach der Metall 3 Ätzung, (b) Nahaufnahme man erkennt die starke Überätzung durch die Metall Ätzung von circa 300nm an den freigelegten W- Fingern.

Um diese Überätzung zu verhindern wurde eine Doppelschicht aus 150 nm Oxid und 50 nm Si_3N_4 eingesetzt und so strukturiert, dass nur noch die Enden der W-Elektroden für eine Kontaktierung mit der Metallschicht freiliegen (Abbildung 4-13).

Abbildung 4-13: Abscheidung der Si₃N₄ und SiO₂ Ätzstoppschichten und anschließende Strukturierung.

Nach erfolgter Strukturierung dieser Ätzstoppschicht wurde die Metallschicht aufgebracht. Bei einer nun stattfindenden Metallätzung wird aufgrund der hohen Selektivität (Metallätzung zu Oxid) im Oxid gestoppt. Bei den ersten SAW Versuchen wurde, nach erfolgter Metallabscheidung/Strukturierung, bereits das piezoelektrische AIN aufgebracht. Dies führte bei einer Ätzung des AIN, um den elektrischen Kontakt zu den Pads herzustellen, zu einer starken Überätzung und Zerstörung der darunterliegenden Metallschicht aufgrund der sehr geringen Ätz-Selektivität (Abbildung 4-14). Deshalb waren viele Filter nicht messbar, da die Kontakt-Pads größtenteils komplett durch die AIN Ätzung zerstört worden sind und die Ausbeute messbarer SAW Filter auf dem Wafer bei etwa 5% lag.

Abbildung 4-14: (a) stark geätztes Metallpad nach AlN Atzung (rote Markierung zeigt nachfolgenden Ausschnitt), (b) Nahaufnahme des stark geätzten Metalls (Ti/TiN/AlCu/Ti/TiN) mit Ti/TiN "Kappen" rechts im Bild.

Durch eine zusätzliche 650 nm dicke Oxid-Ätzstoppschicht, auf dem Metall im Bereich der PADs, konnte dieses Problem gelöst werden und die Anzahl an wiederholbar messbaren Filtern auf 100% gesteigert werden. Abbildung 4-15 zeigt die Metallabscheidung mit der 650 nm dicken SiO₂ Ätzstoppschicht und, mit Hilfe von Lithographie Schritten, nachfolgenden SiO₂ / Metall Strukturierungen mittels zweier Ätzschritte.

Abbildung 4-15: Abscheidung der 760 nm dicken Metallschicht (Ti/TiN/AlCu/Ti/TiN) und anschließender Strukturierung.

Im Anschluss wurde noch die SiO_2 / Si_3N_4 Ätzschutzschicht auf den Fingerelektroden entfernt (Abbildung 4-16).

Abbildung 4-16: SiO₂ und nachfolgende Si₃N₄ Ätzung.

Nach diesem letzten Schritt werden die 800 nm der piezoelektrischen c-achsenorientierten AlN Schicht abgeschieden. Bei den ersten Versuchen stellte sich heraus, dass das AlN durch einen der lithographischen Schritte angegriffen wurde. Es ist bekannt, dass Laugen AlN angreifen können. Das war insofern problematisch, weil die Entwicklerlösung (Wasser >95 %, C₄H₁₃NO 2,3%, Polyglykol <1%) die im Lithografie-Schritt eingesetzt wird Tetramethylammoniumhydroxid (C₄H₁₃NO) enthält. Deshalb wurde auf einen SiO₂ / Si(100) Wafer AlN ganzflächig abgeschieden und nur mit einer PAD Maske (Abbildung 4-17a) lithografisch bearbeitet. Das heißt, es wurde auf dem AlN Lithografie-Lack abgeschieden, dieser wurde anschließend belichtet (PAD Maske) und mit der Entwicklerlösung entwickelt.

Abbildung 4-17: SEM Aufnahmen aufgenommen im 60° Winkel: (a) Lithografie PAD Maske angewendet auf AlN nach dem Entwicklungsschritt und Lackentfernung (in Rot sind die nachfolgenden Detailausschnitte gekennzeichnet), (b) Nahaufnahme Wafermitte mit den durch AFM ermittelten Rauigkeitswerte, (c) Nahaufnahme Waferrand mit AFM ermittelten Rauigkeiten.

Zum Schluss wurde noch der restliche Photolack entfernt. Es zeigte sich, dass das AlN durch den Entwickler angegriffen wird (Abbildung 4-17b/c). An von dem Entwickler unberührten Stellen besteht eine AlN Rauigkeit von $R_{max} = 16,4$ nm / $R_{QMW} = 2,52$ nm (Wafermitte) sowie $R_{max} = 25,3$ nm / $R_{QMW} = 3,27$ nm (Waferrand). Aus diesem Grund wurde, bei einer Bearbeitung auf dem AlN durch die Lithografie, immer eine dünne Oxid Schutzschicht (ca. 10nm) auf dem AlN abgeschieden um einen Angriff des Entwicklers auf das AlN zu vermeiden.

Abbildung 4-18: Abscheidung der AlN sowie der SiO₂ Schicht mit nachfolgender Ätzung für die elektrische Kontaktierung.

Der letzte Prozessschritt umfasste die Entfernung der 10 nm SiO₂ Schicht durch einen Ätzschritt. Abbildung 4-19 zeigt den fertigen SAW Filter.

Abbildung 4-19: Fertiger diskreter SAW Filter nach der SiO₂ Ätzung.

Mit den in diesem Kapitel gewonnenen Erkenntnissen konnten wichtige Technologieentwicklungen für eine erfolgreiche Herstellung der AlN basierten SAW Filtern erreicht werden.

4.9 Entwurf der SAW Bauelemente

Im Rahmen der Arbeit wurden verschiedene SAW Designs mit Hilfe des Programms Laytools Design Manager von der Firma TexEDA entworfen. Zwei dieser Designs sind nachfolgend dargestellt. Im ersten Design (Abbildung 4-20) wurden Filter mit unterschiedlichen Wellenlängen entworfen um den Einfluss der akustischen Welle auf das Schichtsystem näher zu untersuchen. Außerdem wurden verschiedene Orientierungen der Filter gewählt um eine mögliche Richtungsabhängigkeit dieser verschiedenen Filterorientierungen auf dem Siliziumwafer zu untersuchen. Dies wird ausführlich in dem Kapitel mit den elektrischen Messungen erläutert. Eine einfache Änderung der Fingerpaaranzahl sowie des IDT Abstandes wurden ebenfalls erstellt. Die Einstellung der Apertur W_a und Wellenlänge λ erfolgte dabei mit Hilfe von Erfahrungen aus wissenschaftlichen Veröffentlichungen sowie auf einer ersten Abschätzung der resultierenden akustischen Ausbreitungsgeschwindigkeit des Schichtsystems.

Abbildung 4-20: Erstes Design zur Grundlagenforschung mit Filtern verschiedener Wellenlängen und Orientierungen

Mit Hilfe der Erfahrungen des ersten Filter Designs konnten bei nachfolgenden Entwürfen wichtige Verbesserungen am Entwurf (zusätzliche Maskenebenen für Ätzstoppschichten ect.) gemacht werden. Dadurch konnte die Ausbeute auf nahe 100 % gesteigert werden (siehe Kapitel 4.8). Des Weiteren konnte eine genaue Bestimmung der akustischen Ausbreitungsgeschwindigkeiten und deren Abhängigkeit von der Wellenlänge herausgefunden werden um damit geplante SAW Anwendungen auf eine Resonanzfrequenz von 2.4 GHz einzustellen. Im optimierten Design (Abbildung 4-21) ging es um eine detailliertere Untersuchung der Abhängigkeit der Filterparameter wie akustische Appertur W_A, IDT Abstand und Fingerpaaranzahl auf die Filterperformance. Zusätzlich wurden eine Vielzahl an SAW Anwendungen (Resonatoren, Bandpassfilter, ID Transponder ect.) mit Variationen erstellt um erste Erfahrungen auch im Bereich der praktischen Anwendungen zu erhalten. Insgesamt wurden 100 verschiedene Filter entworfen.

Abbildung 4-21: Entwurf von 100 verschiedenen Filtern für Grundlagenuntersuchungen sowie für Anwendungen.

5. Ergebnisse der Materialuntersuchungen

5.1 XRD Analyse der AlN Schicht

Für die Anregung akustischer Wellen ist wie in vorangegangenen Kapiteln bereits erläutert eine gute Kristallorientierung erforderlich. Um diese für die notwendige c-Achsenorientierung zu optimieren, wurden umfangreiche Untersuchungen des AlN Wachstums auf verschiedenen Substraten durchgeführt. Um zu untersuchen, ob es beim AlN neben der gewünschten (0001) Orientierung noch weitere ungewünschte Orientierungen gibt wurden mit Röntgenbeugung (engl. Xray diffraction, XRD) entsprechende Winkel spekuläre 2θ Kurven aufgenommen.

Abbildung 5-1: Röntgenbeugung (XRD) der Probe mit der besten FWHM sowie der 40nmSiO₂/660nm Si₃N₄ Probe (Messort Wafermitte) und zum Vergleich die AlN Pulver Kennlinien.

In Abbildung 5-1 ist deutlich zu erkennen, dass unter optimierten Wachstumsbedingungen das AlN eine bevorzugte (0001) Orientierung (senkrecht zur Siliziumoberfläche) hat, Intensitätsmaxima die auf andere Orientierungen hindeuten könnten werden nicht gemessen (Vergleich AlN Pulver Kennlinie). Die Wolfram Linie bei circa 34° entsteht durch einen nicht zu vermeidenden dünnen Wolframfilm auf der Kupferanode des Röntgendiffraktometer. Dabei wurden Wolframatome von der Anode gelöst und verursachen einen charakteristischen Peak der nicht zur AlN/SiO₂/Si – Struktur gehört (siehe Kapitel experimentelle Aufbauten).

Es wurden sogenannte Rocking Kurven gemessen (Messung Wafermitte) um die erwünschte (0001) Orientierung zu beurteilen. Eine Auswahl ist in Abbildung 5-2 dargestellt. Da bereits von Engelmark et al. berichtet wurde [Enge 2000], dass die Substrattemperatur (SiO₂/Si(100)) bei der Abscheidung einen großen Einfluss auf die AIN Kristallqualität hat wurde diese auch variiert. Die besten Resultate wurden bei einer Abscheidetemperatur von 400°C erreicht. Eine Untersuchung bei noch höheren Temperaturen war aufgrund der Temperaturbeschränkung im Back-End-of-Line (BEOL) auf 400°C nicht sinnvoll. Als Maß für eine gute Orientierung sollte die Halbwertbreite (engl. full width half maximum, FWHM) von 2° nicht überschritten werden [Lim 2001], [Asso 2004]. Die AIN Wachstumsbedingungen auf Si(100) sowie auf SiO₂ zeigten sich als besonders geeignet für gute Orientierungen (<1,5°). Die beste Orientierung (kleinste FWHM) wurde auf SiO₂ erzielt welches einen zusätzlichen kurzen CMP-Schritt (chemisch mechanisches Polieren) erhalten hatte (CMP Touch-up).

Abbildung 5-2: Rocking Kurven der AlN (0002) Ebene (gemessen in der Wafermitte) von AlN Schichten die auf verschiedenen Untergründen aufgewachsen wurden.

Da Si_3N_4 , bessere akustische Eigenschaften (geringere Dämpfung ect.) besitzt wurden auch auf diesem Material Untersuchungen angestellt. Es zeigte sich, dass das Wachstumsverhalten von AIN

auf Si₃N₄ wesentlich schlechter ist (>2,8°). Um dennoch die Vorteile von Si₃N₄ nutzen zu können wurde auf dieser Schicht noch eine 40nm dünne SiO₂ Schicht aufgetragen und damit eine gute FWHM von 1,5° erreicht. Untersuchungen auf TiN und Wolfram brachten FWHM von 6,66° sowie nichtorientiertes (regeloses) Wachstumsverhalten. Dies kann darauf hindeuten, dass akustische Wellen effizienter (durch die bessere AIN Orientierung auf den Wandlerstrukturen) durch TiN basierte Interdigital Wandler (IDT) angeregt werden können.

5.2 AFM / TEM Analyse

Je rauer die Oberfläche umso höhere Verluste entstehen durch akustische Wellenreflexionen. Aus diesem Grund wurden AFM Untersuchungen durchgeführt um die AIN Rauigkeit auf verschiedenen Untergründen (AIN/SiO₂ und AIN/Si₃N₄) zu verifizieren. Abbildung 5-3 zeigt die AFM Untersuchung bzw. TEM Untersuchung für ein AIN/SiO₂/Si(100) Schichtsystem.

Abbildung 5-3: (a) AFM Bild einer AlN Oberfläche auf SiO₂ (Wafermitte), (b) 3D Darstellung dieser AlN Rauigkeit sowie eine (c) TEM Aufnahme. [Kale 2012]

Die gemessenen Werte lagen auf AlN/SiO₂ bei R_{max} = 16,4nm (R_{QMW} = 2,52nm) in der Wafermitte (Abbildung 5-3a und b). Die gemessenen Werte wurden jeweils immer auf 25 μ m² große Flächen ermittelt. Die TEM Aufnahme in Abbildung 5-3 (c) zeigt die auf SiO₂ säulenartig aufgewachsenen AlN Körner mit einer Breite von circa 30 nm. Man erkennt die sehr gute bevorzugte senkrechte Orientierung dieser Säulen. Am Rand des Wafers ergaben sich höhere AlN Rauigkeiten (Abbildung 5-4). Die ermittelten Werte lagen bei R_{max} = 25,3nm (R_{QMW} = 3,27nm, 1 cm vom Waferrand gemessen) und unterscheiden sich damit deutlich von denen in der Wafermitte. Der Grund für die höhere Rauigkeit sowie die in der Abbildung 5-4 ersichtliche geringere AlN Nukleation liegt in der (am Rand) geringeren Energiedichte des Plasmas bei der AlN Abscheidung, da das verwendete Magnetron zwar eine hohe Energiedichte in der Mitte erzeugen kann, jedoch diese zum Rand hin abnimmt.

Abbildung 5-4: AFM Aufnahme einer AIN Oberfläche auf SiO₂ circa 1 cm vom Rand gemessen.

Die gemessenen AlN Rauigkeitswerte auf Si₃N₄ / Si(100) lagen bei R_{max} = 57,2nm (R_{QMW} = 9,69nm) in der Wafermitte und am Waferrand bei R_{max} = 76,1nm (R_{QMW} = 8,73nm). Man erkennt, dass diese Werte um das ~3,5 fache höher liegen als für SiO₂. Somit ergibt sich zusätzlich zur ungünstigen AlN FWHM auf Si₃N₄ auch eine höhere AlN Rauigkeit.

In der Tabelle 2 sind die wichtigsten Werte aus diesem Kapitel für AlN auf SiO₂/Si(100) und den Randbedingungen dargestellt. Zusätzlich wurden die Werte weiterer Forschergruppen für AlN/Si(100) Schichtsysteme dargestellt und ermöglichen somit einen Vergleich der Daten. Die erreichten FWHM Werte in dieser Arbeit sind besser als die der anderen Gruppen (deutet auf eine bessere Schichtqualität hin), und ermöglichen aus dieser Sicht gute SAW Eigenschaften. Die Rauigkeit

verglichen mit der Schichtdicke (je höher die Schicht umso rauer) ist verglichen mit den anderen Gruppen kleiner, es lassen sich auch aus dieser Sicht Filter mit guten akustischen Eigenschaften herstellen. Die Breite der AIN Säulenstrukturen ist verglichen mit der anderen Gruppe in etwa gleich groß.

	IHP	[Asso1 2004]	[Asso2 2004]	[Ingr 2007]
	(AIN/SiO ₂ /Si(100))	(AIN/Si(100))	(AIN/Si(100))	(AIN/Si(100))
Wafergröße [Zoll] / Messort	8 / Wafermitte	k. A. / k. A.	k. A. / k. A.	k. A. / k. A.
Schichtdicke [nm]	800	2000	2000	1800
Abscheidetemperatur [°C]	400	400	400	k. A.
Wachstumsrate [nm/s]	~1,1	k. A.	~0,17	k. A.
Sputtermethode	DC/puls DC	DC	RF	DC
FWHM [°]	1,27	9,6	1,8	k. A.
R _{max} [nm] (gem. Fläche)	16,40 (25 μm²)	67,07 (25 μm ²)	inkorrekt	35.70 (25 μm ²)
R _{QMW} [nm] (gem. Fläche)	2,52 (25 μm²)	5,86 (25 μm²)	inkorrekt	~5 (25 µm²)
AIN Säulenbreite [nm]	~30	~30	~30	k. A.

Tabelle 2: Kondensierte AlN Struktur- und Schichtabscheidungsparameter im Vergleich zu anderenForschergruppen.
6. FEM Simulationen der SAW Filter

Nach ersten elektrischen Messungen an einem AIN/W-Finger/SiO₂/Si(100) basierten Filter konnten zwei akustische Resonanzfrequenzen ermittelt werden (siehe nachfolgendes Kapitel). Um eine Identifikation der verantwortlichen Wellentypen dieser Frequenzen zu ermöglichen und um das Materialsystem zu charakterisieren (Dispersionskurven, Kopplungsfaktor etc.) wurden eine Vielzahl (> 300) an 2D FEM Simulationen durchgeführt. Dabei wurden Materialsysteme mit Wolfram als auch mit Aluminium-Elektroden untersucht. Diese Simulationen wurden mit dem Programm COMSOL Multiphysics Version 4.2a [COMS] durchgeführt. Dieses Programm wird von vielen Forschergruppen zur Simulation von Oberflächenwellen benutzt [Rao 2006], [Kris 2008], [Prad 2008], [West 2009], [Zhen 2009], [Chun 2010] und ist somit sehr gut für die nachfolgenden Untersuchungen geeignet. Die Materialeigenschaften für die einzelnen Segmente wurden zum Teil aus der COMSOL Datenbank entnommen und leicht angepasst. Die Tabelle 3 zeigt alle verwendeten Schichtmaterialien mit ihren für die Simulation verwendeten Werten.

	Symbol	AIN [Nore 1969], [Bu 2004], [Bu 2006]	SiO2	Si	w	AI
Dichte [kg/m ³]	ρ	3230	2200	2330	19300	2700
Poisson Verhältnis	υ	0.22	0.17	0.28	0.27	0.35
E-Modul [GPa]	E	350	70	185	410	70
Elastische	C ₁₁	410	-	166	-	-
Konstanten [GPa]	C ₁₂	140	-	64	-	-
	C ₁₃	100	-	-	-	-
	C ₃₃	390	-	-	-	-
	C ₄₄	120	-	80	-	-
	C ₆₆	135	-	-	-	-
Piezoelektrische	e ₁₅	-0,29	-	-	-	-
Konstanten	e ₃₁	-0,57	-	-	-	-
	e ₃₃	1,39	-	-	-	-
Dielektrische Konst.	ε/ε ₀	8,5	-	-	-	-

 Tabelle 3: Verwendete Materialien mit ihren Eigenschaften

Mit dem Programm wurde ein 2D Modell wie in Abbildung 6-1a dargestellt konstruiert sowie die notwendigen Randbedingungen an den Grenzen gesetzt.

6.1 Simulierte Modenformen

Das FEM Programm (2D Model Abbildung 6-1a) berechnet nicht direkt die resultierenden zwei Moden mit ihren Resonanzfrequenzen sondern jeweils die beiden Moden an den Grenzfrequenzen der Stopbandecken (siehe Kapitel 2.5). Dadurch ergeben sich wie in Abbildung 6-1b gezeigt vier verschiedene akustische Wellenmoden (für die zwei gemessenen Resonanzen) mit jeweils symmetrischer und antisymetrischer Mode [Ples 2000], [Yong 2001], [Tikk 2007], [Tikk 2009]. Der Frequenzabstand der Moden ist dabei von der Stärke der Reflektivität abhängig. Die Reflektivität ist von dem Elektrodenmaterial, dem Wellentyp, dem Metallisierungsverhältnis, der Form der Elektroden und der Elektrodendicke abhängig [Tikk 2009]. Wie in der Abbildung 6-1b gezeigt handelt es sich aufgrund der typischen Wellenform (elliptische Partikelbewegung) um eine Rayleigh Welle (wie später noch gezeigt wird lässt sich das auch anhand der dafür typischen Dispersionskurven ersehen) und bei der zweiten Resonanz um eine an der Oberfläche geführte Volumenwelle mit ebenfalls elliptischer Partikelbewegung wie bei der Rayleighwelle (nachfolgend als zweite Mode oder R1 bezeichnet). Wie aus den Skalen in Abbildung 6-1b ersichtlich wird die erste Mode (R0) 10-mal so stark ausgelenkt wie die zweite Mode (R1). Dies hängt damit zusammen, dass sich die erste Mode zum einen direkt an der freien Oberfläche (kein zusätzlicher mechanischer

Abbildung 6-1: (a) Schematische Darstellung des erstellten 2D FEM Modell. (b) Darstellung der 4 Moden der Stopbandecken für die 2 aufgetretenen Resonanzen. Zur besseren Sichtbarkeit sind die Partikelbewegungen stärker dargestellt [Kale1 2013].

Widerstand) ausbreiten kann und zum anderen mit ihrer akustischen Energie hauptsächlich im piezoelektrischen AIN (welches die treibende Kraft ist) lokalisiert ist. Wie nachfolgend noch gezeigt wird, handelt es sich hierbei um die Rayleighwelle des Siliziumsubstrates. Die zweite Mode hingegen breitet sich vorrangig im SiO₂ zwischen 2 Materialien aus (keine freie Oberfläche, starke rücktreibende Kräfte) wobei die AIN Schicht zusätzlich belastend auf sie einwirkt (was auch im nächsten Kapitel elektrisch gemessen werden konnte). Diese Mode ist eine sich sonst im Si Volumen ausbreitende Welle die sich aufgrund der geringen Ausbreitungsgeschwindigkeit vom SiO₂ (v_{SiO2} << v_{si(100), Volumen}) an der Oberfläche ausbreiten kann (entfernt ähnlich der Führungsschicht im Falle einer "Grenzgeschwindigkeit" Love Welle). Ihre (engl.: cut-off velocity) liegt bei der Scherwellengeschwindigkeit v_t des Siliziumsubstrates (ohne SiO₂ tritt nur die Mode RO auf).

Alle nachfolgenden Simulationen erfolgten mit einer praxisnahen Wellenlänge von 1.68 μ m. Des Weiteren wurden bei einer AlN Schichtdickenvariation 600 nm SiO₂ bzw bei einer SiO₂ Schichtdickenvariation 800nm AlN als praxisnahe Schichtdicken benutzt.

6.2 Berechnete Dispersionskurven

Da es sich bei den zu untersuchenden Filtern um Mehrschichtsysteme handelt, sind die Welleneigenschaften stark von den einzelnen Schichten (elastische Konstanten, Massedichte, Schichtdicke ect.) abhängig. Um diese Abhängigkeiten darzustellen und die gemessenen Resonanzen wie bereits beschrieben entsprechenden Wellentypen zuzuordnen, wurden umfangreiche FEM Simulationen mit variierten Schichtdicken durchgeführt. Dabei konnten wichtige Dispersionskurven der einzelnen Moden erstellt werden. Die gemittelten Werte aus den jeweils zusammengehörigen zwei Stopband - Moden bilden dabei die idealen, von akustischen Reflexionen ungestörten, Ausbreitungsgeschwindigkeiten. In Tabelle 4 sind die Literaturwerte der akustischen Ausbreitungsgeschwindigkeiten der verwendeten Materialien dargestellt (V_R = Rayleighwellengeschwindigkeit, v_t = Scherwellengeschwindigkeit).

Tabelle 4: Darstellung der Literaturwerte de	rakustischen Ausbreitungsgeschwindigkeiten
--	--

Material	AIN	Si(100)	SiO ₂
	[Bu 2006]	[Faso 1984], [Crea 1986], [Wu 2010]	[Poli 2002], [Wang 2009]
Geschw. [m/s]	V _R = 5760	v _{R,Si(100)} = 5000	v _{R, SiO2} = 3730
		$v_{t,Si(100)} = 5660$	

Die Abbildung 6-2 zeigt diese Dispersionskurven in Abhängigkeit der variierten AIN und SiO₂ Schichtdicken (üblicherweise dargestellt zur besseren Vergleichbarkeit mit der relativen Schichtdicke kh, mit k = $2\pi/\lambda$) für W (Abbildung 6-2a/c) und AI (Abbildung 6-2b/d) basierte Fingerelektroden. Dabei geht die RO – Mode wie in Abbildung 6-2a gezeigt in die Rayleighwelle des Siliziumsubstrates $v_{R,Si(100)} = 5000$ m/s über, wenn die relative Schichtdicke kh_{SiO2} gegen null geht. Mit steigenden kh_{SiO2} wirkt die SiO₂ Schicht (geringe akustische Ausbreitungsgeschwindigkeit) "belastend" auf das Schichtsystem, es kommt zu einer Reduzierung der Geschwindigkeit die sich asymptotisch der SiO₂ -Rayleighwellen – Geschwindigkeit v_{R, SiO2} = 3730 m/s annähert. Die zweite dargestellte Welle ist erst ab kh_{SiO2} ~ 1 ausbreitungsfähig. Dabei liegt die "Grenzgeschwindigkeit" (engl. cut-off velocity) gleich mit der Geschwindigkeit der Volumen – Scherwelle v_{t,Si(100)} = 5660 m/s im Siliziumsubstrat. Mit steigender SiO₂ Schichtdicke nähert sich auch diese Mode der Rayleighwellen - Geschwindigkeit des SiO₂ an (Abbildung 6-2a/b). Mit weiter steigender SiO₂ Schichtdicke sind weitere akustische Moden ausbreitungsfähig, wobei die "Grenzgeschwindigkeit" auch hier der Volumen – Scherwelle v_{t,Si(100)} im

Abbildung 6-2: Dispersionskurven für (a) W-Elektroden mit Änderung der SiO₂ Schichtdicke (mit 800 nm AlN) bzw. (c) Änderung der AlN Schichtdicke (mit 600 nm SiO₂), (b) mit Al-Elektroden und Änderung der SiO₂ Schichtdicke (mit 800 nm AlN) bzw. (d) Änderung der AlN Schichtdicke (mit 600 nm SiO₂) [Kale1 2013].

Siliziumsubstrat entspricht (nicht dargestellt). Ohne das SiO₂ tritt nur die Rayleighwelle RO auf. Im Falle von steigenden Aluminiumnitridschichtdicken (Abbildung 6-2c/d) gehen die R0 Moden (mit und ohne SiO₂) gegen die Scherwellengeschwindigkeit des Silizumsubstrates, welche die maximal mögliche Ausbreitungsgeschwindigkeit darstellt. Der Unterschied in der Höhe der resultierenden Endgeschwindigkeiten bzw. der unterschiedlich starke Kurvenanstieg für diese in der Abbildung 6-2c und d liegt in der höheren geschwindigkeitsbegrenzenden Massedichte der W- Finger (W = 19,3 g/cm³ [Keil 1984] und Al = 2,7 g/cm³ [Beye 1981]). Die R1 Moden bleiben wie erwartet weitgehend unbeeinflusst von der steigenden AIN Schichtdicke aufgrund der hohen Energiekonzentration in der SiO₂ Schicht. Diese verringern nur sehr leicht mit steigenden AIN Schichtdicke ihre Ausbreitungsgeschwindigkeit aufgrund der stärkeren Massebeladung (dies wird im nachfolgenden Kapitel durch entsprechende elektrische Messungen bestätigt). Nähert man sich Werten von kh_{AIN} = 0 fallen die R0 Geschwindigkeiten stark ab aufgrund des immer größer werdenden Einflusses vom SiO₂ bzw. W. Dabei tritt wie erwartet eine stärkere Absenkung im Falle der W-Finger als mit Al-Fingern ein (aufgrund der höheren Massedichte). Ohne SiO₂ und mit Al-Fingern (Abbildung 6-1d) startet die Mode R0 wie erwartet bei der Rayleighwellen - Geschwindigkeit vom Silizium und läuft schnell gegen die Scherwellengeschwindigkeit vom Silizium. Das Verhältnis v_{Rsi(100)}/v_{t, Si(100)} beträgt etwa 0,89 (Rayleighwellengeschwindigkeit liegt bei 89% der Scherwellengeschwindigkeit) welches ein typisches Verhältnis darstellt (siehe Kapitel 2.6) und mit Werten aus der Literatur übereinstimmt [Faso 1984], [Wu 2010].

Wie nachfolgend gezeigt wird, lassen sich mit Hilfe dieser gewonnen Daten wichtige Parameter wie die akustische Reflektivität der verwendeten Finger, der elektromechanische Kopplungsfaktor und die tatsächliche Modenform an der Resonanzfrequenz berechnen.

6.3 Berechnete Reflektivität

Die Reflektivität κ ist wie eingangs berichtet von besonderem Interesse, da sie stark die Filtereigenschaften (Einfügedämpfung, Bandbreite ect.) beeinflusst. Deshalb wurden die Reflektivitäten der einzelnen Finger und Moden mit Hilfe der Gl. 2-17 (Kapitel 2.5) berechnet. Abbildung 6-3 zeigt die berechneten Reflektivitäten der zwei akustischen Moden mit W- bzw. Al-Elektroden. Die W-basierten Elektroden liegen dabei um 1 -2 Größenordnungen höher als bei den Al-Elektroden (Vergleich kleine Diagramme in Abbildung 6-3). Der Grund dafür liegt in der höheren W-Massedichte (W = 19,3 g/cm³ [Keil 1984] und Al = 2,7 g/cm³ [Beye 1981]) die einen großen Einfluss auf die Reflektivität ausübt. Die Veränderungen der Reflektivität bei Änderung der SiO₂ Schichtdicke (Abbildung 6-3a) werden von einer Veränderung der Energieverteilung der Moden in dem Schichtsystem hervorgerufen. Im Falle der AIN Schichtdickenvariation kommt es für kleine Werte ($kh_{AIN} < 3$) zu einer starken Zunahme der

Abbildung 6-3: (a) Reflektivitäten der akustischen Moden und W / Al basierten Elektroden bei Änderung der SiO₂ Schichtdicke (b) Reflektivitäten der akustischen Moden und W / Al basierten Elektroden bei Änderung der AlN Schichtdicke [Kale1 2013].

Reflektivitäten, da sich in diesem Fall die akustische Energieverteilung örtlich immer weiter den Fingerelektroden (welche große "Störungen" darstellen) annähert.

Mit Hilfe der so ermittelten Reflektivitäten lassen sich nun die Resonanzfrequenzen mit Hilfe der Gl. 2-18 (Kapitel 2.5) berechnen. Des Weiteren lässt sich, auch durch die Vorzeichen der Reflektivitäten, die jeweilige Modenform bestimmen [Tikka 2008], [Tikka 2009]. Damit ergeben sich für die praxisnahen Werte von kh_{SiO2} = 2,24 (600nm SiO₂ bei λ = 1,68µm) und kh_{AIN} = 3 (800nm AIN bei λ = 1,68µm) die in Tabelle 5 aufgeführten Werte und Modenformen.

Tabelle 5: Ermittelte Werte der akustischen Moden (R0, R1) bei λ = 1,68µm für 600nm SiO₂ und 800nm AlN Schichtdicke

Fingermaterial	Akustische Mode	Resonanzfrequenz [GHz]	Modenform
W	RO	2,651	Anti-Sym.0
	R1	3,153	Anti-Sym.1
Al	RO	2,916	Anti-Sym.0
	R1	3,121	Sym.1

6.4 Berechneter Kopplungsfaktor

Zuletzt wurde der elektromechanische Kopplungsfaktor für W-/Al- Finger (mit und ohne SiO₂) nach Gl. 6-1 berechnet. Mit v₀ der freien / ungestörten AlN Oberflächengeschwindigkeit und v_s der elektrisch kurzgeschlossenen AlN Oberflächengeschwindigkeit (Einfluss der zusätzlichen "Versteifung" durch elektromagnetische Rückwirkung ausgeschaltet).

$$K^{2} = 2 \cdot \left[\frac{\left(\mathbf{V}_{0} - \mathbf{V}_{S} \right)}{\mathbf{V}_{0}} \right]$$
 GI. 6-1

Abbildung 6-4 illustriert die Ergebnisse für AlN/SiO₂/Si(100) Strukturen mit $kh_{siO2} = 1,9$ und für AlN/Si(100) Strukturen. Die Werte mit SiO₂ zeigen leicht höhere Werte als ohne SiO₂ wobei der Maximalwert für die Mode R0 mit Al-Finger leicht höher ist (2%) als der Wert für W-Finger (1,83%) bei einer Schichtdicke von $kh_{AIN} \sim 3$. Die zweite Mode R1 zeigt wie erwartet einen nur geringen elektromechanischen Kopplungsfaktor mit einem maximalen Wert von 0,35%.

Abbildung 6-4: Elektromechanischer Kopplungsfaktor von AlN/SiO₂/Si(100) Strukturen (durchgezogene Linien) für kh_{SiO2} = 1,9 (600nm SiO₂) und AlN/Si(100) Strukturen (gestrichelte Linien) als Funktion der AlN Dicke mit 100nm hohen W/Al Fingern [Kale1 2013].

Mit den in diesem Kapitel gewonnenen Erkenntnissen konnte zum einen die zweite Frage im Kapitel 1 geklärt und wichtige Filterparameter von AlN basierten SAW Filtern berechnet werden um erste Optimierungsmöglichkeiten abschätzen zu können. Als kurze Zusammenfassung lässt sich sagen, dass die höchsten Geschwindigkeiten / höchsten Arbeitsfrequenzen bei AlN Schichtdicken kh_{AIN} > 4 (sowohl für W- als auch Al- Elektroden) auftreten. Die maximale Höhe der AlN Schicht ist jedoch dabei aus technologischen Gründen auf 800 nm begrenzt, d. h. es ergeben sich Maximalwerte von kh_{AIN} = 2,99 (bei λ = 1,68 µm). Die SiO₂ Schichtdicke sollte dabei möglichst gering gewählt werden kh_{SiO2} < 3. Im Falle der Reflektivität sind die Al-Elektroden die beste Wahl aufgrund der wesentlich geringeren Reflektivität und damit auch zu erwartenden geringeren akustischen Dämpfung. Die besten Werte für einen möglichst hohen elektromechanischen Kopplungsfaktor für R0 liegen bei kh_{AIN} = 2,5 (für R1 bei kh_{AIN} = 8,5).

7. Elektrische Messungen von SAW Verzögerungsleitungen

7.1 Allgemeine Untersuchungen

In diesem Kapitel werden erste Teststrukturen (SAW Verzögerungsleitungen) vom ersten und optimierten Design elektrisch charakterisiert. Dabei werden u.a. der IDT Abstand L, die Anzahl der Fingerpaare N_P, die Wellenlänge λ , die AlN Höhe und die Filterorientierung auf dem Siliziumwafer untersucht. Abbildung 7-1(a, b, c) zeigt den verwendeten Filteraufbau an dem die nachfolgenden Messungen durchgeführt wurden. Das Metallisierungsverhältnis m liegt bei etwa 50%.

Abbildung 7-1: (a) Draufsicht auf eine SAW Filter Struktur mit den Masse - Signal - Masse (engl. ground signal ground, GSG) Kontaktpads in orange und den zwei IDT´s in blau die über die Metall - Kollektor Bahnstrukturen in Weiß mit den Pads verbunden sind. (b) Querschnittsansicht des Schichtaufbaus (AIN/W-Finger/SiO₂/Si(100)) mit einem Wandler. (c) Querschnitts SEM Aufnahme eines $\lambda = 1,68 \mu m$ Filters (Fingerbreite 420 nm) mit dem Si(100) Substrat, 600 nm SiO₂, 120 nm hohen W-Fingern und der 500 nm hohen AIN Schicht [Kale 2013].

Die Wellenlängen wurden in einem Bereich von 1,68 µm bis 50 µm variiert mit einer konstanten akustischen Appertur von 30 µm und Einzelfinger - Konfiguration mit jeweils 25 Fingerpaaren. Die Höhe der Aluminiumnitrid – Schicht wurde in einem Bereich von 400 nm bis 800 nm verändert. Der spezifische Widerstand vom AlN kann, wenn er sehr niedrig ist, die Eigenschaften wie akustische Ausbreitungsgeschwindigkeit sowie den elektromechanischen Kopplungsfaktor negativ beeinflussen. Deshalb wurde er bei Raumtemperatur gemessen und liegt bei $R_p = 1,8\cdot10^9 \Omega$ cm [Kale 2013] (13·10¹³ Ω cm [Spin 2007]). Dieser Wert ist ausreichend hoch, so dass keine signifikanten negativen Einflüsse durch diesen Materialparameter zu erwarten sind. Die "full width at half maximum" (FWHM) für die AlN Schicht liegt für die nachfolgend gemessenen Filter bei 1,88°. Die Abbildung 7-2 zeigt S₂₁ -

Parameter (Transmission) für Verzögerungslinien entlang der [1-10] Richtung des Siliziumwafers mit einer AlN Höhe von 500 nm.

Abbildung 7-2: (a) S_{21} – Parameter (Transmission) für verschiedene Wellenlängen für Filter entlang der Si -Substrat [110] Richtung mit den Resonanzen für RO und R1 (siehe Pfeile). (b) Darstellung der S₂₁ Parameter mit frei gewählten Werten für eine verbesserten Ansicht der einzelnen Moden [Kale 2013].

Wie im vorhergehenden FEM Kapitel bereits beschrieben treten zwei akustische Rayleigh – Moden auf, wobei ihre Resonanzfrequenzen mit wachsender Wellenlänge erwartungsgemäß abnehmen. Die kleiner werdenden Signalamplituden mit steigender Wellenlänge resultieren hauptsächlich aus der immer kleiner werdenden normalisierten akustischen Appertur (30 µm / λ) die für die kleinste Wellenlänge von 1,68 µm am größten (~18) ist. Der Grund dafür ist ähnlich wie in der Optik die größere Beugung des Strahls und eine damit verbundene gebeugte Abstrahlung in unerwünschte Richtungen (Abbildung 7-3).

Abbildung 7-3: (a) Gerade Strahlausbreitung durch ausreichend große akustische Apertur. (b) Akustische Apertur zu klein, dadurch unerwünschte gebeugte Abstrahlung und damit verbundene geringere Energieübertragung zum zweiten IDT Wandler.

Ein weiteres Problem ist der relativ hohe Crosstalk der bei etwa -45 dB liegt, dieser wird speziell im nachfolgenden Unterkapitel detailliert diskutiert. Die mittlere akustische Ausbreitungsgeschwindigkeit für R0, berechnet mit der einfachen Formel v = f $\cdot \lambda$, liegt bei etwa 4200 m/s bzw. für R1 bei 5700 m/s. Wie bereits im FEM Kapitel diskutiert handelt es sich dabei um Silizium zugehörige akustische Moden. Die höhere Dämpfung für R1 erklärt sich u.a. aus der vorrangigen Ausbreitung der Welle in der stark verlustbehafteten SiO₂ Schicht (siehe FEM Kapitel). In Abbildung 7-4a sind die aus den Messungen heraus erstellten Dispersionskurven durch Variation der Wellenlänge (von 1,68 µm bis 50 µm) für die beiden Moden dargestellt. Dabei wird mit zunehmenden kh_{AIN} die Wellenlänge kleiner. Die Welle R1 konnte erst ab Werten von kh_{AIN} > 1,2 bei einer Phasengeschwindigkeit von ca. 5770 m/s detektiert werden was bei der AlN Höhe von 500 nm einer Wellenlänge von 2,5 μ m entspricht. Dies entspricht einem kh_{sio2} Wert (bei h_{sio2} = 600 nm) von 1,5. Die normalisierte Höhe kh_{siO2} für den Beginn der Welle R1 wurde in den Simulationen mit kh_{siO2} = 1,1 ermittelt wobei der reale noch messbare Wert bei kh_{sio2} = 1,5 liegt. Der Grund dafür ist zum einen, dass man keine Filter mit λ = 2,6 µm oder λ = 2,7 µm zur Verfügung hatte, um zu zeigen, dass man noch näher zum theoretisch ermittelten Wert kommen kann, und zum anderen wurden die im FEM Kapitel erläuterten Simulationen mit 800 nm hohen AlN Schichten durchgeführt was zu einer leichten Herabsetzung des khsioz Wertes geführt haben kann. In der Abbildung 7-4a zeigt der Vergleich zwischen den Messungen und den FEM Simulationen (mit der Variation λ) eine gute Übereinstimmung. Im Falle kleiner Werte kh_{AIN} kommt es zu einem Anstieg der akustischen Geschwindigkeit. Der Grund dafür liegt in dem stärker werdenden Einfluss des Si(100) Substrates aufgrund der steigenden Energieverteilung in diesem. Dadurch nimmt für große Wellenlängen die Geschwindigkeit für die gemessenen Werte zu, da der Einfluss des Siliziumsubstrates mit größer werdender Wellenlänge steigt (Abbildung 7-4b) und dieses eine hohe akustische Ausbreitungsgeschwindigkeit von $v_{R, Si(100)} = 5000 \text{ m/s}$ bzw. circa $v_{t, Si(100)} = 5660 \text{ m/s}$ aufweist.

Abbildung 7-4: (a) Dispersionskurven mit Messwerten von Filtern auf verschiedenen Wafern und FEM Simulationen (mit $h_{AIN} = 500$ nm). (b) Schematische maßstabsgerechte Darstellung der Eindringtiefen (schwarze vertikale Linien) verschiedener Wellenlängen in den Schichtstapel [Kale 2013].

Die Tabelle 6 vergleicht Daten aus FEM Simulationen mit den gemessenen Filterdaten.

	FEM Simulation (500 nm AlN)	Messungen (~500 nm AIN)
Geschw. R0 bei kh _{siO2} = 2,24 [m/s]	~4000	4200
Geschw. R1 bei kh _{siO2} = 2,24 [m/s]	~5260	5600
Grenzgeschw. R1 [m/s]	~5660	5770
Grenz kh _{sio2} für R1	~1,1	1,5

Tabelle 6: Vergleich von Simulationsdaten mit den elektrischen Messungen bei λ = 1,68 µm und 600 nm SiO₂.

Die simulierten Werte passen gut zu den elektrisch gemessenen Werten. Man erkennt bei den elektrischen Messwerten deutlich das durch die FEM Simulationen gewonnene akustische Verhalten. Aufgrund von Schichtdickenvariationen bei den realen Filtern kommt es zusätzlich zu einer gewissen Streuung der Messwerte (bei den FEM Simulationen wurden ideale Filter angenommen).

7.1.1 Variation der Filterparameter

Um den Einfluss unterschiedlicher Filterparameter einschätzen zu können, wurden Filter mit unterschiedlichem IDT Abstand L, unterschiedlicher Fingerpaaranzahl N_P, AIN Schichtdicke sowie auf Si-Wafern mit unterschiedlichem Widerstand hergestellt und gemessen. Abbildung 7-5 zeigt die S₂₁ Parameter gemessener Filter mit verändertem IDT Abstand (a) sowie einer unterschiedlichen Anzahl von Fingerpaaren (b). Dabei wurden 500 nm hohe AIN Schichten und Filter mit einer Wellenlänge von

Abbildung 7-5: Messwerte für Filter mit $\lambda = 1,68 \ \mu m$ (a) S₂₁ Parameter von Filtern mit variiertem IDT Abstand (von IDT Mitte zu IDT Mitte). (b) S₂₁ Parameter mit variierter Fingerpaaranzahl und 110 μm langer Verzögerungslinie [Kale 2013].

1,68 µm verwendet. Im Falle des ansteigenden Abstandes zwischen den IDT Wandlern kommt es zu einer Verringerung des elektromagnetischen Übersprechens (engl. Crosstalk) [Ball 1997]. Der Grund für den Crosstalk ist zum Teil das kapazitive Überkoppeln über das niederohmige Siliziumsubstrat welches im nachfolgenden Unterkapitel detailliert erläutert wird. Die Verringerung des Crosstalksignales kommt von einer Erhöhung des ohmschen Widerstandes zwischen den beiden IDT Wandlern über das Siliziumsubstrat. Ein weiterer Grund für den Crosstalk ist das sogenannte induktive Koppeln welches im nachfolgenden Unterkapitel näher erläutert wird. Die Ausbreitungsverluste pro Wellenlänge betragen für das Schichtsystem 0,07 dB/ λ . Damit sind diese nur leicht höher als publizierte Werte ($\leq 0,06$ dB/ λ) für die weniger verlustbehafteten AlN / Diamant basierten SAW Filter [Fuji 2011].

Abbildung 7-5b zeigt Filter mit variierter Fingerpaaranzahl. Aufgrund der geringen Appertur von ~18 für λ = 1,68 µm konnte für die geringste Fingerpaaranzahl von N_P = 5 keine Anregung

festgestellt werden bzw. das Signal liegt unterhalb des Crosstalkniveaus. Mit ansteigender Fingerpaaranzahl sinkt wie erwartet die Einfügedämpfung und man erkennt bei $N_P = 25$ bzw. $N_P = 50$ jeweils zwei signifikante Resonanzpeaks.

Da bekannt ist, dass die Frequenzantwort stark von der Schichthöhe der piezoelektrischen Schicht abhängig ist, wurden Filter mit 3 verschiedenen AIN Schichtdicken produziert. Abbildung 7-6 zeigt die S₂₁ – Parameter für die drei Filter. Wie erwartet hat die Schichtdicke einen großen Einfluss auf die Mode R0 da sich diese vorrangig in der AIN Schicht ausbreitet. Mit steigender Schichthöhe steigt signifikant die Resonanzfrequenz / akustische Ausbreitungsgeschwindigkeit und sinkt die Einfügedämpfung. In Tabelle 7 werden die gemessenen Werte mit den simulierten Werten verglichen. Es fällt auf, dass die simulierten Werte zwischen 320 m/s und 410 m/s unter den gemessenen Werten liegen. Der Grund dafür können Schichtdickenvariationen in den W-Elektroden sein die die akustischen Ausbreitungsgeschwindigkeit maßgeblich beeinflussen. So kann der Wert der Elektrodendicke auf einem Wafer zwischen 70 nm und 110 nm variieren was zu Unterschieden in der akustischen Ausbreitungsgeschwindigkeit führt. Des Weiteren kommt es beim W-CMP Prozess (siehe Herstellung SAW Filter) zu einer Verringerung der SiO₂ Schichtdicke um bis zu 80 nm (von 600 nm auf Einfluss bis zu 520 nm) welche ebenfalls einen großen auf die akustische Ausbreitungsgeschwindigkeit ausübt. Je dünner diese beiden (W und SiO₂) werden umso höher wird die akustische Ausbreitungsgeschwindigkeit. Weitergehende FEM Simulationen, mit 520 nm SiO₂ und 70 nm Fingerdicke, zeigen eine Geschwindigkeitserhöhung um etwa 350 m/s was den Werten der gemessenen Filter entspricht.

Abbildung 7-6: SAW Filterantworten für verschiedene AIN Schichtdicken mit Filtern mit 2 µm Wellenlänge [Kale 2013]..

Wie im FEM Kapitel bereits diskutiert sinkt die Resonanzfrequenz / akustische Ausbreitungsgeschwindigkeit für die Welle R1 mit zunehmender AIN Schichtdicke aufgrund der steigenden Massebeladung leicht. Die negative Frequenzverschiebung beträgt ~1,5 MHz pro zusätzlich Δh_{AIN} = 100 nm in diesem Schichtdickenbereich. Die FEM simulierte Frequenzverschiebung beträgt in diesem Schichtdickenbereich 1,4 MHz pro zusätzlich Δh_{AIN} = 100 nm und ist damit in guter Übereinstimmung mit den Messergebnissen.

Tabelle 7: Vergleich der in Abbildung 7-6 gemessenen R(0 Resonanzen mit FEM Resultaten mit λ = 2µm.
---	--

Schichtdicke AIN [nm]	Messung	FEM Simulation (600nm SiO ₂ und 100nm	
		hohe W-Elektroden angenommen)	
800	2,33 GHz (4660 m/s)	2,125 GHz (4250 m/s)	
500	2,15 GHz (4300 m/s)	1,88 GHz (3760 m/s)	
400	1,92 GHz (3840 m/s)	1,76 GHz (3520 m/s)	

7.1.2 Einfluss des Substratwiderstandes

Da allgemein bekannt ist, dass der Substratwiderstand einen großen Einfluss auf den Crosstalk hat wurden Filter auf dem Standardsubstrat (10 Ω cm) mit den Filtern auf einem 4000 Ω cm Siliziumsubstrat verglichen. Die Abbildung 7-7 zeigt den Vergleich mit Hilfe der S₂₁ Parameter. Man erkennt deutlich die Reduzierung des Crosstalks durch den stark erhöhten Substratwiderstand. Der Crosstalk konnte dadurch von circa -45 dB auf circa -58 dB gedämpft werden. Die Frequenzantwort eines Filters wird maßgeblich durch den Crosstalk beeinflusst. Während beim Standardsubstrat die Filterantwort stark verzerrt wird (zu erkennen an den schmalbandigen Spitzen im Durchlassbereich) nähert sich diese Filterantwort einem idealen Filter an. Das heißt, dass der Crosstalk nicht nur den Energieverbrauch einer Anwendung beeinflusst, sondern dass auch die Signalqualität / Signalform stark durch diesen beeinflusst wird.

Abbildung 7-7: Vergleich der S₂₁ Parameter für zwei gleiche Filter auf Siliziumsubstraten mit unterschiedlichen elektrischen Widerständen [Kale 2013].

7.1.3 Elektromechanischer Kopplungsfaktor

Aufgrund des auftretenden Crosstalks, durch das niederohmige Si-Substrat, lässt sich der elektromechanische Kopplungsfaktor nur näherungsweise bestimmen. Um eine Abschätzung vorzunehmen wurden SAW Filter auf dem niederohmigen Standardsubstrat mit 10 Ω cm sowie auf einem hochohmigen 4000 Ω cm Substrat hergestellt. Der Kopplungsfaktor wurde mit Hilfe der S₁₁ – Parameter an der Resonanzfrequenz und der Gleichung Gl. 7-5 berechnet (hergeleitet aus den Smith Ersatzschaltbild Gleichungen Gl. 7-1 bis Gl. 7-4, siehe Kapitel 2.7.2).

$$G_a(f_0) = 8 \cdot K^2 \cdot f_0 \cdot C_P \cdot N_P^2$$
Gl. 7-1

$$C_T = C_P \cdot N_P \tag{GI. 7-2}$$

$$G_a(f_0) = 8 \cdot K^2 \cdot f_0 \cdot C_T \cdot N_p$$
 Gl. 7-3

$$Y(f_0) = G_a(f_0) + jB(f_0) = G_a(f_0) + j(2 \cdot \pi \cdot f_0 \cdot C_T)$$
 Gl. 7-4

$$K^{2} = \frac{G_{a}(f_{0})}{8 \cdot f_{0} \cdot C_{T} \cdot N_{P}} = \frac{\pi \cdot G_{a}(f_{0})}{4 \cdot N_{P} \cdot B(f_{0})}$$
Gl. 7-5

Die Abbildung 7-8 zeigt die Resultate der Kopplungsfaktorberechnungen für 5 verschiedene SAW Filter auf 10 Ω cm bzw. 4000 Ω cm Si(100) – Substraten. Die auftretenden Kurvenformen sind (bei entsprechender Einstellung der y - Achse) in Übereinstimmung mit den im vorhergehenden Kapitel gemachten FEM Simulationen sowie den von anderen Gruppen gewonnen Daten [Tran 2009]. Die Werte für beide Kurven sind höher als erwartet aufgrund des hohen Crosstalk – Einflusses auf die S₁₁ Parameter. Die Werte mit dem 4000 Ω cm Substrat liegen deutlich näher an dem erwarteten Wert. Dieser sollte unter den experimentell gewonnenen Wert von K² = 0,78% liegen (AlN/Si Strukturen K² = 0,06% [Asso1 2004]). Um einen exakten Wert für den Kopplungsfaktor zu bestimmen müsste der Substratwiderstand so hoch wie nur möglich sein (>> 4000 Ω cm). Wie man in Abbildung 7-8 weiter erkennt liegen die simulierten K² Werte zwischen den zwei gemessenen Kennlinien und sind damit zu hoch. Der Grund für diese erhöhten simulierten Werte könnte in dem Ausklammern elektrischer Parameter wie z. Bsp. der elektrischen Fehlanpassung (engl. mismatch) bei der Simulation liegen welche zu einer praktischen Verringerung des Kopplungsfaktors beitragen könnte.

Die aus den Gleichungen Gl. 7-2 und Gl. 7-3 berechnete Kapazität pro Fingerpaar beträgt 6,26 fF.

Abbildung 7-8: Experimentell gewonnen K^2 Daten von Mode RO als Funktion von kh_{AIN} für 10 Ω cm und 4000 Ω cm Si(100) – Substrate berechnet für Filter mit fünf verschiedene Wellenlängen [Kale 2013].

7.1.4 Einfluss der Filterorientierung auf dem Si - Substrat

Durch die monokristalline Struktur von Siliziumsubstraten wurde bereits durch Clement et. al [Clem 2004] mit AIN/Si Filtern gezeigt, dass es auf verschiedenen Siliziumsubstraten (Si(100) und Si(111)) zu unterschiedlichen Resonanzfrequenzen / akustischen Ausbreitungsgeschwindigkeiten aufgrund der verschiedenen elastischen Konstanten kommt [Clem 2004]. Diese Untersuchungen sollen nachfolgend auch an den AIN/SiO₂/Si(100) Schichtsystemen durchgeführt werden. In Abbildung 7-9a sind die verschiedenen Kristallorientierungen auf einem Si(100) Substrat dargestellt. Dabei besitzen die Richtungen Si[100] und Si [010] (45° und 135°) aufgrund der Kristallsymmetrie die gleichen elastischen Eigenschaften mit einer akustischen Rayleighwellengeschwindigkeit von 5000 m/s [Crea 1986]. Außerdem besitzen die Richtungen Si[1-10] und Si[110] (0° und 90°) gleiche elastische Eigenschaften mit einer Rayleighwellengeschwindigkeit von 4871 m/s [Crea 1986]. Somit müssten sich für SAW Filter die so ausgerichtet sind jeweils die gleichen Resonanzfrequenzen / akustischen Ausbreitungsgeschwindigkeiten ergeben. Um dies zu untersuchen wurden Filter entworfen die in diesen gewählten Richtungen (0°, 45°, 90°, 135°) liegen. Die Abbildung 7-9b zeigt die Resultate dieser Untersuchungen für die Mode R0. Weder für R0 noch für R1 konnten eindeutige

Abbildung 7-9: (a) Si(100) Wafer mit den verschiedenen Filterorientierungen (schematisch). (b) Resonanzfrequenzen der Mode RO von verschiedenen Filtern mit variierter Wellenlänge und Filterorientierung. Das kleine Bild zeigt die Resonanzfrequenzen für Filter mit der Wellenlänge $\lambda = 3\mu m$ bei unterschiedlicher Filterorientierung [Kale 2013].

richtungsabhängige Unterschiede in der Resonanzfrequenz festgestellt werden. In der Tabelle 8 sind von 4 verschiedenen Wellenlängen die Filter - Orientierungen nach höchster und niedrigster Resonanzfrequenz geordnet dargestellt. Man erkennt, dass weder die 0° und 90° Orientierungen ein und dieselbe Resonanzfrequenz haben, noch dass die 45° und 135° Orientierungen ein und dieselbe Resonanzfrequenz.

Wellenlänge [µm]	Filterorientierung mit höchste Resonanzfrequenz			
1,68	0°	45°	90°	135°
2,00	0°	90°	135°	45°
3,00	0°	45°	-	90°/135°
4,00	0°	45°	90°	135°

Tabelle 8: Darstellung der Filterorientierung für vier Filtertypen mit verschiedene Wellenlängen geordnet nach höchster und niedrigster Resonanzfrequenz.

Die Filter in der 0° Orientierung waren in der Resonanzfrequenz circa 24 MHz höher als die Filter mit den anderen Orientierungen (kleines Bild in Abbildung 7-9b). Die ausgerechnete akustische Geschwindigkeits – Differenz beträgt 70 m/s. Ein Grund für den nicht vorhandenen Unterschied zwischen den beiden unterschiedlichen Kristallrichtungen könnte die zusätzliche amorphe SiO₂ Schicht sein, die einen starken Einfluss auf beide Moden ausübt (siehe FEM Kapitel). Dies wird am deutlichsten sichtbar wenn man die akustischen Geschwindigkeiten des von Clement et al. gewählten AlN/Si(100) Schichtsystems mit dem in dieser Arbeit gewählten AlN/SiO₂/Si(100) Systems vergleicht. Aufgrund der nicht vorhandenen SiO₂ Schicht wurden für das AIN/Si(100) Systems Geschwindigkeiten von 5100 m/s berechnet [Clem 2004] (wie auch im FEM Kapitel simuliert) während das AlN/SiO₂/Si(100) System Geschwindigkeiten (für R0) von circa 4200 m/s aufweist. Der Unterschied zwischen der 0° Orientierung und den anderen Orientierungen könnten durch Lithografie – Effekte erklärt werden. Da es zu Unterschieden in der Elektrodenbreite für die verschiedenen Orientierungen kommen kann die wiederum zu unterschiedlichen Metallisierungsverhältnissen führen. Diese unterschiedlichen Metallisierungsverhältnisse führen zu unterschiedlich starker Massebeladung durch die W - basierten Fingerelektroden. Dies resultiert dann in unterschiedlichen Ausbreitungsgeschwindigkeiten.

7.2 Untersuchungen zum elektromagnetischen Übersprechen

Wie im letzten Unterkapitel diskutiert kommt es zu einem unerwünschten elektromagnetischen Übersprechen (Crosstalk, siehe Abbildung 7-10). Durch diesen Crosstalk kommt es zu einer starken Reduzierung der Dämpfung außerhalb des Bandes (engl. out-of-band attenuation)

Abbildung 7-10: S21 Parameter für ein SAW Filter mit 75 Fingerpaaren als Funktion der Frequenz, $W_A = 50\lambda$, L = 300 λ [Kale2 2013].

[Clem 2005], [Kale 2013]. Um eine mögliche Unterdrückung dieses Crosstalks über die SAW Filter Designparameter zu untersuchen wurden über 20 verschiedene Filter entworfen. Es wurde die akustische Appertur W_A in einem Bereich von 50λ bis 500λ variiert. Die Fingerpaaranzahl bzw. der IDT Abstand wurden in einem Bereich von $N_P = 25$ bis 300 bzw. L = 125λ bis 425λ variiert. Die AlN Schichtdicke liegt bei den gemessenen Filtern bei circa 800 nm. Um die gemessenen Werte vergleichbar zu machen muss der "reale" Filterverlust, der auch als Einfügedämpfung (engl. insertion loss, IL) bezeichnet wird, bestimmt werden. Der Grund für diesen zusätzlichen Schritt liegt in der Messung der Transmissionsparameter. Wie die Abbildung 7-11 sowie die Gleichungen Gl. 7-6 und Gl. 7-7 verdeutlichen werden die S-Parameter ohne die Betrachtung des reflektierten Anteils b1 an dem "device under test" (DUT) gemessen.

Abbildung 7-11: Schema der S-Parametermessung [Kale2 2013].

$$S_{11} = \frac{U_{b1}}{U_{a1}}$$
 Gl. 7-6

$$S_{21} = \frac{U_{b2}}{U_{a1}}$$
 Gl. 7-7

Infolgedessen wurde die Gleichung Gl. 7-8 benutzt um den korrekten transmittierten Wert, unter Beachtung von b1, zu ermitteln.

$$IL = 10 \cdot \log \frac{|S_{21}|^2}{1 - |S_{11}|^2} dB$$
 Gl. 7-8

Um den Einfluss der verschiedenen Designparameter (W, N, L) zu ermitteln, wurden mehr als 20 verschiedene Filter erstellt. Abbildung 7-12 illustriert den Einfluss der akustischen Appertur W_A auf die Filterperformance. Für kleine Werte von W_A steigt die Filterperformance signifikant an. Die resultierende Einfügedämpfung IL und der Crosstalk nehmen dabei beide stark ab. Mit steigender Appertur jedoch konvergieren die beiden Werte gegen -28,9 dB in eine mangelhafte Filter - Performance. Der Hauptgrund für den starken Anstieg des Crosstalks liegt in dem stärkeren

Abbildung 7-12: Einfügedämpfung IL und Crosstalk von verschiedenen SAW Filtern (Mode RO) als Funktion der variierten akustischen Appertur W_A mit N = 75 und L = 225λ [Kale2 2013].

elektromagnetischen Koppeln aufgrund der größer werdenden Elektrodenfläche über dem niederohmigen Siliziumsubstrat. Dieser Effekt wird später noch im Detail behandelt. Als Konsequenz daraus liefern Werte kleiner als W = 50λ praktikable Filterperformance (für den gewählten Schichtaufbau und für Frequenzen größer als 2 GHz).

Im nächsten Schritt wurde die Anzahl der Fingerpaare N_P in einem Bereich von N_P = 25 bis N_P = 300 variiert. Dabei sinkt die Einfügedämpfung und der Crosstalk nimmt zu, wie in Abbildung 7-13 dargestellt, mit steigender Anzahl an Fingerpaaren. Bei Werten unter N_P = 75 ist der Bandabstand nur sehr leicht von der Fingerpaaranzahl abhängig. Somit ist für den Frequenzbereich >2 GHz und dem gewählten Schichtsystem eine Fingerpaaranzahl von weniger als 75 geeignet.

Abbildung 7-13: Einfügedämpfung IL und Crosstalk (Mode RO) als Funktion der Fingerpaaranzahl N_P mit W = 80λ und L = 225λ [Kale2 2013].

In Abbildung 7-14 wurde die Filterperformance in Abhängigkeit von dem IDT Abstand dargestellt. Dabei wurde der Abstand in einem Bereich von L = 125λ bis 450λ variiert. Es ist zu erkennen, dass die Einfügedämpfung nur leicht aufgrund der zunehmenden akustischen Verluste (Brechung an Korngrenzen etc.) zwischen den Wandlern zunimmt. Der Crosstalk ist ebenso nur leicht beeinflusst, er sinkt bei Zunahme des IDT Abstandes aufgrund des ansteigenden ohmschen Widerstandes.

Abbildung 7-14: SAW Filter (Mode R0, $\lambda = 1,68\mu$ m) mit variierten IDT Abstand L mit W = 80 λ und N = 75 [Kale2 2013].

Da der Crosstalk ein großes Problem auf niederohmigen Substraten ist soll nun nachfolgend dieser im Detail erläutert werden. Wie durch Clement et al. [Ibor 2004], [Clem 2005] bereits berichtet ist einer der größten Crosstalk relevanten Parameter die kapazitive Kopplung durch parasitäre Kapazitäten C_i zwischen den IDTs und dem niederohmigen Siliziumsubstrat (Abbildung 7-15a). Diese Kapazitäten sind hauptsächlich von der Größe der IDT – Fläche A_{IDT} abhängig wie auch Gleichung Gl. 7-9 für die Kapazität verdeutlicht.

$$C = \varepsilon_0 \cdot \varepsilon_r \cdot \frac{A_{IDT}}{d_{IDT}}$$
 Gl. 7-9

Mit ε_0 der Permittivität des Vakuums und ε_r der relativen Permittivität sowie d_{IDT} dem Abstand der IDT Elektroden zum Substrat. Der zweite Crosstalk relevante Parameter ist, bei langen parallel verlaufenden Signal-Masse Bahnen, die induktive Kopplung (Abbildung 7-15b).

Abbildung 7-15: (a) Einfaches Model für die parasitären Kapazitäten zwischen den IDTs und dem niederohmigen Siliziumsubstrat [Kale2 2013]. (b) Darstellung der induktiven Kopplung über die ground-bar Strukturen.

Um die parasitären Kapazitäten zu bestimmen, wurden quasistatische Messungen bei 1 MHz mit einem Keithley 4200-SCS Analyser durchgeführt. Abbildung 7-16 zeigt die Resultate der Messungen

für SAW mit verschiedenen Elektrodenflächen. Diese Resultate beinhalten sowohl die parasitären Kapazitäten C_i zwischen IDT und Siliziumsubstrat als auch die Kapazitäten zwischen den einzelnen Fingerelektroden. Im Falle der IDT Fläche von 0 µm² bleibt eine Restkapazität von 0,4 pF aufgrund der verbleibenden Signal - Masse Bahnen die ebenfalls parasitäre Kapazitäten beinhalten. Zusammenfassend wurden in Abbildung 7-17 die gemessenen IDT Kapazitäten dem jeweiligen Crosstalk für variierte W und N gegenübergestellt. Wie man erkennen kann, haben diese Kapazitäten einen großen Einfluss auf das Crosstalksignal. Um nun den Crosstalk zu unterdrücken, sollten für die gegebene SAW Filterstruktur Werte von unter 2 pF angestrebt werden. Bei höheren Kapazitätswerten sättigt der Crosstalk aufgrund des limitierenden ohmschen Widerstandes des Siliziums. In dem Falle der steigenden Fingerpaaranzahl tritt zusätzlich noch eine Zunahme des induktiven Koppelns auf. Der Grund liegt in der Verlängerung der Signal- bzw. Massebahnen, mit steigender Fingerpaaranzahl, die parallel zueinander verlaufen und so das Koppeln erhöhen.

Abbildung 7-17: Crosstalkanstieg als Funktion der IDT Kapazität für verschiedene Filter mit variierter Fingerpaaranzahl N bzw. Änderung der akustischen Appertur W_A [Kale2 2013].

Um dies zu verifizieren wurde an einem Filter mit einer besonders langen Signal / Masse Leitung (N = 200, L = 225λ , W = 80λ) die Masseleitung / Masseleitungen mittels Focused Ion Beam (FIB) durchtrennt um die Überkopplung zu reduzieren. Das Ergebnis zeigt Abbildung 7-18, man erkennt

einen um circa 13 dB reduzierten Crosstalk (von circa -25 dB auf -38 dB) für den einseitig durchtrennten Filter bzw. über 40 dB Crosstalkunterdrückung für die beidseitige Durchtrennung der Massebahnen auf circa -65 dB. Des Weiteren nähert sich die Signalform mit zunehmender Crosstalk-Unterdrückung immer mehr der idealen Signalform eines SAW Filters an. Der Grund für den gezackten Verlauf im Durchlassbereich des Filters (Abbildung 7-18, blaue Linie) resultiert aus der starken Reflektivität bei Einzelfingeranordnung (wird im nachfolgenden Kapitel noch einmal im Vergleich mit split Fingerstrukturen gezeigt).

Mit den in diesem Kapitel gewonnenen Erkenntnissen konnte die dritte Frage im Kapitel 1 geklärt werden. Die Unterdrückung des Crosstalks ist abhängig von der Fingerelektrodenfläche sowie dem induktiven Koppeln und lässt sich auf einen Wert von etwa -65dB unterdrücken. Diese Crosstalk Unterdrückung ist jedoch stark von der SAW Anwendung (SAW Filterfläche) abhängig.

Abbildung 7-18: Vergleich der S₂₁ Transmissionssignale mit intakten Massebahnen (rot), mit durchtrennter oberen Massebahn (schwarz) sowie beiden getrennten Massebahnen (blau). Die roten Pfeile zeigen die Wege des induktiven Koppelns an.

8. Optimierter diskreter SAW Filter

8.1 S-Parameter Messung

Durch die gewonnenen Erkenntnisse der letzten Kapitel konnten die SAW Filter soweit optimiert werden, dass die typischen Signalformen mit einem vertretbaren Crosstalk gemessen werden konnten. Das nachfolgende Beispiel der Messung einer SAW Verzögerungsleitung soll dies verdeutlichen.

In Abbildung 8-1a ist die Frequenzantwort der R0 Mode eines Verzögerungsleitungsfilters mit $N_P = 75$, $W = 134\mu m$, $\lambda = 1,68\mu m$ und split W-Finger Design gezeigt. Aufgrund der Verwendung von SiO₂ kommt es auch hier zur Ausbildung zweier akustischer Resonanz-Moden (Abbildung 8-1b). Nachfolgend soll jedoch nur die R0 Mode näher betrachtet werden. Die Resonanzfrequenz für die Mode R0 liegt bei 2,87 GHz mit einer (3 dB) Bandbreite B von etwa 21 MHz. Der daraus resultierende Gütefaktor liegt bei Q = $f_R / B = 136$ (der Spitzenwert liegt für eine gemessene SAW Verzögerungsleitung mit $N_p = 300$ bei Q = 285), welcher auf eine sehr gute Bandpassfiltercharakteristik hindeutet. Die akustische Ausbreitungsgeschwindigkeit liegt bei

Abbildung 8-1: S-Parameter Messung eines SAW Filters mit $N_P = 75$, $W_A = 80^*\lambda$ und split W-Finger Konfiguration. (b) Größerer Frequenzbereich mit den zwei akustischen Moden R0 und R1. (c) Zeitbereich der gemessenen Signalantwort (schwarz/rot) mit EMF Signal / akustischem Signal und zeitgesteuertes Signal ohne unerwünschtem EMF Signal (rot)

4821 m/s. Der Crosstalk konnte bei diesem Filter auf etwa -65 dB gesenkt werden und die Einfügedämpfung liegt bei circa -36,5 dB. Die Welligkeit im Durchlassbereich kommt wahrscheinlich durch die hohe Reflektivität der Fingerelektroden zustande die trotz der Verwendung von split Fingern starke Auswirkungen im Durchlassbereich zeigen. Dies wird auch dadurch bestätigt, dass die weniger elektrodenempfindliche akustische Mode R1 nur schwache Welligkeiten im Durchlassbereich zeigt (siehe Abbildung 8-1b). In Abbildung 8-1c wurde die eben gezeigte Frequenzantwort des Wandlers über eine schnelle Fourier Transformation (FFT) in den Zeitbereich überführt. Anschließend wurde das schnelle EMF Signal welches den Crosstalk darstellt zeitlich entfernt und das verbleibende Signal wie in Abbildung 8-1 dargestellt wieder in den Frequenzbereich zurücktransformiert.

Die Impedanz des Filters an der Resonanzfrequenz wurde mit Hilfe der S-Parameter über ein Smith Chart Diagramm zu Z = $18,85\Omega$ - $i16,49\Omega$ bestimmt. In Abbildung 8-2 wurde die Admittanz mit Wirkleitwert und Blindleitwert des Filters aufgetragen. Man erkennt, dass der Wirkleitwert Ga des Filters nicht weit von dem, für die Leistungsanpassung, oft benötigten 50Ω Bauelementwiderstand /leitwert entfernt ist. Der Blindleitwert Ba ist ebenfalls nicht weit von den geforderten 0Ω entfernt. Dadurch lässt sich der Filter bei einer späteren Vollintegration leicht mit Hilfe von auf dem Chip integrierten Anpassungsnetzwerken optimal leistungsanpassen.

Abbildung 8-2: Berechnete Admittanz für den Wandler mit 75 split Fingerpaaren und einer akustischen Appertur von 135 µm bei λ = 1,68µm. Die grüne Linie zeigt die optimale Leistungsanpassung für Ga.

8.2 Impulsmessung

Nach erfolgreichen S-Parametermessungen wurden Filter den an dem auch Impulsmessungen durchgeführt. Dazu wurde mit Hilfe des BERT zunächst ein kontinuierliches alternierendes 010101 Signal angelegt. Die genaue Resonanzfrequenz / Impulsbreite konnte mit dem Frequenzgenerator eingestellt werden. Mit Hilfe des internen Verstärkers im BERT konnte eine maximale Spannungsamplitude von +-2 V an den Filtereingang angelegt werden. Abbildung 8-3 zeigt die mit dem Oszilloskop aufgezeichneten Spannungssignale. Neben der Filter - Resonanzfrequenz ergibt sich keine Ausgangsspannung, es tritt nur Rauschen auf. Im Resonanzbereich wird wie erwartet aus dem rechteckförmigen Spannungssignal am Filtereingang ein sinusförmiges Ausgangssignal. Die maximale Spannungsamplitude beträgt am Ausgang +-10mV.

Abbildung 8-3: Vergleich der rechteckförmigen Eingangsimpulse mit den sinusförmigem Ausgangsignalen des Filters bei Resonanz und neben der Resonanzfrequenz.

Im nächsten Schritt wurde das Abklingverhalten des Filters untersucht. Dazu wurde für eine bestimmte Zeit ein alternierendes Signal angelegt welches dann in einem dauerhaft positiven Signal endet (entspricht einer Abschaltung des Signales da keine weitere Potentialänderung mehr auftritt). Das abklingende Spannungssignal wurde über das Oszilloskop aufgenommen und die Anzahl der Schwingungen gezählt (Abbildung 8-4). Wie erwartet nimmt nach dem Abschalten das maximale Spannungssignal linear ab. Es konnten etwa 86 Schwingungsperioden beobachtet werden mit einer resultierenden maximalen Spannungsamplitude von etwa +-2mV am Ende.

Abbildung 8-4: Darstellung des Abklingverhaltens des Filters bei Abschaltung der Eingangsimpulse.

9. Zusammenfassung

9.1 Diskussion

Kommerzielle drahtgebundene und drahtlose Kommunikationstechnologien erfordern (diskrete) SAW Filter mit separaten Schaltkreisen (IC). Da der Trend hin zu noch kompakteren und energiesparenderen Anwendungen geht, ist die Integration der SAW Filter auf einem Siliziumchip zusammen mit integrierten Schaltkreisen eine interessante Lösung. Die Anwendungen erstrecken sich dabei von ultraenergiesparenden Kommunikationssystemen (z. B. für Sensorknoten) bis hin zu preiswerteren Multisensorarrays in der Sensorik (z. B. Biosensoren) sowie auf einem Chip integrierten Mikrofluidik Systemen (z. B. Mikroliterpumpen). Das einzige reinraumkompatible piezoelektrische Material mit einer hohen akustischen Ausbreitungsgeschwindigkeit, relativ großem elektromechanischen Kopplungsfaktor sowie großem elektrischen Widerstand ist dabei Aluminiumnitrid (AIN). Dafür muss es hoch c-achsenorientiert (<2°) mit möglichst geringer Rauigkeit aufgewachsen werden. Ein großes Problem bei der Integration ist das elektromagnetische Übersprechen (Crosstalk) welches besonders auf den für die CMOS Technologie notwendigen niederohmigen (~10 Ω cm) Siliziumsubstraten auftritt.

Ziel dieser Arbeit war die Entwicklung von diskreten AlN basierten CMOS kompatiblen SAW Filtern in Hinblick auf eine spätere Vollintegration. Diese Vollintegration ermöglicht, wie bereits diskutiert, eine Vielzahl neuer interessanter Anwendungen und Verbesserungen. Die Abbildung 9-1 zeigt eine Übersicht über die wichtigsten, in dieser Doktorarbeit geleisteten Arbeiten.

Abbildung 9-1: Übersicht über die wichtigsten Arbeitspunkte in dieser Doktorarbeit.

Im Rahmen dieser Arbeit konnten hochgradig c-achsen orientierte AIN Schichten mit einer FWHM von bis zu 1,27° auf CMOS kompatiblen Schichtsystemen abgeschieden werden. Im Vergleich zu anderen Forschergruppen konnten dabei sehr gute Werte in Bezug auf AIN Wachstumsrate und Kristallorientierung erreicht werden (Vergleich siehe Kapitel Materialuntersuchungen). Andere Kristallorientierungen traten bei dem relevanten Schichtsystem AIN/SiO₂/Si(100) nicht auf. Die auftretende Rauigkeit ist für die abgeschiedenen AIN Schichten gering (R_{QMW} < 3,3nm für AIN/SiO₂/Si(100) Strukturen) und, bezogen auf die Schichtdicke, vergleichbar mit anderen Forschergruppen.

Durch zusätzliche Ätzstoppschichten und entsprechend entworfene Lithographie-Masken konnten die AIN Ätzprobleme mit der Lithographie-Entwicklerlösung, die Überätzungen der Metallpads sowie die Überätzung der Fingerelektroden gelöst und die Ausbeute und Filterperformance von 5% auf ~100% gesteigert werden.

Die durchgeführten FEM Simulationen zeigen, dass die elektrisch gemessenen Resonanzen vom Siliziumsubstrat stammende akustische Moden (Rayleighwelle R0 + geführte BAW mit elliptischer Partikelauslenkung R1) mit den dafür typischen Dispersionskurven sind. Die berechnete Reflektivität von Wolfram basierten Fingerelektroden liegt ein bis zwei Größenordnungen über der Reflektivität von Aluminium basierten Fingerelektroden. Der elektromechanische Kopplungsfaktor für die erste akustische Mode ist für Aluminium basierte Fingerelektroden leicht höher (K² = 2%) als für Wolfram basierte Elektroden (K² = 1,83%). Die zweite akustische Mode hat einen wesentlich geringeren Kopplungsfaktor (K² = 0,35%) als die erste akustische Mode.

Die elektrischen Messungen zeigten wie erwartet Designparameter abhängige Resonanzverschiebungen und stimmen gut mit den simulierten Werten überein. Die höchsten Resonanzfrequenzen lagen bei 2,8 GHz (R0) bzw. 3,3 GHz (R1) in der 0.25 µm Technologie und können, durch Extrapolation der Daten, auf bis zu 5,6 GHz in der 0.13 µm Technologie gesteigert werden (mit Einzelfingerelektroden, $\lambda = 0,8\mu$ m). Damit lassen sich Filter im für viele Anwendungen interessanten ISM Band bei 2,4 – 2,5 GHz herstellen. Die minimale akustische Appertur W_A sollte 20 λ nicht unterschreiten, da sich die Einfügedämpfung stark erhöht.

Das kapazitive Überkoppeln kann durch hochohmige Siliziumsubstrate, kleine Wandlerflächen sowie größeren Elektrodenabstand zum Siliziumsubstrat stark verringert werden. Durch getrennte Massebahnen und weitestgehende Vermeidung von dicht parallel laufenden Masse und Signalbahnen konnte der Crosstalk durch das induktive Koppeln stark reduziert werden (-55 dB bis -65 dB) und die Signalqualität stark verbessert werden. Durch diese Maßnahmen konnte der elektromagnetische Crosstalk stärker unterdrückt werden als bis jetzt in Publikationen gezeigt (siehe Tabelle 9). Durch die stark Crosstalk induzierten Filterantworten der in Tabelle 9 gezeigten Filter kommt es zu einer wie im Kapitel 7.2 gezeigten Erhöhung der Einfügedämpfung. Somit sind die in diesen Publikationen angegebenen Werte (rot) nicht die korrekten Einfügedämpfungen der SAW Filter. Nur mit Hilfe von sehr stark hochohmigen (teuren und nicht CMOS kompatiblen) Siliziumsubstraten, mit denen keine Vollintegration möglich ist, konnte von anderen Gruppen gezeigt werden das der Crosstalk auf Werte von unter -95dB unterdrückt werden kann (Tabelle 9, [Ingr 2007]).

	ІНР	[Tran 2008]	[Clem 2005]	[Ingr 2007]
		[113112000]		
Materialsystem	AIN/SiO ₂ /Si(100)	AIN/SiO ₂ /Si(100)	AIN/Si(100)	AIN/Si(100)
Si-Substratwiderstand [Ω cm]	10	10	10	10000
voll CMOS integrierbar	ја	ja	ja	nein
Elektrodenmaterial (Höhe)	W (100nm)	AlCu (730nm)	Cr (100nm)	Ti/Al (300nm)
AIN Schichtdicke [nm]	800	1970	800	1800
Wellenlänge [µm]	1,68	8	40	8
Resonanzfrequenz [GHz]	2,87	0.579	0,128	0,625
akust. Geschw. [m/s]	4821	4624	5120	5000
Einfügedämpfung [dB]	-36,5	-32	-26	-62
Crosstalk Unterdr. [dB]	-65	-45, Signal stark	-28, Signal stark	-95
Gütefaktor	136	crosstalkinduziert	crosstalkinduziert	125

Tabelle 9: Vergleich der Filterperformance von SAW Verzögerungsleitungen mit verschiedenenForschungsgruppen.

Durch die vorgestellten Resultate konnte gezeigt werden, dass SAW Filter auf niederohmigen Siliziumsubstraten mit CMOS kompatiblen Materialien in einem Frequenzbereich von >2 GHz hergestellt werden können und eine gute Filtereigenschaften bieten. Bei entsprechender Optimierung des Filterentwurfs mit möglichst kleiner Fläche kann das Übersprechen auf ein mehr als vertretbar niedriges Maß gehalten werden. Eine Vollintegration der SAW Filter scheint somit möglich. Die Abbildung 9-2 zeigt abschließend das am Anfang der Arbeit verwendete AlN/SiO₂/Si(100) Schichtsystem mit nichtoptimiertem Design für die ersten Prototypen sowie das am Ende der Arbeit optimierte AlN/SiO₂/Si(100) Schichtsystem und Design mit 100 nm hohen W-Elektroden.

erste AIN/SiO₂/Si(100) Prototypen

optimierte AlN/SiO₂/Si(100) Filter

Abbildung 9-2: Vergleich des Schichtsystems und Designs der ersten SAW Filter Prototypen mit den am Ende der Arbeit optimierten SAW Filtern.

9.2 Ausblick

Die vorliegende Doktorarbeit konnte zeigen, dass AlN basierte SAW Filter auf niederohmigen Siliziumsubstraten möglich sind. Nachfolgend sollte nun mit ersten Vollintegrationsversuchen begonnen werden, um die dabei auftretenden technologischen Probleme zu identifizieren und zu lösen. Dafür müssen von Seiten des Designs genaue Überlegungen angestellt werden, welche in der Technologie bereits vorhandenen Maskenebenen genutzt werden können und welche Maskenebenen neu hinzugefügt werden müssen (teurer da zusätzliche Retikel notwendig). Parallel sollten für weitere Verbesserungen die drei wichtigen Filterparameter Crosstalk-Unterdrückung, Einfügedämpfung und Signalqualität verbessert werden. Nachfolgend sind einige Strategien vorgestellt wie weitere Optimierungen erreicht werden können.

Crosstalk-Unterdrückung

Für eine weitere Reduzierung des Crosstalks muss vor allem das kapazitive Überkoppeln reduziert werden. Dies kann dadurch erreicht werden, indem der Elektroden – Siliziumsubstrat Abstand weiter erhöht wird indem die Elektroden auf dem AlN positioniert werden oder man anstelle des SiO₂ eine höhere Si₃N₄ Schicht (höhere akustische Ausbreitungsgeschwindigkeit, geringere Verluste) unter den Elektroden verwendet. Dies erfordert jedoch eine umfangreiche Technologieentwicklung.

Einfügedämpfung

Durch eine weitere Optimierung der AIN Kristallqualität und durch Verwendung von Elektrodenmaterialien mit geringerer Massedichte sowie besonders dünnen Elektroden kann die Einfügedämpfung stark reduziert werden. Dünne AlCu basierte Elektroden besitzen eine wesentlich geringere Massedichte und höhere Leitfähigkeit als Wolfram. Diese sind am besten für eine weitere Verringerung der Einfügedämpfung geeignet. Dafür ist auch hier eine umfangreiche Technologieentwicklung und eventuelle TiN Elektrodenschutzschichten (Haftungsprobleme ect.) notwendig. Eine weitere Möglichkeit könnte die Verwendung von Si₃N₄ anstelle von SiO₂ unterhalb der Elektroden sein, da Si₃N₄ über eine höhere akustische Ausbreitungsgeschwindigkeit verfügt und dadurch eine geringere Dämpfung des SAW Filters ermöglicht.

<u>Signalqualität</u>

Die Signalqualität wird stark von der Elektroden-Reflektivität beeinflusst. Deshalb ist es wichtig auch hier möglichst leichte und dünne Elektroden einzusetzen. Bei sinkender Einfügedämpfung und geringen Ausbreitungsverlusten können auch vermehrt akustische Reflektionen entstehen die zu Welligkeiten im Durchlassbereich führen. Eine Möglichkeit der Reduzierung solcher Reflektionen kann durch zusätzliche akustische Absorberschichten geleistet werden. Eine weitere Verbesserung lässt sich vermutlich auch durch eine Optimierung der AlN Wachstumsbedingungen auf der Elektrodenoberfläche erreichen.

Benchmark

Am Ende dieser Arbeit war es möglich einen ersten Prototypen, basierend auf den vorgestellten Ergebnissen und Überlegungen, mit einem verbesserten Schichtsystem herzustellen. Dieses Schichtsystem beinhaltet in 200 nm SiO_2 (für gutes AIN Schichtwachstum) eingebettete 175 nm TiN/AlCu/TiN basierte Elektroden (IDT, mit 25 nm hohen TiN Schutzschichten) sowie eine 600 nm

hohe Si₃N₄ Schicht für eine geringere Einfügedämpfung und einen geringeren Crosstalk (etwas größerer IDT – Si(100)-Substrat Abstand). Die zusätzlichen 25 nm hohen TiN Schichten waren aufgrund von Haftungs- und Kontaktproblemen notwendig, um stabile dünne Elektroden zu gewährleisten. Der Filter hat eine minimale Einfügedämpfung von -12,8 dB [Kale 2014] und hat damit die bisher niedrigste Einfügedämpfung CMOS kompatibler (ohne ZnO oder Diamant basierter SAW Filter ect.) AIN basierter SAW Filter. Mit dieser Verbesserung könnten möglicherweise bereits gut funktionierende integrierte Gassensoren und integrierte SAW Korrelatoren (die keine extrem niedrige Einfügedämpfung < -15 dB zwingend erfordern, siehe Kapitel 3) hergestellt werden. Diese SAW Korrelatoren eignen sich besonders für sogenannte vollintegrierte "Wake-up" Satellitenempfänger ("weckt" für Datenkommunikation den eigentlichen Hauptempfänger auf) für autarke Sensorknoten die über einen extrem niedrigen Stromverbrauch verfügen und damit eine lange autarke Laufzeit von circa 10 Jahre aufweisen könnten.

Abbildung 9-3 zeigt minimale Einfügedämpfungen CMOS kompatible Filter (schwarz und rot) sowie nicht CMOS kompatible hochoptimierte kommerzielle SAW Filter (blau) die in einem Bereich um -1,5 dB liegen. Es wurde eine Grenze (grün) für reine Filteranwendungen (nicht Sensoren oder Korrelatoren ect.) definiert, die jedoch je nach Anwendung auch stark variieren kann.

Abbildung 9-3: Vergleich der minimalen Einfügedämpfungen für die in dieser Arbeit entwickelten CMOS kompatiblen SAW Filter mit einer anderen Forschergruppe [Ingr 2007] (schwarz und rot) sowie mit hochoptimierten diskreten kommerziellen Filtern (blau) auf einkristallinen piezoelektrischen Substraten [Toke], [Epco].
Demnach könnte es möglich sein, bereits mit dem optimierten verbesserten AlN/SiO₂/Si₃N₄/Si(100) Schichtsystem diese Grenze zu erreichen und neben den eben beschriebenen SAW Gas- und Korrelator Anwendungen auch SAW Filteranwendungen (Bandpassfilter ect.) zu realisieren. Der Nachteil der höheren Einfügedämpfung gegenüber den besten kommerziellen Filtern könnte dabei von der Vollintegration ausgeglichen werden, da sich bei diskreten Filtern durch Bonding an den Schaltkreis usw. die Gesamtdämpfung des Systems (SAW Filter + elektronischer Schaltkreis) noch erhöht.

Eine weitere Verbesserung wäre durch den Einsatz innovativer, hochleitender, sehr dünner und sehr leichter Graphen-Elektroden anstelle der vorgestellten W- bzw. TiN/AlCu/TiN – Elektroden im AlN/SiO₂/Si₃N₄ Schichtsystem vorstellbar. Damit sollten geschätzte Einfügedämpfungen von circa -7 dB (Abbildung 9-3) möglich sein und damit möglicherweise konkurrenzfähige vollintegrierte SAW Filteranwendungen realisiert werden können.

Abbildung 9-4 fasst die eben diskutierten und in dieser Arbeit verwendeten Schichtsysteme zusammen. Dabei steht das erste System für das in dieser Arbeit optimierte AlN/SiO₂ basierte System und das zweite für das aufgrund der Erfahrungen verbesserte AlN/SiO₂/Si₃N₄ System. Das letzte System zeigt einen möglichen Schichtaufbau für zukünftige innovative Graphen - Elektroden basierte SAW Filter (gezeigt auf LiNbO₃ [Mayo 2014]).

Abbildung 9-4: Darstellung der, in dieser Arbeit, vorgestellten Schichtsysteme mit (a) dem optimierten AlN/SiO₂/Si(100) Schichtsystem, (b) dem verbesserten AlN/SiO₂/Si₃N₄/Si(100) Schichtsystem sowie (c) eine mögliche weitere Verbesserung der Signalqualität und Verringerung der Einfügedämpfung mittels innovativer, sehr dünner, hochleitender und sehr leichter Graphen-Elektroden.

10. Wissenschaftliche Sichtbarkeit

10.1 Publikationen in referierten Zeitschriften

- D. Wolansky, J.-P. Blaschke, <u>U. Ch. Kaletta</u>, A. Krüger, M. Lisker, U. Richter, A. Scheit,
 S. Schulze, A. Trusch, P. Zaumseil, "Well c-axis orientated AlN layer deposition the adjustment by sputter conditions and the impact of underlayers ", Thin Solid Films, 2014 (eingereicht).
- <u>U. Ch. Kaletta,</u> Ch. Wipf, M. Fraschke, D. Wolansky, A. Schubert, T. Schroeder and Ch. Wenger, "AIN/SiO₂/Si₃N₄/Si(100) based CMOS compatible surface acoustic wave filter with -12.8 dB minimum insertion loss ", IEEE Trans. on Electron Devices, 2014 (eingereicht).
- <u>U. Ch. Kaletta</u>, D. Wolansky, M. Fraschke, Ch. Wipf, and Ch. Wenger, "Crosstalk suppression of CMOS compatible AIN based SAW devices on low resistive Si(100)", Phys. Status Solidi C, Vol. 11, No. 2, pp. 249-252, 2014.
- 4. <u>U. Ch. Kaletta</u>, Ch. Wenger, "FEM Simulation of Rayleigh waves for CMOS compatible SAW devices based on AlN/SiO₂/Si(100)", Elsevier Ultrasonics, Vol. 54, pp. 291-295, 2014.
- Saskia Otto, <u>Udo Ch. Kaletta</u>, Frank F. Bier, Christian Wenger and Ralph Hölzel, "Dielectrophoretic immobilisation of antibodies on microelectrode arrays", Lab on a Chip, Vol. 14, pp. 998-1004, 2014.
- Eva-Maria Laux, <u>Udo Ch. Kaletta</u>, Frank F. Bier, Christian Wenger, Ralph Hölzel, "Functionality of dielectrophoretically immobilized enzyme molecules", Electrophoresis, Vol. 35, pp. 459 - 466, 2014.
- U. Ch. Kaletta, Paulo V Santos, Dirk Wolansky, Alexander Scheit, Mirko Fraschke, Christian Wipf, Peter Zaumseil and Christian Wenger, "Monolithic integrated SAW-filter based on AlN for high-frequency applications", Semicond. Sci. Technol., Vol. 28, 2013.

 P V Santos¹, S Rauwerdink¹, K Biermann¹, B Drescher¹, W Seidel¹, M Kaynak², <u>U. Ch.</u> <u>Kaletta²</u>, M Fraschke², D Wolansky² and Ch Wenger², Gigahertz monolithic delay lines for surface acoustic waves on Silicon, IOP Conf. Series: Materials Science and Engineering, Vol. 41, 2012.

10.2 Konferenzpublikationen

- Ch. Wenger, M. Fraschke, D. Wolansky, P. Kulse, <u>U. Kaletta</u>, A. Wolff, W. Mehr, R. Hölzel,
 X. Knigge, E.-M. Laux, F. F. Bier, "Label-free immobilization of nano-particles on silicon based electrodes for single-biomolecule studies", Biodevices 2014, 2014.
- <u>U. Ch. Kaletta</u>, Wolansky, D.; Fraschke, M.; Wenger, C.; , "Development of CMOS integrated AIN based SAW-Filter and the role of Si substrate resistivity," Semiconductor Conference Dresden-Grenoble (ISCDG), 2012 International, pp.79-82, 2012.

10.3 Konferenzpräsentationen

- <u>U. Ch. Kaletta</u>, M. Fraschke, D. Wolansky, M. Kaynak, P. V. Santos, S. Rauwerdink, K. Biermann, B. Drescher, W. Seidel, Ch. Wenger, "Entwicklung eines AIN-basierten Oberflächenwellensensors für die Bioanalytik", 15. Heiligenstädter Kolloquium Technische Systeme für die Lebenswissenschaften, September 27 29, 2010, Heilbad Heiligenstadt, Deutschland. (Poster)
- <u>U. Ch. Kaletta</u>, Ch. Wenger, P.V. Santos, S. Rauwerdink, W. Seidel, M. Fraschke, D. Wolansky, A. Scheit, "Integrated ZnO and AIN based Surface Acoustic Wave Devices on Silicon", 2nd International Advances in Applied Physics and Materials Science Congress (APMAS 2012), April 26 29, 2012, Antalya, Türkei. (Poster)
- <u>U. Ch. Kaletta</u>, M. Fraschke, D. Wolansky, P. Zaumseil, P.V. Santos, Ch. Wenger, "Investigation of AIN and ZnO Layers for Surface Acoustic Wave (SAW) Devices", Leibniz-Doktoranden Forum der Sektion D, Juni 07 - 08, 2012, Berlin, Deutschland. (Poster)

- <u>U. Ch. Kaletta</u>, D. Wolansky, M. Fraschke, Ch. Wenger, "Development of CMOS Integrated AIN Based SAW-Filter and the Role of Si Substrate Resistivity", International Semiconductor Conference Dresden - Grenoble (ISCDG), September 24 - 26, 2012, Grenoble, Frankreich. (mündlich)
- <u>U. Ch. Kaletta</u>, Ch. Wenger, X. Knigge, R. Hölzel, "Nanoelectrodes for Biomedical Applications", Deutsches Biosensorsymposium (DBS), März 10, 2013. TH Wildau, Deutschland. (Poster)
- <u>U. Ch. Kaletta</u>, D. Wolansky, M. Fraschke Ch. Wipf, Ch. Wenger, "Crosstalk Suppression of CMOS Compatible AIN based SAW Devices on Low Resistive Si(100)", EMRS 2013 Spring Meeting, Mai 26 - 31, 2013, Strasburg, France. (mündlich)

10.4 Betreute Abschlussarbeiten

 Diplomarbeit, "Strukturierte Goldabscheidung mittels Galvanik und PVD", J. Kitzmann, TH Wildau, 2011.

10.5 Auszeichnungen

- X. Knigge, E. Laux, K. Nicklas, <u>U. Ch. Kaletta</u>, F. Bier, Ch. Wenger, R. Hölzel, "Dielektrophoretische Immobilisierung von Nanopartikeln und Proteinen an Nanoelektroden", Deutsches Biosensorsymposium (DBS), März 10, 2013. TH Wildau, Deutschland. (best poster award)
- <u>U. Ch. Kaletta</u>, "Monolithic integrated SAW-filter based on AIN for high-frequency applications", Semicond. Sci. Technol., 28 (2013) 065013. (Paper Bild auf Cover der Juni Ausgabe von Semicond. Sci. Technol. 2013)

Anhang A

Frage:

Wie wird AlN polarisiert wenn z. B. Druck in c-Achsenrichtung ausgeübt wird? Es gibt zwei Möglichkeiten (Der Polarisationsvektor P in Rot zeigt definitionsgemäß immer von negativ zu positiv):

Abbildung A1: Darstellung der zwei möglichen Polarisationen bei Druck auf das c-achsen orientierte AlN.

Antwort:

Die Berechnungen zur Auslenkung und Ladungsverteilung des AlN (Orientierung wie im Bild oben gezeigt) wurden mit dem Programm Quantum Espresso gemacht [Gian 2009]. Dieses Programm berücksichtigt u. a. die elastischen Eigenschaften sowie das Poisson Verhältnis vom AlN bei Druck und Zug (mit c₀ AlN Gitterkonstante in Ruhelage und c_F Gitterkonstante mit Druck- bzw. Zugkräften). Das Diagramm Abbildung A2 verdeutlicht die Ergebnisse. Bei Druck entsteht eine positive Polarisation in y-Richtung (gewählte Definition bei Simulation), daher muss auch der Polarisationsvektor in diese zeigen (bei Zug genau gegensätzlich). Der Vektor zeigt definitionsgemäß von negativer zu positiver Ladung. Damit zeigt sich, dass die oben dargestellte Möglichkeit 2 die richtige ist.

Bei genauerer Betrachtung stellt sich heraus, dass bei Ruhelage bereits eine kleine "Quasipolarisation" (in c-Achsenrichtung) aufgrund der Geometrie ("langgestrecktes" Sechseck) existiert (Ladungsschwerpunkte nicht genau übereinander). Diese hebt sich jedoch (in Ruhelage) mit den Oberflächenladungen wieder auf und bildet ein Gleichgewicht. Dieser Zusammenhang wird jedoch für eine bessere Verständlichkeit in dieser Arbeit vernachlässigt, da für die wirksame Polarisation nur die Änderung aus der Gleichgewichtslage heraus durch Druck / Zug entscheidend ist.

Abbildung A2: Bei Druck zeigt Polarisationsvektor in positive y-Richtung (von negativ zu positiv) aufgrund der vorliegenden positiven Polarisation bei Druck. Bei Zug zeigt er in die entgegengesetzte Richtung. Mit $\varepsilon_y = (c_F - c_0)/c_0$.

Anhang B

Neben vielen kleinen Programmen und speziellen Tabellen (Berechnung Skineffekt, Leitwert, ideale ungewichtete Antwortfunktion, Leitwertberechnung, Einfügedämpfung usw.) wurden auch größere wichtige Design - Programme mittels Matlab erstellt.

Bandpassfilter

Wie in Kapitel 5 erläutert benötigt man für Bandpassfilter ein spezielles Wandler – Design mit einem sinc förmigen Fingerüberlapp. Dafür musste ein separates Matlab - Programm geschrieben werden, welches die gewünschte Wandlerform ermöglicht und es ermöglicht diese Daten in das Standard Masken – Design Programm TexEDA zu übertragen. Abbildung B1 zeigt die Hauptseite

Abbildung B1: Hauptseite des Bandpassfilterprogramms mit Eingabefeldern sowie den Anzeigen für eine ideale Frequenz- und Phasenantwort

dieses Programms. In der Eingabemaske links können alle relevanten Daten eingegeben werden. Das Programm generiert daraufhin unter den Reiter (rechts) Impuls, IDT und IDT2 alle wichtigen Daten und zeigt das fertige Design (für beide IDT Wandler) mit Größenangaben an (Abbildung B2a, b, c).

Abbildung B2: Unterseiten des Bandpassfilterprogramms (a) Impulsantwort, (b) Darstellung des gewichteten Wandlers mit der Möglichkeit der weiteren Anpassung des Designs, (c) Darstellung des zweiten ungewichteten Wandlers.

Anschließend werden entsprechende Textdateien im Programmordner hinterlegt die man dann in dem Maskendesignprogramm TexEDA einlesen kann. Anschließend erscheint das fertige Wandler Design in der gewählten Maskenebene (Abbildung B3).

Abbildung B3: Vergleich des in TexEDA eingelesenen Matlab Designs für ein 2,4 GHz Bandpassfilterwandler.

Chirpfilterprogramm

Das Chirpfilterprogramm ist ähnlich dem Bandpassfilterprogramm aufgebaut. Der einzige Unterschied ist die Berechnung der IDT Finger welche nun typische SAW Chirpfilter Wandler generieren können die dann ebenfalls wie bereits beschreiben in TexEDA eingelesen werden können.

Abbildung B4: Designparameter: $f_{0,unten} = 2.4$ GHz, $f_{0,oben} = 10$ GHz (a) ungewichteter Einzelfinger-Wandler N = 100, (b) gewichteter Doppelfinger-Wandler N = 200

Abbildungsverzeichnis

- Abbildung 1-1: Separater IC und SAW Filter werden kombiniert auf einem einzigen Chip realisiert.- 14 -
- Abbildung 1-3: (a) Einfacher Aufbau diskreter SAW Filter mit monokristallinen piezoelektrischen Substrat (IDT nicht dargestellt), (b) komplexer Aufbau der bei einer monolithischen Integration entsteht, mit texturierten (nanokristallinen) c-Achsen orientierten piezoelektrischen AIN.....- 18 -
- Abbildung 1-4: BiCMOS Technologiestapel mit Front-end-of-line (FEOL) / Back-end-of-line (BEOL) mit der möglichen Position eines vollintegrierten SAW Filters (rote Markierung) im BEOL... 19 -
- Abbildung 2-1: (a) Einheitszelle des hexagonalen AlN. (b) Hexagonales AlN Gitter in c-Achsenorientierung ([0001]) mit Gitterkonstante c. (c) Um 90° von unten nach oben gedrehtes hexagonales AlN Gitter in [11-20] Richtung mit Gitterkonstante a........ - 21 -

- Abbildung 2-6: Darstellung der Anregung von Oberflächenwellen bei der Grundfrequenz und bei der dreifachen (ungeraden) Grundfrequenz. Gerade höhere harmonische Frequenzen (zweifache Frequenz in Rot gestrichelt dargestellt) können aufgrund der Wandlergeometrie nicht angeregt werden.
- Abbildung 2-7: IDT mit den Delta-Funktionsquellen unter jedem einzelnen Wandlerfinger (ähnlich [Camp 1998]).....- 28 -
- Abbildung 2-8: Frequenzantwort einer idealen Wandlerstruktur nach dem Deltafunktionsmodell. Bei der Mittenfrequenz f₀ (Punkt 1) führt die konstruktive Interferenz der Teilwellen zur größten Signalamplitude. Im Punkt 2 tritt destruktive Interferenz zwischen den Wellen

auf, das resultierende Signal ist null. Weitere Frequenz-Abweichungen führen zu kleineren Nebenmaxima und weiteren destruktiven Interferenzen. Die grafische Darstellung links im Bild verdeutlicht die Beiträge an den beiden Punkten für einen Wandler der Länge $8 \cdot \lambda$ (8 Sektionen). Im Punkt 1 addieren sich alle Beiträge der einzelnen Sektionen (0° Phasendifferenz). Im Punkt 2 tritt zwischen den benachbarten Sektionen eine Phasendifferenz von 45° auf.......- 30 -

- Abbildung 2-10: Schematische Darstellung einer einfallenden Welle und an den einzelnen Fingerelektrodenkanten reflektierten Welle (vollständige Reflektion durch genügend Finger / Reflektivität). Der gestrichelte Pfeil zeigt den Fall, dass ein Teil der einfallenden Welle nicht vollständig reflektiert wird und in Ausbreitungsrichtung weiter propagiert......-34 -
- Abbildung 2-12: Seitenansicht des realen Feldverlaufes (a), der Querfeldannäherung (b) sowie der Längsfeldnäherung (c) ähnlich [Smit 1969].....- 41 -
- Abbildung 2-13: Ersatzschaltbilder für das Querfeldmodel (a) und dem Längsfeldmodel (b). 41 -
- Abbildung 2-14: Vergleich der beiden Näherungsmodelle mit Hilfe der an der Resonanzfrequenz gewonnenen Leitfähigkeiten für 4 SAW Filter mit variierter Fingeranzahl. Mit den berechneten Kapazitäten für das Längsfeldmodell sowie für das Querfeldmodell..-43 -
- Abbildung 2-15: Vergleich zwischen typischen Werten von Filtern auf hochohmigen Substraten wie einkristallinem AIN und (in ähnlicher Form) kommerziell häufig benutzten LiNbO₃ und Werten von CMOS kompatiblen Filtern hergestellt auf niederohmigen Si-Substraten im Rahmen dieser Arbeit. (a) SAW Filter auf einem hochohmigen c-achsenorientierten AIN Einkristall [Bu 2006]. Berechnete Admittanz mit 90 Fingerpaaren und eine akustischen Appertur von 1300µm sowie einer Wellenlänge von 16µm. (b) Berechnete Admittanz für einen Wandler mit 75 Fingerpaare und einer akustischen Appertur von 135 µm. Der Kopplungsfaktor wurde mit 0.0043 angenommen. Der Pfeil zeigt an, dass bei Erhöhung des Widerstandes im Substrat auch die experimentell gewonnene Kurve sich immer mehr der simulierten Kurve (hochohmiges Substrat) annähern würde. - 44 -

- Abbildung 3-3: Darstellung eines SAW ID Tags mit ausgegebenen Signalkode......- 48 -

Abbildung 3-4: (a) 2	wei-Tor Resonator mit 100 bis einigen tausend Reflektor streifen, (b)
Bandpa	ssfilter mit einem sinc Fingerüberlapp 49 -
Abbildung 3-5: (a) Sen	der generiert das frequenzgespreizte Signal. (b) Empfänger nimmt Signal auf
und gib	es als Puls aus 50 -
Abbildung 4-1: Experin	enteller XRD Aufbau 51 -
Abbildung 4-2: Aufbau	der AFM Untersuchung im Tapping Modus [Veec 2003]
Abbildung 4-3: Funktic	nsprinzip mit Strahlverlauf des TEM (a) vor der Probe (b) nach der Probe [Will
1996]	- 54 -
Abbildung 4-4: Aufbau	des Hitachi S-4500 Rasterelektronenmikroskop [Hita 1995]
Abbildung 4-5: S-Para	meter Messplatz: (1) GSG Hochfrequenzspitzen, (2) Beheizbarer Chuck, (3)
Mikrosl	op, (4) Vakuumhalter, (5) Agilent E8364A Netzwerkanalysator, kleines Bild
zeigt di	vergrößerten GSG Spitzen (an den blauen Haltern befestigt)
Abbildung 4-6: Methoo	e der zeitgesteuerten Messung (a) S-Parametermessung (schwarz) wird in den
Zeitberd	ich (b) überführt. Das Elektromagnetische Feldsignal Signal (schwarz) wird
über ei	ne zeitliche Eingrenzung "abgeschnitten", übrig bleibt das akustische Signal
(rot). D	eses wird wieder in den Frequenzbereich überführt (rot)
Abbildung 4-7: Impuls	nessplatz: (1) Kameramonitor, (2) Kamera, (3) Keithley 4200-SCS Analysator,
(4) Küh	einheit C60, (5) Vakuumkammer SÜSS MicroTec PMV200, (6) Agilent E8257D
PSG An	Ilog Signal Generator (7) Oszilloskop Tektronix TDS6154C (8) Anritsu MP1632C
Digital	Data Analyzer (9) Steuerungslabtop für den Impulsgenerator
Abbildung 4-8: (1) C	ooling Unit (2) Cascade halbautomatische Probenstation (3) Kamera (4)
Kamero	bildschirm (5) Keithley 4200-SCS Analyser, kleines Bild zeigt die Messspitzen
mit Wa	er in der Probenstation59 -
Abbildung 4-9: (a) Dra	ıfsicht auf das SAW Filterdesign mit Schnittebene durch die Fingerelektroden
sowie c	en Ground–Signal-Ground (GSG) Pads; Seitenansicht: (b) prinzipieller Aufbau
mit unt	en liegenden Fingerelektroden und den verwendeten Materialien und in SiO ₂
eingebe	tteten Wolframfingern60 -
Abbildung 4-10: Erste	Fertigungsschritte der SAW Filter mit der Abscheidung der 600 nm dicken
amorph	en SiO2 Schicht und der anschließenden Ätzung der Gräben für die W-basierten
Fingere	ektroden 61 -
Abbildung 4-11: Besc	nichtung des Wafers mit Wolfram und anschließenden CMP Schritt zur
Herstel	ung der Fingerelektroden61 -
Abbildung 4-12: (a) SE	M Aufnahme nach der Metall 3 Ätzung, (b) Nahaufnahme man erkennt die
starke (İberätzung durch die Metall Ätzung von circa 300nm an den freigelegten W-
Fingern	62 -
Abbildung 4-13: Absch	ridung der Si ₃ N ₄ und SiO ₂ Ätzstoppschichten und anschließende Strukturierung.
Abbildung 4-14: (a) sto	rk geätztes Metallpad nach AIN Ätzung (rote Markierung zeigt nachfolgenden
Ausschı	itt), (b) Nahaufnahme des stark geätzten Metalls (Ti/TiN/AlCu/Ti/TiN) mit
Ti/TiN "	Kappen" rechts im Bild

Abbildung 7-2	: (a) S ₂₁ – Parameter (Transmission) für verschiedene Wellenlängen für Filter entl	ang
	der Si - Substrat [110] Richtung mit den Resonanzen für RO und R1 (siehe Pfeile).	(b)
	Darstellung der S ₂₁ Parameter mit frei gewählten Werten für eine verbesserten Ans	icht
	der einzelnen Moden [Kale 2013]	82 -

- Abbildung 7-4: (a) Dispersionskurven mit Messwerten von Filtern auf verschiedenen Wafern und FEM Simulationen (mit h_{AIN} = 500 nm). (b) Schematische maßstabsgerechte Darstellung der Eindringtiefen (schwarze vertikale Linien) verschiedener Wellenlängen in den Schichtstapel [Kale 2013].....- 84 -
- Abbildung 7-6: SAW Filterantworten für verschiedene AIN Schichtdicken mit Filtern mit 2 μm Wellenlänge [Kale 2013].....- 86 -
- Abbildung 7-7: Vergleich der S₂₁ Parameter für zwei gleiche Filter auf Siliziumsubstraten mit unterschiedlichen elektrischen Widerständen [Kale 2013].....- 88 -
- Abbildung 7-8: Experimentell gewonnen K² Daten von Mode RO als Funktion von kh_{AIN} für 10 Ωcm und 4000 Ωcm Si(100) – Substrate berechnet für Filter mit fünf verschiedene Wellenlängen [Kale 2013].....- - 89 -

- Abbildung 7-11: Schema der S-Parametermessung [Kale2 2013]...... 93 -

- Abbildung 7-14: SAW Filter mit variierten IDT Abstand L mit W = 80λ und N = 75 [Kale2 2013]..... 95 -
- Abbildung 7-16: Gemessene IDT Kapazitäten als Funktion der IDT Fläche [Kale2 2013]...... 96 -
- Abbildung 7-17: Crosstalkanstieg als Funktion der IDT Kapazität für verschiedene Filter mit variierter Fingerpaaranzahl N bzw. Änderung der akustischen Appertur W_A [Kale2 2013]..... - 97 -

- Abbildung 8-1: S-Parameter Messung eines SAW Filters mit $N_P = 75$, $W = 80^*\lambda$ und split Finger Konfiguration. (b) Größerer Frequenzbereich mit den zwei akustischen Moden RO und R1. (c) Zeitbereich der gemessenen Signalantwort (schwarz/rot) mit EMF Signal / akustischem Signal und zeitgesteuertes Signal ohne unerwünschtem EMF Signal (rot). -99 -
- Abbildung 8-2: Berechnete Admittanz für den Wandler mit 75 split Fingerpaaren und einer akustischen Appertur von 135 μ m bei λ = 1,68 μ m. Die grüne Linie zeigt die optimale Leistungsanpassung für Ga......- 100 -
- Abbildung 8-3: Vergleich der rechteckförmigen Eingangsimpulse mit den sinusförmigem Ausgangsignalen des Filters bei Resonanz und neben der Resonanzfrequenz...... - 101 -
- Abbildung 8-4: Darstellung des Abklingverhaltens des Filters bei Abschaltung der Eingangsimpulse. ... 102 -
- Abbildung 9-1: Übersicht über die wichtigsten Arbeitspunkte in dieser Doktorarbeit....... 103 -
- Abbildung 9-3: Vergleich der minimalen Einfügedämpfungen für die in dieser Arbeit entwickelten CMOS kompatiblen SAW Filter mit einer anderen Forschergruppe sowie mit hochoptimierten diskreten kommerziellen Filtern auf einkristallinen piezoelektrischen Substraten......- 108 -
- Abbildung A1: Darstellung der zwei möglichen Polarisationen bei Druck auf das c-achsen orientierte AlN...... - 106 -
- Abbildung A2: Bei Druck zeigt Polarisationsvektor in Positive y-Richtung (von negativ zu positiv) aufgrund der vorliegenden positiven Polarisation bei Druck. Bei Zug zeigt er in die entgegengesetzte Richtung. Mit ☑y = (cF-c0)/c0...... – 107 -

- Abbildung B3: Vergleich des in TexEDA eingelesenen Matlab Designs für ein 2,4 GHz Bandpassfilterwandler...... – 109 -
- Abbildung B4: Designparameter: f0,unten = 2.4GHz, f0,oben = 10 GHz (a) ungewichteter Einzelfinger-Wandler N = 100, (b) gewichteter Doppelfinger-Wandler N = 200...... - 110 -

Tabellenverzeichnis

Tabelle 1: Darstellung verschiedener SAW Anwendungen 17 -
Tabelle 2: Kondensierte AIN Parameter im Vergleich zu anderen Forschergruppen
Tabelle 3: Verwendete Materialien mit ihren Eigenschaften
Tabelle 4: Darstellung der Literaturwerte der akustischen Ausbreitungsgeschwindigkeiten 75 -
Tabelle 5: Ermittelte Werte der akustischen Moden (R0, R1) bei λ = 1,68µm für 600nm SiO ₂ und 800nm AIN Schichtdicke 78 -
Tabelle 6: Vergleich von Simulationsdaten mit den elektrischen Messungen bei λ = 1,68 µm und 600 nm SiO ₂ 84 -
Tabelle 7: Vergleich der in Abbildung 7-6 gemessenen RO Resonanzen mit FEM Resultaten mit λ = $2\mu m$ 87 -
Tabelle 8: Darstellung der Filterorientierung für vier Filtertypen mit verschiedene Wellenlängen geordnet nach höchster und niedrigster Resonanzfrequenz.91 -
Tabelle 9: Vergleich der Filterperformance von SAW Verzögerungsleitungen mit verschiedenen Forschungsgruppen 105 -

Quellen

[Adle 1994]	E. L. Adler, "SAW and Pseudo-SAW Properties Using Matrix Methods", IEEE Trans. Ultras. Ferro. Frequ. Contr., Vol. 41, No. 6, 1994.
[Asso1 2004]	M. B. Assouar, O. Elmazria, M. Elakiki, P. Alnot, "Study of structural and
	microstructural properties of AIN films deposited on silicon and quarz substrates for surface acoustic wave devices", J. Vac. Sci. Technol. B, Vol. 4, 2004.
[Asso2 2004]	M. B. Assouar, M. El Hakiki, O. Elmazria, P. Alnot, C. Tiusan, "Synthesis and microstructural characterisation of reactive RF magnetron sputtering AlN films for surface acoustic wave filters", Diamond and Related Materials, Vol. 13, 2004.
[Asso 2009]	M. B. Assouar, P. Kirsch, P. Alnot, "New love wave liquid sensor operating at 2 GHz using an integrated micro-flow channel", Meas. Sci. Technol., Vol. 20, 2009.
[Ball 1997]	D. S. Ballatine, R. M. White, S. J. Martin, A. J. Ricco, E. T. Zellers, G. C. Frye, H. Wohltjen, "Acoustic wave sensors – theory, design, and physic-chemical applications", Academic press, 1997.
[Beye 1981]	B. Beyer, E. Cyrener, F. Grahl, J. Holze, W. Molle, M. Paul, "Tabellenbuch Aluminiumwerkstoffe", VEB Deutscher Verlag für Grundstoffindustrie Leipzig, 1981.
[Broc 2004]	R. Brocato, E. Heller, J. Wendt, J. Blaich, G. Wouters, E. Gurule, G. Omdahl, D. Palmer, "UWB communication using SAW correlators", IEEE, 2004.
[Bu 2004]	G. Bu, D. Ciplys, M. Shur, "Electromechanical coupling coefficient for surface acoustic waves in single-crystal bulk aluminium nitride", Appl. Physics letters, Vol. 84, No. 23, 2004.
[Bu 2006]	G. Bu, D. Ciplys, M. Shur, L. J. Schowalter, S. Schujam, R. Gaska, "Surface acoustic wave velocity in single-crystal AIN substrates", IEEE Trans., Ferroelect. and Freq. Contr., Vol. 53, 2006.
[Buls]	WE. Bulst, E. Willibald-Riha, "Reproducible fabrication of surface acoustic wave filters",Siemens AG, Nachrichten-Übertragungssysteme.
[Cali 1997]	C. Caliendo, P. Verardi, E. Verona, A. D'Amico, C. Di Natale, G. Saggio, M. Serafini, R. Paolesse, S. E. Huq, "Advances in SAW-based gas sensors", Smart Mater. Struct., 689-699, 1997.
[Cali 2012]	C. Caliendo, "Theoretical investigation of high velocity, temperature compensated rayleigh waves along AIN/SiC substrates for high sensitivity mass sensors", Appl. Phys. Let., Vol. 100, 2012.
[Camp 1998]	C. K. Campbell, "Surface acoustic wave devices for mobile and wireless communications", Academic Press, 1998.
[COMS]	www.comsol.com
[Card 2004]	G. F. Cardinale, J. L. Skinner, A. A. Talin, R. W. Brocato, D. W. Palmer, D. P. Mancini, W. J. Dauksher, K. Gehoski, N. Le, K. J. Nordquist, D. J. Resnick, "Fabrication of a surface acoustic wave-based Correlator using step-and-flash imprint lithography", J. Vac. Sci. Technol. B, Vol. 22, 2004.
[Chun 2010]	GS. Chung, DT. Phan, "Finite element modeling of surface acoustic waves in piezoelectric thin films", J. Korean Phys. Soc., Vol. 57, No. 3, pp. 446 - 450, 2010.
[Clem 2004]	M. Clement, L. Vergara, J. Sangrador, E. Iborra, A. Sanz-Hervas, "SAW characteristics of AIN films sputtered on silicon substrates", Ultrasonsics, Vol. 42, pp. 403-7, 2004.

[Clem 2005]	M. Clement, L. Vergara, E. Iborra, A. Sanz-Hervas, J. Olivares, J. Sangrador, "AIN-on- Si SAW filters: influence of film thickness, IDT geometry and substrate conductivity",
	IEEE Ultras. Symp., 2005.
[Cout 2009]	O. D. D. Couto, S. Lazic, F. likawa, J. A. H. Stotz, U. Jahn, R. Hey, P. V. Santos, "Photon anti-bunching in acoustically pumped quantum dots", Nature photonics, Vol. 3, 2009.
[Crea 1986]	G. M. Crean, A. Waintal, "Average Rayleigh-wave velocity of a computer-simulated crystallographic plane". J. Appl. Crystallogr., 1986.
[Dixo 2010]	A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, A. J. Shields, "Continuous operation of high bit rate quantum key distribution". Appl. Physics letters. Vol. 96, 2010.
[Dobe 1997]	S. A. Dobershtein, V. A. Malyukhov, "SAW Ring Filters with insertion loss of 1 dB", IEEE Trans., Ferroelect. and Freq. Contr., Vol. 44, 1997.
[Du 2008]	X. Y. Du, Y. Q. Fu, S. C. Tan, J. K. Luo, A. J. Fletwitt, W. I. Milne, D. S. Lee, N. M. Park, J. Park, Y. J. Choi, S. H. Kim, S. Maeng, "ZnO film thickness effect on surface acoustic wave modes and acoustic streaming", Appl. Phys. Lett., Vol. 93, 2008.
[Elma 2003]	O. Elmazria, V. Mortet, M. El Hakiki, M. Nesladek, P. Alnot, "High velocity SAW using Aluminium nitride film on unpoloshed nucleation side of free – standing CVD diamond".IEEE Trans., Ferroelect, and Freq. Contr., Vol. 50, No. 6, 2003.
[Enge 2000]	F. Engelmark, G. Fucntes, I. V. Katardjiev, A. Harsta, U. Smith, S. Berg, "Synthesis of high oriented piezoelectric AIN films ba reactive sputter deposition", J. Vac. Sci. Technol. A, Vol. 18, 2000.
[Epco]	www.epcos.com
[Faso 1984]	W. Fasold, W. Kraak, W. Schirmer, "Taschenbuch Akustik (Teil 2)", VEB Verlag Technik Berlin, 1984.
[Fili 2009]	J. Filipiak, L. Solarz, G. Steczko, "Surface acoustic wave vibration sensors for linear electronic warning system", Acta Physica Polonica A, Vol. 116, 2009.
[Freu 2001]	J. Freudenberg, M. von Schickfuss, S. Hunklinger, "A SAW immunosensor for operation in liquid using a SiO ₂ protective layer", Sensor and Actuators B, Vol. 76, 147-151, 2001.
[Fu 2010]	Y. Q. Fu, J. S. Cherng, J. K. Luo, M. P. Y. Desmulliez, Y. Li, A. J. Walton, F. Placido, "Aluminum nitride thin film acoustic wave device for microfluidic and biosensing applications". Acoustic waves Book edited by: Don W. Dissanavake, 466, 2010.
[Fuji 2011]	Fujii S 2011 High-frequency surface acoustic wave filter based on diamond thin film Phys. Status Solidi a, Vol. 208, pp. 1072–7, 2011.
[Furu 2005]	M. Furuhata, A. Yajima, K. Goto, H. Sato, T. Funasaka, S. Kawano, S. Fujii, T. Higuchi, M. Ueno, "Development of monolithic CMOS-SAW Oscillator", IEEE Ultrasonics Symposium, pp. 2194 - 2197, 2005.
[Gaso 2009]	MI. Rocha-Gaso, C. March-Iborra, A. Montoya-Baides, A. Arnau-Vives, "Surface generated acoustic wave biosensors for detection of pathogens: a review", Sensors, Vol. 9, 5740-5769, 2009.
[Gell 2006]	J. R. Gell, P. Atkinson, S. P. Bremner, F. Sfigakis, M. Kataoka, D. Anderson, G. A. C. Jones, C. H. W. Barnes, D. A. Ritchie, "Surface-acoustic-wave-driven luminescence from lateral p-n junction", Appl. Physics letters, Vol. 89, 2006.

[Gell 2007]	J. R. Gell, M. B. Ward, A. J. Shields, "Temporal characteristics of surface-acoustic- wave-driven luminescence from lateral p-n junction", Appl. Physics Letters, Vol. 91,
[Gian 2009]	2007. P. Giannozzi et al., "QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials". J. Phys. Cond. Mat. 21, 395502, 2009
[Guil 1951]	F A Guillemin The mathematics of circuit analysis" John Wiley 1951
[Hasc 2002]	W. Hascher, "MDMA: Ein störsicheres Funk-Übertragungsverfahren auf dem Weg in die Anwendungspraxis", Elektronik Wireless, 2002.
[Haki 1980]	M. Hikita, Y. Kinoshita, H. Kojima, T. Tabuchi, "Phase weighting for low loss SAW filters", IEEE Ultras. Symp., 1980.
[Haki 2004]	M. El Hakiki, O. Elmazria, M. B. Assouar, V. Mortet, L. Le Brizoual, M. Vanecek, P. Anot, "ZnO/AlN/diamond layered structure for SAW devices combining high velocity and high electromechanical coupling coefficient", Diamond, 2004.
[Härmä 2008]	S. Härmä, W. G. Arthur, C. S. Hartmann, R. G. Maev, V. P. Plessky, "Inline SAW RFID tag using time position and phase encoding", IEEE Trans., Ferroelect. and Freq. Contr., Vol. 55, No. 8, 2008.
[Hine 1993]	J. H. Hines, D. C. Malocha, "A simple transducer equivalent circuit parameter
	extraction technique", IEEE Ultras. Symp., pp. 173 – 177, 1993.
[Hita 1995]	Hitachi Instruction Manual for Model S-4500 Field Emission Scanning Electron Microscope, 1995.
[Hofm 1997]	H. Hofmann, H. Stab, S. Komarov, "Design of SAW correlation devices with evolutinary strategy methodes (EVCOR)", IEEE Ultros. Symp., 1997.
[Huem 1998]	M. Huemer, A. Pohl, W. Gugler, A. Springer, R. Weigel, F. Seifert, "Design and verification of a SAW based Chirp spread spectrum system", IEEE MTT-S Digest, 1998.
[lbor 2004]	E. Iborra, L. Vergara, J. Sangrador, M. Clement, A. Sanz-Hervas, J. Olivares, "A model for the accurate determination of the electromechanical coupling factor of thin film SAW devices on non-insulating substrates", IEEE Int. Ultras. Ferroelect., and Freq. Contr. Conf., 2004.
[Ingr 2007]	I. Ingrosso, S. Petroni, D. Altamura, M. De Vittorio, C. Combi, A. Passaseo, "Fabrication of AIN/Si SAW delay lines with very low RF signal noise", Microelectr. Engineering Vol 84, 2007
[Jone 1971]	W. S. Jones, C. S. Hartmann, L. T. Claiborne, "Evaluation of digitally coded acoustic surface-wave matched filters", IEEE Trans., Ferroelect. and Freq. Contr., Vol. SU-18, 1972.
[Kale 2012]	U. Ch. Kaletta, D. Wolansky, M. Fraschke, Ch. Wenger, "Development of CMOS integrated AIN based SAW-Filter and the role of Si substrate resistivity", ISCDG'12: IEEE Semiconductor Conf. Dresden-Grenoble, pp. 79-82, 2012.
[Kale 2013]	U. Ch. Kaletta, P. V. Santos, D. Wolansky, A. Scheit, M. Fraschke, Ch. Wipf, P. Zaumseil, Ch. Wenger, "Monolithic integrated SAW filter based on AIN for high-frequency applications", Semicond. Sci. Technol. Vol. 28, 2013.
[Kale1 2013]	U. Ch. Kaletta, Ch. Wenger, "FEM Simulation of Rayleigh waves for CMOS compatible SAW devices based on AIN/SiO2/Si(100)", Elsevier Ultrasonics, Vol. 54,

	pp. 291-295, 2014.
[Kale2 2013]	U. Ch. Kaletta, D. Wolansky, M. Fraschke, Ch. Wipf, and Ch. Wenger, "Crosstalk
	suppression of CMOS compatible AIN based SAW devices on low resistive Si(100)", E-
	MRS Spring Meeting, Phys. Status Solidi C, Vol. 11, No. 2, pp. 249-252, 2014.
[Kale 2014]	U. Ch. Kaletta, Ch. Wipf, M. Fraschke, D. Wolansky and Ch. Wenger,
	"AIN/SiO2/Si3N4/Si(100) based CMOS compatible SAW filter with -12.8 dB minimum
	insertion loss", IEEE Electron Device Letters, 2014 (eingereicht).
[Keil 1984]	A. Keil, W. A. Merl, E. Vinaricky, "Elektrische Kontakte und ihre Werkstoffe",
	Springer-Verlag, ISBN 3-540-12233-8, 1984.
[King 1999]	D. King, S. Gopani, "SAW filters in CDMA mobile communication networks", Wireless
	Techn. China conference, 1999.
[Kirs 2006]	P. Kirsch, M. B. Assouar, O. Elmazria, "5 GHz surface acoustic devices based on
	aluminium nitride/diamond layered structure realized using electron beam
	lithography", Appl. Phys. Lett., Vol. 88, 2006.
[Kris 2008]	N. R. Krishnan, H. B. Nemande, R. Paily, "Simplified finite element simulation of a
	SAW hydrogen sensor using COMSOL Multiphysics", COMSOL conference, 2008.
[Kuro 1997]	M. Kurosawa, A. Futami, T. Higuchi, "Characteristics of liquids atomization using
	surface acoustic wave", IEEE Transducers 97, pp. 801-804, 1997.
[Lamb 1917]	H. Lamb, "On Waves in an Elastic Plate", Proc. R. Soc. Lond. A, Vol. 93, 1917.
[Lee 2009]	H. J. Lee, K. Namkoong, E. C. Cho, C. Ko, J. C. Park, S. S. Lee, "Surface acoustic wave
	immunosensor for real-time detection of hepatitis B surface antibodies in whole
	blood samples", Biosensors and Bioelectronics, Vol. 24, 3120-3125, 2009.
[Li 2010]	T. Li, H. Hu, G. Xu, K. Zhu, L. Fang, "Pressure and temperature microsensor based on
	surface acoustic wave in TPMS", Acoustic waves Book edited by: Don W.
	Dissanayake, 466, 2010.
[Lim 2001]	W. T. Lim, B K. Son, D. H. Kang, C. H. Lee, "Structural properties of AlN films grown on
	Si, Ru/Si and ZnO/Si substrates", Thin Solid Films, Vol. 382, pp. 56–60, 2001.
[Lin 2009]	CM. Lin, TT. Yen, YJ. Lai, V. V. Felmetsger, M. A. Hopcroft, J. H. Kuypers, A. P.
	Pisano, "Experimental study of temperature-compensated aluminium nitride lamb
	wave resonator", IEEE, 2009.
[Lin 2010]	CM. Lin, TT. Yen, YJ. Lai, V. V. Felmetsger, M. A. Hopcroft, J. H. Kuypers, A. P.
	Pisano, "Temperature-Compensated Aluminium Nitride Lamp Wave Resonators",
	IEEE Trans., Ferroelect. and Freq. Contr., Vol. 57, No. 3, 2010.
[Lind 2008]	G. Lindner, "Sensors and actuators based on surface acoustic waves propagating
	along solid-liquid interfaces", J. Phys. D: Appl. Phys., Vol. 41, 2008.
[Lone 1998]	S. Lone, P. M. Smith, "Modeling SAW chirp fourier transformers with differential
	equations" IEEE Ultrason. symposium, 1998.
[Love 1911]	A.E.H. Love, "Some problems of Geodynamics", Cambridge Univ. Press, p. 52, 1911.
[Malo 2004]	D. C. Malocha, "Evolution of the SAW transducer for communication systems", IEEE
	Trans., Ferroelect. and Freq. Contr., 2004.
[Mart 2004]	F. Martin, M. I. Newton, G. McHale, K. A. Melzak, E. Gizeli, "Pulse mode shear
	horizontal-surface acoustic wave (SH-SAW) system for liquid based sensing

	applications", Biosens. Bioelectron., Vol. 19, 2004.
[Mayo 2014]	A. S. Mayorov, N. Hunter, W. Muchenje, C. D. Wood, M. Rosamond, E. H. Linfield, A. G. Davies, and J. E. Cunningham, "Surface acoustic wave generation and detection
	using grapheme interdigitated transducers on lithium niobate", J. Appl. Lett., Vol. 104 2014.
[McHa 2002]	G. McHale, M. I. Newton, F. Martin, "Theoretical mass sensitivity of love wave and layer guided acoustic plate mode sensors", J. of Appl. Physics, Vol. 91, 2002.
[Mits 2008]	K. Mitsakakis, A. Tserepi, E. Gizeli, "Integration of microfluidics with a love wave sensor for the fabrication of a multisample analytical microdevice", J. of Microelectrom Systems Vol. 17, No.4, 2008.
[Moel 1999]	F. Moeller, J. Enderlein, M. A. Belkerdid, D. C. Malocha, W. Buff, "Direct sequence spread spectrum differential phase shift keying SAW correlator on GaAs", IEEE Trans., Ferroelect. and Freq. Contr., Vol. 46, 1999.
[Moll 2007]	N. Moll, E. Pascal, D. H. Dinh, JP. Pillot, B. Bennetau, D. Rebiere, D. Moynet, Y. Mas, D. Mossalayi, J. Pistre, C. Dejous, "A love wave immunosensor for whole E. coli bacteria detection using an innovative two-step immobilization approach", Biosensors and Bioelectronics, Vol. 22, pp. 2145-2150, 2007.
[Mont 1988]	G. K. Montress, T. E. Parker, M. J. Loboda, J. A. Greer, "Extremely low-phase-noise SAW resonators and oscillators: design and performance", IEEE Trans., Ferroelect. and Freq. Contr., Vol. 35, 1988.
[Morg 1985]	D. P. Morgan, "Surface-Wave Devices for Signal Processing", Elsevier, 1985.
[Mort 2002]	V. Mortet, O. Elmazria, M. Nesladek, M. B. Assouar, G. Vanhoyland, J. D'Haen, M.
	D'Olieslaeger, P. Alnot, "Surface acoustic wave propagation in aluminium nitride-
	unpolished freestanding diamond structures", Appl. Phys. Let., Vol. 81, No. 9, 2002.
[Müll 2008]	A. Müller, G. Konstantinidis, D. Neculoiu, A. Dinescu, C. Morosanu, A. Stavrinidis, M. Dragoman, D. Vasilache, C. Buiculescu, I. Petrini, C. Anton, "AIN SAW strucures for GHz applications", IEEE, 2008.
[Nard 2012]	D. Nardi, E. Zagato, G. Ferrini, C. Giannetti, F. Banfi, "Design of a acoustic wave mass sensor in the 100 GHz range", Appl. Phy. Let., Vol. 100, 2012.
[Nore 1969]	A. J. Noreika, M. H. Francombe, S. A. Zeitman, "Dielectric Properties of Reactively Sputtered Films of Aluminum Nitride", J. Vac. Sci. Technol. Vol. 6, 1969.
[Odin 1991]	M. A. Odintzov, N. I. Sushentzov, T. L. Kudryavtzev, "AIN films for SAW sensors", Sensors and Actuators A, pp. 203-206, 1991.
[Otte 2002]	M. W. den Otten, "Approximate expressions for the capacitance and electrostatic potential of interdigitated electrodes", Sensor and Actuators A, Vol. 96, pp. 140-144, 2002.
[Papa 2009]	G. Papadakis, A. Tsortos, E. Gizeli, "Triple-helix DNA structural studies using a Love wave acoustic biosensor", Vol. 25, 702-707, 2009.
[Past 2006]	M. Pasternak, "Overtone oscillator for SAW gas detectors", IEEE Sensors Journal, Vol. 6, 2006.
[Piaz 2009]	V. Piazza, "SAW-driven electron dynamics in nanostructures", NEST Scientific report, 2007-2009.

[Piet 2004]	U. Pietsch, V. Holy, T. Baumbach, "High-Resulution X-Ray Scattering: From Thin Films to Lateral Nanostructures". Springer-Verlag New York, ISBN 0-387-40092-3, 2004.
[Ples 1995]	V. P. Plessky, S. N. Kondratiev, R. Stierlin, F. Nyffeler, "SAW tags: New ideas", IEEE Ultrason. Symp., 1995.
[Ples 2000]	V. Plessky, J. Koskela, "Coupling-of-modes analysis of SAW devices", World Scientific Publishing Company, Vol. 10, No. 4, 867-947, 2000
[Ples 2010]	V. P. Plessky, L. M. Reindl, "Review on SAW RFID Tags", IEEE Trans., Ferroelect. and Freq. Contr., Vol. 57, No. 3, 2010.
[Poli 2002]	A. Polian, D. Vo-Thanh, P. Richet, "Elastic properties of a-SiO2 up to 2300 K from Brillouinscattering measurements", Europhys. Lett., 2002.
[Prad 2008]	D. J. Pradeep, N. R. Krishnan, H. B. Nemande, "Simulation of Unidirectional Interdigital Transducers in SAW Devices using COMSOL Multiphysics", COMSOL Conf., 2008.
[Qi 2011]	A. Qi, J. Friend, L. Yeo, "A miniaturized surface acoustic wave atomizer with a disposable pump-free supply system for continuous atomization", IEEE, 2011.
[Raus 1986]	K. Rauscher, J. Voigt, I. Wilke und KTh. Wilke, "Chemische Tabellen und Rechentafeln für die analytische Praxis", VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1961.
[Rao 2006]	Y. L. Rao, G. Zhang, "3-D finite element modeling of nanostructure enhanced SAW sensor", COMSOL conference, 2006.
[Rayl 1885]	J. W. Strutt Rayleigh, "On Waves propagated along the Plane Surface of an Elastic Solid", Cambridge University Press , Vol. 2, pp. 441-447, 1885.
[Riga]	SmartLab Guidance Package Measurements Manual, Rigaku Corporation, No. ME13405A01, No. ME13405A02.
[Riha]	G. Riha, H. Stocker, P. Zibis, "Akustische Oberflächenwellenfilter für Digitalrichtfunksysteme", Siemens AG, Nachrichten-Übertragungssysteme.
[Roac 2007]	P. Roach, S. Atherton, N. Doy, G. McHale, M. I. Newton, "SU-8 guiding layer for love wave devices", Sensors, Vol. 7, 2539-2547, 2007.
[Rupp 1994]	C. W. C. Ruppel, W. Ruile, G. Scholl, K. Ch. Wagner, O. Männer, "Review of Models for Low-Loss Filter Design and Applications", IEEE Ultras. Symp., 1994.
[Sald 2008]	N. Saldanha, D. C. Malocha, "Low loss SAW RF ID tags for space applications", IEEE Ultrason. Symp., 2008.
[Sant 2012]	P. V. Santos, S. Rauwerdink, K. Biermann, B. Drescher, W. Seidel, "Gigahertz monolithic delay lines for surface acoustic waves on Silicon", IOP Conf. Series: Materials Science and Engineering, Vol. 41, 2012.
[Sato 2001]	Y. Satoh, O. Ikata, T. Miyashita, and H. Ohmori, "RF SAW Filters", International Symposium on Acoustic Wave Devices for Future Mobile Communication Systems, pp. 125-132. 2001.
[Sche 1989]	P. Schelbert, "Synthesis of SAW-correlator with integrated spectrum-shaping", IEEE Ultras. Symp., 1989.
[Scho 1991]	G. Scholl, A. Christ, W. Ruile, P. H. Russer, R. Waigel, "Efficient Analysis Tool for Coupled-SAW-Resonator Filters", IEEE Trans., Ferroelect. and Freq. Contr., Vol.

	38, No. 3, 1991.
[Shil 2012]	R. J. Shilton, S. M. Langelier, J. R. Friend, L. Y. Yeo, "Surface acoustic wave solid-state
	rotational micromotor", Appl. Phys. Lett., Vol. 100, 2012.
[Smit 1969]	W. R. Smith, H. M. Gerad, J. H. Collins, T. M. Reeder, H. J. Shaw, "Analysis of
	Interdidital Surface Wave Transducers by Use of an Equivalent Circuit Model", IEEE
	Trans. On Microw. and Techn., Vol. MTT-17, Nr. 11, 1969.
[Spin 2007]	L. La Spina, L. K. Nanver, H. Schellevis, E. Iborra, M. Clement, and J. Olivares,
	"Characterization of PVD Aluminum Nitride for Heat Spreading in RF IC's", Solid State
	Device Research Conference, ESSDERC 2007, IEEE, pp. 354,357, 2007.
[Spri 1998]	A. Springer, M. Huemer, L. Reindl, C. C. W. Ruppel, A. Pohl, F. Seifert, W. Gugler, R.
	Weigel, "Ein OFW-basiertes Übertragungsverfahren für Anwendungen in drahtlosen
	lokalen Netzen", 1998.
[Taka 2002]	Y. Takagaki, P. V. Santos,E. Wiebicke, O. Brandt, HP. Schoenherr, K. H. Ploog,
	"Superhigh-frequency surface-acoustic-wave transducers using AIN layers grown on
	SiC substrates", Appl. Phys. Lett., 2002.
[Tama 2003]	O. Tamarin, C. Dejous, D. Rebiere, J. Pistre, S. Comeau, D. Moynet, J. Bezian, "Study
	of acoustic love wave devices for real time bacteriophage detection", Sensors and
	Actuators B, Vol. 91, pp. 275-284, 2003.
[Tanc 1971]	R. Tancrell, M. Holland, "Acoustic surface wave filters", Proc. of IEEE, Vol. 59, p.393,
	1971.
[Tans 1979]	W. J. Tanski, "Surface acoustic wave resonators on quarz", IEEE Trans., Ferroelect.
	and Freq. Contr., Vol. SU-26, 1979.
[Tikk 2007]	A. Tikka, S. Al-Sarawi, D. Abbott, "SAW parameter extraction using finite element
	analysis",2nd Int. Conf. on Sens. Technol., 2007.
[Tikka 2008]	A. Tikka, S. Al-Sarawi, D. Abbott, "Acoustic wave parameter extraction with
	application to delay line modeling using finite element enalysis", Sens. Trans. J., Vol.
	95, 2008.
[Tikk 2009]	A. Tikka, "Design, characterisation and optimization of a SAW Correlator driven,
	wireless, passive microvalve for biomedical applications", RMIT University,
	Doktorarbeit, 2009.
[Toke]	www.token.com
[Tran 2008]	H. Trang, R. Patrice, V. Marie-Helene, "Effect of thin polyimide film on performance
	of AIN/SiO ₂ SAW device", IEEE, 2008.
[Tran 2009]	T. Hoang, "Design and realization of SAW pressure sensor using Aluminium Nitride,"
	University Joseph Fourier, Dissertation, 2009.
[Irol 2004]	S. Trolier-McKinstry, P. Muralt, "Thin film piezoelectrics for MEMS", J.
	Electroceramics, Vol. 12, pp. 7 – 17, 2004.
[Veec 2003]	Scanning Probe Microscopy Benutzerhandbuch, Software Version 3.0, Veeco
	Instruments Inc., 2003.
[Vigi 1987]	A. J. VIGII, B. P. ADDOTT, D. C. Malocha, "A study of the effects of apodized structure
	geometries on SAW filter parameters", IEEE Ultrs. Symp., 1987.
[rong 2001]	rk. rong, "Analysis of periodic structures for BAW and SAW resonator", IEEE

	Ultrason. Symp., 2001.
[Wang 2008]	W. Wang, S. He, "A love wave reflective delay line with polymer guiding layer for
	wireless sensor application", Sensors ,Vol. 8, 7917-7929, 2008.
[Wang 2009]	Y. Wang, K. Y. Hashimoto, T. Omori, M. Yamaguchi, "Full-wave analysis of
	piezoelectric boundary waves propagating along metallic grating sandwiched in
	between two semi-infinite layers", IEEE Trans., Ferroelect. and Freq. Contr.,
	2009.
[Weig 1997]	R. Weigel, F. Kalabic, G. Ostermayer, A. Pohl, F. Seifert, L. Reindl, "Design of SAW
	expander and compressor on LiTaO $_3$ for a TCDMA spread spectrum system", IEEE
	Trans. Microw. Theory and Techniques, Vol. 45, 1997.
[West 2009]	R. S. Westafer, S. Mohammadi, A. Adibi, W. D. Hunt, "Computing surface acoustic
	wave dispersion and band gaps", COMSOL conference, 2009.
[Whit 1965]	R.M. White, F.W. Voltmer, "Direct piezoelectric coupling to surface elastic waves",
	Appl. Phys. Lett., Vol. 7,pp. 314–316, 1965.
[Will 1996]	D. B. Williams, C. B. Carter, "Transmission Electron Microscopy", Plenum Press, New
	York, 1996.
[Wu 2010]	S. Wu, ZX. Lin, R. Ro, MS. Lee, "Rayleigh and shear horizontal surface acoustic
	properties of (100) ZnO films on silicon", IEEE Trans. Ultrason. Ferroelectr. Freq.
	Control, Vol. 57, 2010.
[Yanf 2009]	W. Yanfen, C. Ruoshan, Z. Wenjie, "Design and simulation of a chirp pulse
	compression ultra-wideband communication system", IEEE, 2009.
[Yuan 2007]	Z. L. Yuan, B. E. Kardynal, A. W. Sharpe, A. J. Shields, "High speed single photon
	detection in the near infrared", Appl. Physics letters, Vol. 91, 2007.
[Zhen 2009]	P. Zheng, D. W. Greve, I. J. Oppenheim, "Multiphysics Simulation of the Effect of
	Sensing and Spacer Layers on SAW Velocity", COMSOL Conference, 2009.