
Symbolic on-the-fly analysis of

stochastic Petri nets

Von der Fakultät für Mathematik, Naturwissenschaften und Informatik
der Brandenburgischen Technischen Universität Cottbus/Senftenberg

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften
(Dr. rer. nat.)

genehmigte Dissertation

vorgelegt von

von
M.Sc. Informatik
Martin Schwarick

geboren am 02. 02. 1980
in Herzberg/Elster, Deutschland

Gutachter: Prof. Dr.-Ing. Monika Heiner
Gutachter: Prof. Dr. Susanna Donatelli
Gutachter: Prof. Dr. Peter Kemper

Tag der mündlichen Prüfung: 11. Juni 2014

Abstract

This thesis investigates the efficient analysis, especially the model checking, of bounded
stochastic Petri nets (SPNs) which can be augmented with reward structures. An SPN
induces a continuous-time Markov chain (CTMC). A reward structure associates a re-
ward to each state of the CTMC and defines a Markov reward model (MRM). The
Continuous Stochastic Reward Logic (CSRL) permits to define sophisticated proper-
ties of CTMCs and MRMs which can be automatically verified by a model checker.

CSRL model checking can be realized on top of established numerical analysis tech-
niques for CTMCs which are based on the multiplication of a matrix and a vector.
However, as these techniques consider a matrix and a vector at least in the size of
the number of reachable states, it is still challenging to deal with the famous state
space explosion problem. Several approaches, as for instance the use of Multi-terminal
Decision Diagrams or Kronecker products to represent the matrix, have been inves-
tigated so far. They often enable the implementation of efficient CTMC analysis and
are available in a couple of tools.

As an alternative to these established techniques I enhance the idea of an on-the-fly
computation of the matrix entries deploying a symbolic state space representation.
The set of state transitions defining the matrix will be enumerated by the firing of the
transitions of the given SPN for all reachable states. The reachable states are encoded
by means of Interval Decision Diagrams (IDD).

Further, I discuss crucial aspects for the implementation of the first multi-threaded
symbolic CSRL model checker which is based on the developed technique and available
in the toolMARCIE. An experimental comparison with the probabilistic model checker
PRISM for a large number of experiments proves empirically the efficiency of the
approach and its implementation, especially when investigating biological models.

Keywords Model Checking, Stochastic Petri nets, Rewards, Continuous-time Markov
Chains, Markov Reward Models, Interval Decision Diagrams, Multi-threading, Con-
tinuous Stochastic Reward Logic

iii

Zusammenfassung

Die vorliegende Dissertation betrachtet die effiziente Analyse, im Besonderen Mod-
elchecking, von beschränkten stochastischen Petrinetzen (SPN), die um Rewardstruk-
turen angereichert werden können. Ein SPN induziert eine Zeit-kontinuierliche Markov
Kette (CTMC). Eine Rewardstruktur assoziiert zu jedem Zustand einen Reward und
definiert ein Markov Reward Modell (MRM). Die Kontinuierliche Stochastische Re-
ward Logik (CSRL) erlaubt es, sehr spezielle Eigenschaften für CTMCs und MRMs
zu definieren, die von einem Modelchecker automatisch überprüft werden können.

CSRL Modelchecking kann aufbauend auf etablierten numerischen Analysetechniken
für CTMCs realisiert werden, die auf der Multiplikation einer Matrix mit einem Vektor
basieren. Da diese Techniken eine Matrix und einen Vektor in der Grösse der Menge
der erreichbaren Zustände berücksichtigen, ist es jedoch schwierig mir dem Phänomen
der Zustandsraumexplosion umzugehen. Verschiedene Ansätze, wie die Verwendung
Multi-terminaler Entscheidungsdiagramme (MTDD) oder Kronecker-Produkten zur
Darstellung der Matrix, wurden bereits untersucht. Oftmals erlauben diese die Im-
plementierung effizienter CTMC Analyse und sind in einer Reihe von Werkzeugen
verfügbar.

Als eine Alternative zu diesen etablierten Techniken entwickle ich die Idee einer ”on-
the-fly” Berechnung der Matrixeinträge, unter Verwendung einer symbolische Darstel-
lung des Zustandsraums, weiter. Die Menge der Zustandsübergänge, die die Matrix
definieren, wird druch das Feuern der Transitionen des Petrinetzes in allen erreichbaren
Zuständen aufgezählt. Die Menge der erreichbaren Zustände wird mittels Intervall-
Entscheidungsdiagrammen (IDD) kodiert.

Weiter, diskutiere ich wesentliche Aspekte der Implementierung des ersten paral-
lelisierten symbolischen CSRL Modelcheckers, der auf der entwickelten Technik basiert
und Teil des Werkzeugs MARCIE ist. Ein experimenteller Vergleich mit dem prob-
abilistischen Modelchecker PRISM für eine grosse Anzahl von Experimenten zeigt
empirisch die Effizienz dieses Ansatzes und seiner Implementierung, insbesondere bei
der Betrachtung biologischer Modelle.

iv

Contents

Abstract iii

Zusammenfassung iv

1 Introduction 1

2 Petri Nets 7

2.1 Petri Nets . 7

2.2 Symbolic State Space Representation . 16

2.2.1 Interval Decision Diagrams . 16

2.2.2 State Space Representation for Petri Nets 21
2.3 CTL Model Checking . 28

2.3.1 Computation Tree Logic - CTL . 31

2.3.2 Model Checking . 33

2.4 Summary . 33

3 Stochastic Petri Nets 35

3.1 Stochastic Petri Nets . 35

3.2 Extensions . 40

3.2.1 Generalized Stochastic Petri Nets 40

3.2.2 Stochastic Reward Nets . 48

3.3 Numerical analysis . 57
3.3.1 Transient Analysis . 58

3.3.2 Limiting Analysis . 60

3.4 CSRL Model Checking . 64

3.4.1 Continuous Stochastic Reward Logic 65

3.4.2 Model Checking . 66

3.5 Summary . 76

4 Advanced Matrix Representation 77

4.1 Classical Sparse Matrix Representation 77

4.2 State of the Art . 79

v

Contents

4.2.1 The Kronecker Algebraic Approach 79
4.2.2 Multi-terminal Decision Diagram-based Approaches 82

4.3 IDD-based On-the-fly Matrix Generation 87
4.3.1 Enumeration of State Indices . 87
4.3.2 Enumeration of State Transitions 98
4.3.3 Performance Tuning . 103
4.3.4 First Results . 125

4.4 Summary . 128

5 Implementation of Numerical Solvers 129

5.1 Concepts . 129
5.1.1 Policy-based Design . 131
5.1.2 Multi-threading . 136
5.1.3 A Generic Solver . 141

5.2 Miscellaneous . 146
5.2.1 Parker’s Pseudo-Gauss-Seidel . 147
5.2.2 Generalized Stochastic Petri Nets 148
5.2.3 Stochastic Reward Nets . 152

5.3 Summary . 155

6 Evaluation 157

6.1 Methodology . 157
6.2 Transient Analysis . 159
6.3 Steady State Analysis . 173
6.4 Embedded Markov Chain . 179
6.5 Markovian Approximation . 186
6.6 GSPN versus SPN . 193
6.7 Summary . 193

7 Conclusions and Outlook 195

7.1 Conclusions . 195
7.2 Outlook . 196

A Appendix 199

A.1 Abstract Net Description Language . 199
A.2 Case studies . 202

A.2.1 Biological Networks . 202
A.2.2 Technical Systems . 210

Bibliography 215

vi

List of Figures

2.1 Running example – Petri net . 14

2.2 ROIDD example . 20

2.3 Running example - ROIDD . 27

3.1 Running example – GSPN . 41

3.2 Running example - reduced GSPN . 44

3.3 Running example - SPN . 45

3.4 Wrong representation of the guard p1 > 1 ∨ (p1 = 3 ∧ p2 ∈ [2,4)) 53

3.5 Correct representation of the guard p1 > 1 ∨ (p1 = 3 ∧ p2 ∈ [2,4)) 54

3.6 Running example – reward transitions . 57

3.7 SL vs. CTL . 71

4.1 Running example – CSR encoding of R 78

4.2 LIDD of the running example . 96

4.3 checkNone . 97

4.4 checkAll . 97

4.5 Path refinement . 104

4.6 SPN and LIDD - CLOCK subnet . 106

4.7 Scheme 1 . 108

4.8 Scheme 2 . 109

4.9 Scheme 3 . 109

4.10 Scheme 4 . 113

4.11 Visualization – Enumeration policy ALL 118

4.12 Visualization – Enumeration policy LINE 119

4.13 Visualization – Enumeration policy MULTI 120

4.14 On-the-fly matrix generation - biological models 126

4.15 On-the-fly matrix generation - technical models 127

4.16 Variable order influence . 128

5.1 MARCIE’s architecture . 130

5.2 PGS experiments . 148

6.1 An example plot. 160

vii

List of Figures

6.2 P=?[F[τ,τ]φ] – AKAP . 161
6.3 P=?[F[τ,τ]φ] – CLOCK and ERK . 162
6.4 P=?[F[τ,τ]φ] – MAPK and LEV . 163
6.5 P=?[F[τ,τ]φ] – FMS and KANBAN . 164
6.6 P=?[F[τ,τ]φ] – PSS and WC . 165
6.7 P=?[F[0,τ]φ] – AKAP . 167
6.8 P=?[F[0,τ]φ] – CLOCK and ERK . 168
6.9 P=?[F[0,τ]φ] – MAPK and LEV . 169
6.10 P=?[F[0,τ]φ] – FMS and KANBAN . 170
6.11 P=?[F[0,τ]φ] – PSS and WC . 171
6.12 S=?[φ] – AKAP . 174
6.13 S=?[φ] – CLOCK and ERK . 175
6.14 S=?[φ] – MAPK and LEV . 176
6.15 S=?[φ] – FMS and KANBAN . 177
6.16 S=?[φ] – PSS and WC . 178
6.17 S=?[φ] – KANBAN multi-threaded Jacobi 179
6.18 R{̺}=?[Fφ] – AKAP . 181
6.19 R{̺}=?[Fφ] – CLOCK and ERK . 182
6.20 R{̺}=?[Fφ] – MAPK and LEV . 183
6.21 R{̺}=?[Fφ] – FSM and KANBAN . 184
6.22 R{̺}=?[Fφ] – PSS and WC . 185

6.23 P{̺}=?[F[τ,τ][0,y]
φ] – AKAP . 188

6.24 P{̺}=?[F[τ,τ][0,y]
φ] – CLOCK and ERK . 189

6.25 P{̺}=?[F[τ,τ][0,y]
φ] – MAPK and LEV . 190

6.26 P{̺}=?[F[τ,τ][0,y]
φ] – FMS and KANBAN . 191

6.27 P{̺}=?[F[τ,τ][0,y]
φ] – PSS and WC . 192

6.28 P=?[F[τ,τ]φ] – FMS and WC – GSPN versus SPN 194

7.1 Running example - Rate matrix structure 197

viii

List of Examples

1 Running example – PN . 14
2 Running example – IDD . 27
3 Running example – CTL . 32
4 Running example – GSPN . 41
5 Running example – SPN . 46
6 Running example – SRN . 52
7 Running example – SRN approximation . 56
8 Running example – CSRL . 75
9 Kronecker products . 80
10 MTBDD representation of a matrix . 84
11 Running example – State indices . 89
12 Running example – State transitions . 101
13 Transition relation partitions . 139
14 ANDL – SPN . 201
15 ANDL – Reward structure . 202

ix

List of Algorithms

1 Reachability graph construction . 10

2 Build IDD . 19

3 ROIDD operation – Fire . 24

4 Forward state space construction . 25
5 Interface – Functions . 29

6 Extract – Atomic proposition . 30

7 CTL model checking algorithm . 34

8 Uniformization . 59

9 Jacobi – Steady state . 63
10 Gauss-Seidel – Steady state . 64

11 CSRL model checking algorithm . 67

12 Matrix-Vector multiplication – CSR . 79

13 Enumerate – State indices . 90

14 Init states . 91
15 Select states . 93

16 Select states – Less than . 95

17 Enumerate – State transitions . 99

18 Print the rates . 102

19 Enumerate – Entries . 105
20 Initialization – Path extensions . 107

21 Enumerate state transitions – Generalized . 115

22 Enumeration policy – BLOCK/ALL . 117

23 Enumeration policy – LINE . 123
24 Enumeration policy – MULTI . 124

25 Uniformization – Refined . 135

26 Matrix processor . 137

27 Lexicographic partition . 142

28 Generic solver . 143
29 Initialization functor – Uniformization . 144

30 Gather functor – Uniformization . 145

31 Result preparation functor – Uniformization 146

32 Evaluation of a CSL formula . 147

x

List of Algorithms

33 Computation of random switches . 149
34 Vector-Matrix multiplication – GSPN . 151
35 Matrix-Vector multiplication – GSPN . 152

xi

List of Tables

2.1 RGN sizes for biologic models . 12
2.2 RGN sizes for technical models . 13
2.3 RGN sizes for the running example . 15

3.1 State space sizes GSPN vs. SPN semantics 43
3.2 State indices for the running example . 46
3.3 Time intervals CSRL Next operator . 69
3.4 CSRL to CSL mapping . 73

5.1 Overview numerical solvers . 155

6.1 Influence of the variable order . 159
6.2 Overview of experiments P=?[F[τ,τ]φ]. 161
6.3 Overview of experiments P=?[F[0,τ]φ]. 166
6.4 Overview of experiments S=?[φ]. 174
6.5 Overview of experiments R{̺}=?[Fφ]. 180

6.6 Overview of experiments P{̺}=?[F[τ,τ][0,y]
φ]. 187

xii

List of Abbreviations

AKAP A-kinase Anchoring Protein - Case study.

BDD Binary Decision Diagram.

BSCC Bottom Strongly Connect Component.

CLOCK Circadian Clock - Case study.

CSL Continuous Stochastic Logic.

CSR Compressed Sparse Row.

CSRL Continuous Stochastic Reward Logic.

CTL Computation Tree Logic.

CTMC Continuous-time Markov Chain.

DD Decision Diagram.

DTMC Discrete-time Markov Chain.

ERK RKIP Inhibited ERK Pathway - Case study.

FMS Flexible Manufacturing System - Case study.

GS Method of Gauss-Seidel.

IDD Interval Decision Diagram.

JAC Method of Jacobi.

KANBAN KANBAN System - Case study.

LIDD Labeled Interval Decision Diagram.

xiii

Acronyms

LTL Linear Temporal Logic.

MDD Multi-valued Decision Diagram.

MRM Markov Reward Model.

MTBDD Mutli-terminal Binary Decision Diagram.

MTDD Mutli-terminal Decision Diagram.

MV Functor class - MatrixVector.

MVE Functor class - MatrixVectorEmbedded.

MxD Matrix Diagram.

OIDD Ordered Interval Decision Diagram.

OLIDD Offset-labeled Interval Decision Diagram.

OLROIDD Offset-labeled reduced ordered Interval Decision Diagram.

PGS Pseudo Gauss-Seidel.

PN Petri Net.

PSS Polling Server System - Case study.

ROIDD Reduced ordered Interval Decision Diagram.

RS Functor class - RowSum.

SCC Strongly Connected Component.

SPN Stochastic Petri Net.

SRN Stochastic Reward Net.

VM Functor class - VectorMatrix.

WC Workstation Cluster - Case study.

ZBDD Zero-suppressed Binary Decision Diagram.

xiv

List of Symbols

2A The power set of the set A.

An The set of n-ary tuples containing elements of the set A.

C A CTMC.

CA A CTMC approximating an MRM.

E The exit rates of a CTMC.

F The set of transition functions of a Petri net.

GS The LDD representation of a set of states S.

I A CSRL time interval.

J A CSRL reward interval.

M An MRM defined by a CTMC C and a reward structure ̺.

NA An SPN inducing the approximating CTMC CA.

N̺ A Petri net representing a reward structure ̺.

P The set of places of a Petri net.

T The set of transitions of a Petri net.

TI The set of immediate transitions of a GSPN.

TS The set of timed transitions of a GSPN.

V The set of arc weights of a Petri net.

VI The set of inhibitor arc weights of a Petri net.

VR The set of read arc weights of a Petri net.

X A stochastic process or a set of variables1.

Xτ The value of the random variable with index τ .

A The CTL ALL-quantor.

1context-depending

xv

Glossary

E The CTL Exists-quantor.

F The Finally-operator.

G The Globally-operator.

ĜS The LIDD representation of the reachable states S.
P The one-step probability matrix of a CTMC.

PU The discretized uniformization matrix of a CTMC and a constant λ.

Q The generator matrix of a CTMC.

R The rate matrix of a CTMC.

P⋈p The CSRL proability operator.

υMα,τ,y The distribution of the accumulated reward for the MRM with initial distribu-
tion α for te time point τ and the reward bound y.

πCα The steady state distribution of the CTMC C with initial distribution α.

πCα,τ The transient distribution of the CTMC C with initial distribution α at time
point τ .

ρGS
(s) The path representing the state s in the IDD GS .

Φ A CTL or CSRL state formula.

Ψ A CTL or CSRL state formula.

RGN The reachability graph of a Petri net.

RNs0 The set of reachable states of a Petri net.

S The set of reachable states.

S⋈p The CSRL proability operator.

S An arbitrary set of states.

SN The potential states space of a Petri net.

U The Until-operator.

α A probability distribution.

χA The characteristic function of a set A.

ιCα,τ The cumulative sojourn times of the CTMC C with initial distribution α at time
point τ .

ft The function of a Petri net transition t which represents a rate for timed transitions

xvi

Glossary

and a weight for immediate transitions.

v̂ An LIDD node.

ıs The lexicographic index of state s.

λ The uniformization constant.

B The set continaing 0 and 1.

N The natural numbers.

R≥0 The positive real numbers.

BN The transition relation of the reachability graph.

I The set of intervals defined on N.

⊧ The satisfaction relation.

φ A CTL or CSRL state formula.

π The steady state distribution or the set of DD variables1.

ψ A CTL or CSRL path formula.

σ A path in terms of a state sequence.

s A state of a Petri net.

s(p) The number of tokens on place p in state s.

̺ A reward function/structure.

●n The set of pre-nodes of node n.

n● The set of post-nodes of node n.

t A Petri net transition.

v An IDD node.

y A reward bound.

xvii

1 Introduction

The world we are living in and which we are changing continuously by technical
progress is inherently complex. Nevertheless or even for this reason humans are al-
ways eager to understand this complexity. On the one hand we want to understand
natural phenomena and processes as the weather (to predict it) or biochemical systems
as cells, organs or whole organisms (to heal diseases). On the other hand humans them-
selves develop and construct complex systems. By now our everyday life is indirectly
or directly infused by them.

In most domains, as for instance energy supply, health-care or aviation, such systems
have necessarily to be safe and dependable. Failures may cause huge economical or
ecological damage or in the worst case let people die. However, it is challenging to
achieve and prove safety and dependability requirements or at least to measure the
risk of a system failure; there is still research in many directions. Formal verification
is one of the techniques which may sometimes help to achieve this goal. Its core idea
is to derive a model of the system to be studied or developed by abstracting details.
The resulting model represents only a particular view to the system. An algorithm is
then applied to determine, at best automatically, whether some specified properties are
satisfied. In general there is a multitude of more or less formal description languages,
which may be used dependent on the nature of the systems and the characteristics of
the properties.

Continuous-time Markov chains (CTMC) represent a description formalism which
may be used if the investigated model features the following properties:

� a discrete nature of states

� a continuous time evolution

� memorylessness.

Such systems can be found in many domains with practical relevance, as for instance
performance or reliability evaluation and systems biology.

CTMCs are a well studied subject and due to their properties there is a batch of
numerical analysis methods [112] which qualify them for formal verification. A CTMC
represents the behaviour of the actual system model and in general one will not write
it from scratch. An established approach is to generate the CTMC from a high-level

1

1 Introduction

model of the system. Formalisms widely used for this purpose are generalized stochastic
Petri nets (GSPN) [84], and stochastic process algebras [62] as for instance PEPA [64].
A comparison of PEPA and GSPN can be found in [48]. Petri nets enjoy the following
nice properties making them very interesting for modeling and analysis of concurrent
systems:

� The graphical representation of Petri nets allows even non-experts an easy and
intuitive modelling. It is possible to execute a Petri net model by playing the
token game. Although this can not be seen as a formal verification technique, it
often increases the understanding of a model significantly.

� Petri nets represent a description language with formal semantics.

� There is a rich supply of analysis techniques based on the state space or on the
actual net structure.

� There are several tools available supporting all these aspects.

Formal verification of a system requires further to provide a specification of the relevant
system properties formulated in some formal language.

Temporal logics are such a family of languages. The technique to determine the satis-
faction of a property specified in some temporal logic is known as model checking [38].
In the last 25 years temporal logics and related model checking algorithms have been
developed for different types of models and applications, e.g. by Clarke and Emerson
with the Computation Tree Logic (CTL) [36].

The bottleneck of this promising technique is the famous state space explosion, which
is especially caused by the concurrency of single system components. For even small-
sized models, the number of reachable states can be huge. It has be shown that in
general the number of reachable states can not be bounded by a primitive recursive
function with regard to the size of the Petri net [99].

Thus several methods have been developed which avoid the state space explosion by
applying partial order or symmetry-based reduction techniques or which just accept
the problem and make use of advanced data structures to compactly encode sets of
states.

The latter techniques are called symbolic as they represent state sets by means of
characteristic functions which are in turn represented by variants of decision diagrams.
Reduced Ordered Binary Decision Diagrams (ROBDD) [18] are the first and probably
the most famous class of decision diagrams which provide a canonical representation
for Boolean functions. First model checking techniques which rely on the symbolic
approach [86] have been proposed for CTL and allow a qualitative reasoning.

The investigation of quantitative model checking for Markov chains started in [54]

2

and [6] with probabilistic adaptions of CTL, namely the Probabilistic Computation
Tree Logic (PCTL) and the Continuous Stochastic Logic (CSL). In the last 10-15
years dedicated model checking algorithms, especially for CTMCs and CSL, have been
developed and implemented. Most of them are based on numerical standard techniques
for Markov chains and thus on an in principle very simple operation, the multiplication
of a matrix and a vector. However, in this setting the mentioned state space explosion
is tightened by two aspects:

1. The real-valued vectors have the size of the set of system states and we are talking
of millions or billions of states (depending on the analysis method several vectors
are required).

2. The matrix itself is a quadratic real-valued matrix in the same dimension. Al-
though in most cases the matrix is highly sparse (the majority of the possible
entries is zero) we may have to deal with billions of non-zero entries.

Consequently researchers adapted symbolic techniques to address these problems. The
matrix representation based on Multi-terminal Binary Decision Diagrams (MTBDD)
[39] which are used for instance in the probabilistic model checker PRISM [78] can be
mentioned as one successful example. However, there are scenarios where MTBDD-
based techniques and also alternatives as Kronecker algebraic approaches suffer from
the special system characteristics.

Motivation and contribution. In this thesis I develop an alternative approach to
enumerate the entries of the rate matrix of a CTMC and apply it to its numerical
solution and CSL model checking. I go one step further and consider also Markov
reward models (MRM) in terms of stochastic reward nets (SRN) and the Continuous
Stochastic Reward Logic (CSRL). The proposed approach is an on-the-fly computation
of the matrix given a symbolic state space representation and a high-level description
of the model.

The used high-level modeling formalism is basically stochastic Petri nets. The sym-
bolic state space encoding is based on Reduced Ordered Interval Decision Diagrams
(ROIDD), which generalize ROBDDs. They are proveningly qualified to compactly
encode huge state sets of bounded Petri net models [115, 61, 110].

My thesis is especially motivated by research activities in the field of systems biology.
Biological systems have been modeled as stochastic Petri nets and have been analyzed
with PRISM in [51] and [23]. It turned out that for these models PRISM’s hybrid
MTBDD engine does not scale for the following reasons:

1. The number of decision diagram variables increases with the value range of the
model variables due to the binary encoding of their values.

3

1 Introduction

2. The compactness of the matrix representation and thus the efficiency of related
operations is sensitive to the number of distinct matrix entries.

Alternatives as approaches based on Kronecker expressions may fail as well in these
cases as they require structured models.

The contributions of my thesis are the following:

� I present a new efficient approach for the numerical analysis of stochastic Petri
nets which is based on the on-the-fly computation of the rate matrix given a
symbolic state space encoding and a Petri net specification of the model.

� I provide an implementation of the discussed approach resulting in the tool
MARCIE. The distinguishing features of the tool are:

– It outperforms related tools for many published case studies.

– It supports the Continuous Stochastic Reward Logic as the only available
symbolic model checker.

– It is the only public, available symbolic tool offering multi-threaded numer-
ical engines to analyse SPNs and SRNs and thus CTMCs and MRMs.

� To evaluate the implementation I provide a considerable comparison with the
probabilistic model checker PRISM. Here I show that my approach outperforms
that of PRISM for large state spaces.

The potential of the presented approach has been shown in [108, 105, 60, 109].

Organization The thesis is organized as follows:

Chapter 2 provides the necessary background material. Here I will give a brief and
formal introduction to Place/Transition nets with extended arcs. I will sketch the
basic ideas of symbolic state space analysis of bounded Petri nets. Sets of states
will be encoded as Interval Logic Functions which in turn will have a canonical
representation by means of Reduced Ordered Interval Decision Diagrams. This
chapter presents further the basics of CTL model checking as an advanced evalu-
ation technique being successfully applied for the introduced Petri net formalism.

Chapter 3 introduces (generalized) stochastic Petri nets and stochastic reward nets
and their semantics: Continuous-time Markov chains and Markov reward models.
I will further sketch a representation of stochastic reward nets which enables a
simple approximation by stochastic Petri nets. After a brief overview of relevant
numerical methods for the computation of important probability distributions, I
present a CSRL model checking approach which maps the actual problem to CSL
model checking based on the presented SRN approximation. The ingredients of

4

the approach are not knew, but they have not been combined and formalized in
the way I will present it here.
This part motivates in fact the data structures and algorithms which I will discuss
in Chapter 4.
The CSRL model checking approach is the first contribution of my thesis.

Chapter 4 is devoted to advanced matrix representation techniques for Markov chains.
I give first a short overview of existing approaches alleviating the famous state ex-
plosion problem in the context of exact numerical solution techniques for Markov
chains, which are basically the use of Multi-terminal (Binary) Decision Diagrams
and the use of Kronecker algebraic expression to encode the rate matrix.

The drawbacks of these techniques have motivated the main contribution of my
thesis, which I present in the second part of this chapter; a new approach to
enumerate on-the-fly the entries of the computation matrix, based on a symbolic
states space encoding with ROIDDs. The idea of an on-the-fly computation of
the matrix entries has been discussed in the literature and is the foundation of
several implementations, but to the best of my knowledge there is no adaption
to a symbolic setting.

Chapter 5 discusses some important implementation details of the CSRLmodel checker
in MARCIE, which is based on the new on-the-fly technique, namely the generic
design of the numerical solvers and the feature of multi-threading. This first im-
plementation of a symbolic model checker for CSRL is the third contribution of
this work.

Chapter 6 presents an experimental evaluation of the developed technique using tech-
nical and biological models. A large number of experiments has been made, prov-
ing empirically the efficiency of the approach. To allow a judgement of the results
I provide a comparison with the widely used probabilistic model checker PRISM.

Chapter 7 This chapter summarizes the achieved results and concludes with some
ideas for future research.

5

1 Introduction

6

2 Petri Nets

Petri nets is a formalism to model a qualitative perspective of concurrent systems.
They provide an intuitive, graph-based representation with formal semantics. A Petri
net is a directed graph comprising places (graphic:), which store indistinguishable
items, called tokens (graphic: ●) and transitions (graphic:), which destroy and create
tokens on those places to which they are connected by arcs (graphic:) following the
so-called firing rule. Places usually represent passive system components. Transitions
are used to model active components or events. The theoretical foundations trace
back to the thesis of Carl Adam Petri in 1962. In the past numerous extensions were
published, which augment the classical Petri net formalism by new arc types, define
different semantics by changing the firing rule, introduce a notion of time or even
combine all these issues.

In this work I consider stochastic Petri nets (SPN) [93]. As an important high-level
formalism for the specification of Continuous-time Markov chains (CTMC), they are
frequently used in performance and reliability analysis [104]. Starting with [52] SPNs
became also an important tool for the modeling and analysis of biological networks
[23, 51, 94, 82].

Before introducing SPN I will give a definition of Place/Transition nets with extended
arcs similar to [115]. In contrast to this work I will not consider reset arcs. In the
following I call such nets simply Petri nets (PN), or nets for short.

2.1 Petri Nets

A Petri net is a tuple N = [P,T,V,VR, VI , s0] where P is a finite set of places, T a finite
set of transitions, V ∶ P ×T ∪T ×P → N the set of arcs with their weights, VR ∶ P ×T → N

the set of read arc (graphic:) weights, and VI ∶ P × T → N the set of inhibitor
arc (graphic:) weights. A zero weight means that the arc does not exist. The
places are containers for indistinguishable items, called tokens. A mapping s ∶ P → N

associates to each place an amount of tokens and represents a state (marking) of the
Petri net. s0 is the initial state.

A Petri net is a bipartite graph. The two different node types represent passive (places)

7

2 Petri Nets

and active (transitions) elements of the model. For a node n we let ●n = {n′ ∣ V (n′, n) >
0 ∨ VI(n

′, n) > 0 ∨ VR(n
′, n) > 0} denote its set of pre-nodes and n● = {n′ ∣ V (n,n′) >

0∨ VI(n,n
′) > 0 ∨ VR(n,n

′) > 0} its set of post-nodes. The consideration of VR and VI
is only meaningful for transitions. We further generalize these definitions for a node
set N as

●N = ⋃
n∈N

●n and N ● = ⋃
n∈N

n●.

The transitions represent events which consume and produce tokens on the places,
to which they are connected by an arc. This implies in general a state change. The
arc weights given by V define the flow relation for the tokens. The occurrence of an
event is represented by the firing of the related transition. When a transition fires,
it consumes on all its pre-places as many tokens as defined by the related ingoing
arc weights and produces as many new tokens as defined by the related outgoing arc
weights. A transition is enabled if on all its pre-places there is a sufficient amount of
tokens, regarding to the connected arcs. Inhibitor arcs and read arcs allow to define
additional constraints concerning the enabledness of a transition without representing
an actual flow of tokens. I will give a more formal description.

Transition firing. For a transition t ∈ T the following mappings define the consump-
tion and production behaviour and possible constraints, which can also be represented
as vectors from Z

∣P ∣:

t+(p) = V ((t, p))

t−(p) = V ((p, t))

tR(p) = VR((p, t))

tI(p) =
⎧⎪⎪
⎨
⎪⎪⎩

VI((p, t)) if VI((p, t)) > 0

∞ otherwise

and ∆t(p) = t+(p) − t−(p). A transition t is enabled in a state s if

s ≥ t− and s < tI and s ≥ tR,

where < and ≥ represent the element-wise application of the related operation.
enabled(s) = {t ∈ T ∣ s ≥ t− and s < tI and s ≥ tR} is the set of transitions,
enabled in state s. If t is enabled in state s, it may fire (there is no force to do so).

The firing leads to the state s′ = s+∆t and we can observe the state transition s
tÐ→ s′.

We say that s′ is reachable in one step from s. The reachability relation s
∗Ð→ s′ is the

transitive closure of the one-step reachability. It defines RN(s) = {s
′ ∣ s

∗Ð→ s′},
the set of states which are reachable from a given state s in the Petri net N . RN(s0)
denotes the set of reachable states of the Petri net N .

8

2.1 Petri Nets

Paths. A path σ = s0, s1, s2, . . . is any finite or infinite sequence with ∀si,∃t ∈ T ∶
si

tÐ→ si+1. σ[i] gives the state si. The set Pathss = {σ ∣ σ[0] = s} contains all paths
starting in s. The reachability of a state s implies the existence of a path σ starting
in s0 containing the state s.

Conflicts and concurrency. It is possible that the firing of an enabled transition t in
some state s destroys the enabledness of an other transition t′. This can happen if both
transitions share at least one pre-place. In this case one speaks of a structural conflict.
The transitions t and t′ compete for the tokens on the shared pre-place(s). However,
it is state-depending whether a real competition situation, a dynamic conflict, occurs.
If enabled transitions do not affect each other, they fire concurrently. Formally, we
consider the transitions t, t′ to be

� in a structural conflict if:
●t ∩ ●t′ ≠ ∅.

� in a free-choice conflict if:
●t = ●t′

If it holds that V (p, t) = V (p, t′) (homogeneity), t and t′ are enabled or disabled
simultaneously.

� in a dynamic conflict in state s if:

t, t′ ∈ enabled(s) ∧ t′ /∈ enabled(s − t−) ∧ t /∈ enabled(s − t′−).
� concurrently enabled in state s if:

t, t′ ∈ enabled(s) ∧ t′ ∈ enabled(s − t−) ∧ t ∈ enabled(s − t′−).

Reachability graph. The set of reachable states RN(s0) and the set of state tran-

sitions BN = {(s, t, s′) ∣ s, s′ ∈ RN(s0) ∧ s tÐ→ s′} constitute the reachability graphRGN = [RN(s0),BN] which represents the so-called interleaving semantics of the
Petri net. The interleaving semantics considers all possible orders of the firing of con-
currently enabled transitions. It is not locally decidable at the first glance, whether the
outgoing arcs of a state in the reachability graph represent concurrent or conflicting
transitions. The consideration of all possible orders of events (transitions firing) is one
source of the famous state space explosion problem.

9

2 Petri Nets

Strongly connected components. A state set S′ ⊆ RN(s0) is called strongly con-

nected if for all states s, s′ ∈ S′ it holds that s
∗Ð→ s′ and s′

∗Ð→ s. In this case S′ is
called a strongly connected component (SCC). S′ is maximal, if for each s′′ /∈ S′ the
component S′ ∪ {s′′} is not a SCC. There is often special interest in the bottom (or
terminal) SCCs (BSCC). S′ is a BSCC if once S′ has been reached, it is impossible

to leave S′. More formally: ∀s ∈ S′, /∃ s′ /∈ S′ ∶ s ∗Ð→ s′. The set B = {C ∣ C is BSCC}
contains all BSCCs of the RGN and the states in ⋃Ci∈BCi are called recurrent , all
others transient .

Algorithm 1 (Reachability graph construction)

1 func constructRG(N = [P,T,V,VR, VI , s0] : Petri net)
2 U ∶= {s0}
3 RN (s0) ∶= {s0}
4 BN ∶= ∅
5 while U ≠ ∅ do
6 s ∶=selectOneOf(U)
7 U ∶= U ∖ {s}
8 forall t ∈ enabled(s) do
9 s′ ∶= s +∆t

10 if s′ /∈RN (s0) then
11 RN(s0) ∶=RN(s0) ∪ {s′}
12 U ∶= U ∪ {s′}
13 fi
14 BN ∶= BN ∪ {(s, t, s′)}
15 od
16 od
17 return [RN (s0),BN]
18 end

Behavioural properties. The reachability graph represents the behaviour of the Petri
net as it contains all thinkable executions of it. It an be used to determine important
behavioural Petri net properties:

� If the RGN is finite, the net is bounded. In this case there is an upper bound
k ∈ N for the number of tokens for all places in all reachable states. We speak also
of the k-boundedness of the Petri net. In this thesis I will only consider

bounded Petri nets.

� If the RGN does not contain nodes without outgoing arcs, the underlying Petri
net is free of dead states. In this case the state transition relation is total.

10

2.1 Petri Nets

� If the RGN is strongly connected, it is always possible to return to the initial
state. The property is known as reversibility.

� If the RGN contains in all BSCCs for all Petri net transitions a state transition,
the underlying net possesses the liveness property, as it is always possible to
enable a transition in the future.

To determine reversibility and liveness we need to know the SCCs, in particular the
set B of the reachability graph. A simple algorithm for this purpose is Tarjan’s algo-
rithm [114] which has, as the RGN construction (Algorithm 1) itself, a complexity ofO(∣RN(s0)∣ + ∣BN ∣). However, the linear effort should not hide the fact that in prac-
tice an explicit treatment of states and state transitions is not feasible due to the state
space explosion problem.

Table 2.1 and Table 2.2 show the size of reachability graphs of several biological and
technical case studies. For a brief description of the case studies, I refer to the Appendix
A.2. The models can be easily scaled by changing the initial marking or the weights
of inhibitor arcs modeling the capacity of certain places. Therefor one has to assign
a value to the model parameter N . Each net specifies in fact a family [25] of Petri
nets, sharing the same graph structure. An alternative approach to scale models is
to change their actual graph structure, generally by duplicating certain net elements.
A comfortable high-level formalism to specify models with this kind of scalability is
colored Petri nets [82]. The PSS model exploits this type of scalability. The parameter
N specifies in this case the number of structurally identical clients.

The figures in Table 2.1 and Table 2.2 show that even a moderate increase of the
value of N causes an explosion of the states and state transitions in all models. An
explicit storage and analysis of such graphs becomes quickly a challenging, in many
cases an infeasible, problem. For this reason I will sketch in the next section a class of
established encoding techniques which are known as symbolic state space techniques.

11

2 Petri Nets

model N ∣RN(s0) ∣ ∣ BN ∣

AKAP

3 1,632,240 12,691,360
4 15,611,175 141,398,580
5 74,612,328 734,259,344
6 386,805,104 4,116,788,172
7 1,286,458,560 19,274,793,024
8 4,729,951,950 75,196,829,970

ERK

20 1,696,618 15,609,594
30 15,609,594 152,964,416
40 79,414,335 795,599,588
50 283,887,981 2,895,687,860
60 811,375,152 8,377,511,982
70 1,982,528,598 20,650,564,704
80 4,313,721,069 45,232,648,776

CLOCK

10 644,204 6,766,320
20 16,336,404 183,032,640
30 114,516,604 1,312,110,960
40 463,424,804 5,370,593,280
50 1,380,101,004 16,104,351,600
60 3,378,385,204 39,604,537,920

MAPK(LEV)

6 1,373,026 15,015,264
8 10,276,461 125,012,862
10 52,820,416 690,183,846
12 210,211,339 2,891,933,226
14 694,661,670 9,936,133,506
16 1,992,860,377 29,387,897,076
18 5,115,081,124 77,305,070,556

Table 2.1: Size of the reachability graphs for different configurations of Petri net mod-
els of the biological systems given in Appendix A.2.1.

12

2.1 Petri Nets

model N ∣RN(s0) ∣ ∣ BN ∣

FMS

2 810 3,699
6 537,768 4,205,670
8 4,459,455 38,533,968

10 25,397,658 234,523,289
12 111,414,940 1,078,917,632
14 403,259,040 4,047,471,180
16 1,259,146,701 12,996,555,981
18 3,497,140,570 36,917,371,811

KANBAN

2 4,600 28,120
4 454,475 3,979,850
6 11,261,376 115,708,992
8 133,865,325 1,507,898,700

10 1,005,927,208 12,032,229,352
12 5,519,907,575 68,883,925,110

PSS

5 240 800
10 15,360 89,600
15 737,280 6,144,000
20 31,457,280 340,787,200
25 1,258,291,200 16,777,216,000

WC

8 2,125 12,930
16 7,821 49,410
32 29,965 193,026
64 117,261 762,882
128 463,885 3,033,090
256 1,845,261 12,095,490
512 7,360,525 48,308,226
1024 29,401,101 193,085,442

Table 2.2: Size of the reachability graphs for different configurations of Petri net mod-
els of the technical systems given in Appendix A.2.2.

13

2 Petri Nets

Example 1

It is time to present the small running example, which I will use throughout
the thesis to explain the introduced formalisms and to illustrate the related
analysis techniques. The Petri net in Figure 2.1 models a simple producer-

b1

b2
req

res

to1

to2

itemreadymsg consume

insert b1

insert b2

produce

choose b1

choose b2

fetch b1

fetch b2

N

N

Figure 2.1: A simple producer-consumer model.

consumer system. The producer is represented by the transition produce ,
which hides a more complicated behaviour. The transition is enabled if the
place ready carries a token. When firing, it produces a token on the place
item and on the place msg . The token on msg signals a self-organizing
storage instance the existence of the produced item. The storage instance
comprises two different buffers, namely b1 and b2 . Which buffer will be
used, is decided non-deterministically. When the decision has been made,
the item is inserted into the chosen buffer, if the buffer is able to store it.
The buffers have finite capacity modeled by the N -weighted inhibitor arcs
connecting the places bi and the transitions insert bi. If the chosen buffer
is full, the producer has to wait.

The consumer is represented by the transition consume . After consuming
an item the consumer sends a request (place req) to the storage instance,
which chooses one of the buffers, fetches an item and provides it to the
consumer on place res .

The storage instance is not really smart, as it chooses a buffer without
checking its fill level. This may block the producer unnecessarily. Please
note that the purpose of the model is only illustration, which will sometimes
require certain local net structures. For this reason the model may appear
somewhat artificial.

We can specify a value for N and can create the reachability graph using

14

2.1 Petri Nets

Algorithm 1. For N = 1 the resulting graph has 32 nodes and 64 arcs.
Since RN(s0) is a SCC and the state transitions are labeled with all Petri
net transitions, we know that the Petri net is bounded, reversible and
live. Table 2.3 shows the size of the reachability graph for different buffer
capacities. For a value of 1000 we already run into trouble, if we use an
explicit representation of the states and state transitions.

N ∣RN(s0) ∣ ∣ BN ∣
1 32 64
10 968 2,530
100 81,608 223,210

1000 8,016,008 22,032,010

Table 2.3: Size of the reachability graphs for different buffer capacities.

☀

15

2 Petri Nets

2.2 Symbolic State Space Representation

A crucial issue in the remainder of my thesis are the compact storage of sets of states of
bounded Petri nets and efficient operations to manipulate state sets. Symbolic states
space representation techniques exploit compact canonical representations of the char-
acteristic functions of state sets by means of Decision Diagrams (DD). They have been
successfully applied in the field of formal verification. In this section I will give a short
introduction to Reduced Ordered Interval Decision Diagrams [102, 113, 115] which
generalize the well-known Reduced Ordered Binary Decision Diagrams [18]. They have
been used to encode marking sets of k-bounded Petri nets. For an elaborated discus-
sion, especially for the realization of specific ROIDD-operations, I refer to [115]. I will
extend the following ROIDD definition in Chapter 4 to realize advanced operations
for an efficient computation of the state transition relation of bounded Petri nets.

Characteristic functions. The characteristic function χA ∶ A∪A→ B for an arbitrary
set A with χA(a) = 1⇔ a ∈ A maps exactly the elements of A to 1. In the scenario
on hand, A ⊆ N∣P ∣ represents a set of states of the Petri net N = [P,T,V,VR, VI , s0] ,
for instance the set of reachable states RN(s0). What is needed is a way to formulate
such characteristic functions and to encode them compactly.

2.2.1 Interval Decision Diagrams

Interval Logic Functions. Interval logic expressions have been introduced in [81] to
describe state sets of Petri nets. Given a finite set of variables X = {x1, . . . , xn} we
define interval logic expressions inductively:

φ ∶= x ∈ [a, b) ∣ ¬φ ∣ φ ∨ φ ∣ φ ∧ φ
whereby ∈ is treated as a symbol, x is a variable from X and I = [a, b) = {x ∈ N ∣ a ≤
x < b} an arbitrary interval on the natural numbers. The set of such intervals is I.
For convenience we give the following short notations:

� x = n ≡ x ∈ [n,n + 1)
� x < n ≡ x ∈ [0, n)
� x > n ≡ x ∈ [n + 1,∞)
� x ≠ n ≡ x ∈ [0, n) ∨ x ∈ [n + 1,∞).

An interval logic expression g induces the interval logic function fg ∶ N∣X ∣ → B which
maps an n-ary tuple of natural numbers to 1 or 0 by replacing each variable xi by

16

2.2 Symbolic State Space Representation

the element ni and evaluating the logic operators. For an interval logic function f =
f(x1, . . . , xn) and a variable xi we define:

� the function fxi=c = f(x1, . . . , xi−1, c, xi+1, . . . , xn) as the cofactor which is the
result of the substitution of xi by the constant c.

� the interval I ∈ I is an independence interval if ∀c, c′ ∈ I ∶ fxi=c = fxi=c′ . For such
an interval the cofactor is the same for all its elements.

� the set P = {I1, . . . , Ik} with Ii ∈ I is an independence interval partition if

– ∀Ii ∈ P ∶ Ii is an independence interval

– ∀Ii, Ij ∈ P ∶ Ii ∩ Ij = ∅
– ⋃1≤i≤k Ii = N

An independence interval partition is called reduced if the union of neighboring inter-
vals does not result in an independence interval. For an interval logic function f and
a variable xi there is a unique reduced interval independence partition Pr. Pr can be
repesented by the ordered sequence b1, . . . , bk such that Pr = {[a1 = 0, b1), . . . , [ak, bk)}.

Reduced Ordered Interval Decision Diagrams. An Interval Decision Diagram (IDD)
is a rooted, directed and acyclic graph with nodes having an arbitrary number of out-
going arcs. Each arc is labelled with an interval from I. The intervals of the outgoing
arcs of each IDD node define an interval partition. There are two nodes without out-
going arcs: the terminal nodes, labelled with 1 and 0. Each IDD node gets associated a
variable and we assume that the variables occur in the same order on each path from
the root to a terminal node – we get ordered IDDs (OIDDs). If the outgoing arcs of
each non-terminal node in an OIDD define a reduced independence interval partition
and the OIDD does not contain isomorphic subgraphs we have a reduced ordered IDD
(ROIDD).

I give a formal definition conform to [115]. For a set of variables X = {x1, . . . , xn}, a
Reduced Ordered Interval Decision Diagram is the tuple G = [V,E, v1,L,π] where:

� V = VN ∪ VT is a finite set of nodes possessing the non-terminal nodes VN and
the terminal nodes VT with (VT ∩ VN = ∅).

� L ∶ (VN → X) ∪ (VT → B) is a labeling function which assigns to each non-
terminal node a variable from X and to the terminal nodes the values 0 and
1.

� E ⊂ VN × I × V is a total relation specifying the arcs. Total means that each
non-terminal node has at least one outgoing arc.

� v1 ∈ V is a unique node without ingoing arcs. v1 is called the root.

17

2 Petri Nets

� π is a fixed order of the variables in X.

Given the functions

� part(v) returns the interval partition P = {I1, . . . , Ik} induced by the labels of
the outgoing arcs of v

� partj(v) returns the label of the j-th outgoing arc of v, the interval Ij

� children(v) returns the target nodes C = {c1, . . . , ck} of the outgoing arcs of v

� childj(v) returns the target node cj of the j-th outgoing arc of v

the following conditions must hold:

� the graph [V,E] is a directed acyclic graph (DAG)

� for each path v1, . . . , vn+1 with vn+1 ∈ VT it holds that ∀1 ≤ i < n ∶ (vi, ⋅, vi+1) ∈ E
and L(vi) <π L(vi+1)

� for each non-terminal node v with L(v) = xi
fv(xi, . . . , xn) = ⋁

1≤j≤k
xi ∈ partj(v) ∧ fchildj(v)

is an interval logic function and part(v) is an independence interval partition
with respect to fv and xi.

� the terminal node v defines the interval logic function fv = L(v)
� the graph [V,E] does not contain nodes v, v′ which are isomorphic.

The given definition immediately answers the question how to generate the ROIDD F
as the canonical representation of an interval logic function f . We have seen that the
interval partition of a node induces an interval logic function fv.

Using the Bool-Shannon expansion, each interval logic function f over the variables
X = {x1, . . . , xn} can be rewritten as

f = ⋁
Ij∈P

xi ∈ Ij ∧ fxi∈Ij

for a variable xi subject to the constraint that P is a reduced independence interval
partition.

For a fixed variable order π, the recursive application of the Bool-Shannon expansion
for all variables creates an Ordered Interval Decision Tree from the bottom. If we
include a procedure which prevents the insertion of nodes, which represent isomorphic
subgraphs, we get an ROIDD. The procedure to build an ROIDD from an interval logic
function is given in Algorithm 2. It performs such an exhaustive expansion. Figure 2.2
shows an interval logic function and its ROIDD representation.

18

2.2 Symbolic State Space Representation

Algorithm 2 (Build IDD)

1 UniqueTable ∶= new(HashTable)
2 max ∶= 2
3 func MakeNode (x : variable, P = {I1, . . . , Ik}, C = (c1, . . . , ck))
4 while ∃ cj , cj+1 ∈ C such that cj = cj+1 do
5 C := C ∖ cj+1
6 Ij := Ij ∪ Ij+1
7 P := P ∖ Ij+1
8 od
9 if ∣P ∣ = 1 then return c1 fi

10 res := UniqueTable[x , P , C]
11 if res ≥ 0 then return res fi
12 nodesInIDD := nodesInIDD + 1
13 UniqueTable[x , P , C] := nodesInIDD
14 return nodesInIDD
15 end
16

17 func Build(F ,i)
18 if i > ∣π∣ then
19 if F = false then return 0 else return 1 fi
20 else
21 P ∶= getPartition(F , i)
22 C ∶= ()
23 for 1 ≤ j ≤ ∣P ∣ do
24 vj ∶= Build(F(i ,getNumberOf(P, j)), i + 1)
25 insert(C , vj);
26 od
27 return MakeNode(i ,P ,C)
28 fi
29 end
30

31 proc BuildIDD(F : IntervalLogicFunction,π : variable order)

32 GF ∶= new(ROIDD)
33 GF .root ∶= Build(F ,1)
34 return GF

35 end

19

2 Petri Nets

p1

p2

0 1

[3,4)

[1,2) [4,oo)

[1,3)[0,1) [4,oo)

[2,4)

Figure 2.2: ROIDD representation of the interval logic function f(p1, p2) = p1 ∈[1,∞) ∨ p1 ∈ [3,4) ∧ p2 ∈ [2,4).

As an efficient implementation of a decision diagram package can bee seen as basic
knowledge, I will not provide here a detailed discussion. For the ROIDD-specific details
I refer again to [115].

However, I want to mention two crucial efficiency issues, which are important for the
remainder:

� Variable order. It is well known that the variable order has an decisive impact
on the size and thus on the efficiency of related operations for decision diagrams.
Unfortunately, the problem of finding an optimal order is NP-complete. Hence
a widely used strategy is to deploy heuristics to precompute a static variable
order. The ROIDD package, my thesis is based on, considers the heuristic from
[95].

� Shared Decision Diagrams. The idea of this technique has been originally
introduced for ROBDDs in [17]. It merges the UniqueTable and the DAGs (ac-
tually the set of nodes) of several decision diagram instances. We can extend the
given ROIDD definition as follows:

– the DAG [V,E] may contain several nodes without ingoing arcs

– each node is a ROIDD root.

In the following I will use the term IDD for short, although I always consider shared,
reduced and ordered IDDs.

20

2.2 Symbolic State Space Representation

2.2.2 State Space Representation for Petri Nets

In the remainder of this thesis, IDDs are used to encode state sets of bounded Petri
nets. In this section I will sketch the basic ideas, algorithms and implementation con-
cepts of an IDD-based state space analysis of bounded Petri nets, again conform to
the presentation in [115]

The fundamental isomorphism. The base of the symbolic state space analysis ap-
proach is the isomorphism of a Boolean algebra [B,∨,∧,¬,0,1], whereB is an arbitrary
set and a set algebra [2SN ,∪,∩, ,̄∅, SN], which is known as the Stone representation
theorem for Boolean algebras. In the scenario on hand we consider a Petri net with
n places and define B as the set of possible n-ary interval logic functions, where the
places are the variables, and SN = N

n is the set of all possible states of the net N . What
is needed is an injective mapping from B to 2SN which maps an interval logic function
f ∈ B to S ⊆ SN . We call the interval logic function f the characteristic function of S
and denote it as χS. Therefor we can describe sets of states and especially related set
operations by interval logic functions. For the state sets S1 and S2 we have

� S1 ∪ S2 ≡ χS1∪S2
= χS1

∨ χS2

� S1 ∩ S2 ≡ χS1∩S2
= χS1

∧ χS2

� S1 ≡ χS1
= ¬χS1

.

I have recapped IDDs as a canonical representation of interval logic functions providing
also the required unary and binary operations. However, an efficient state space anal-
ysis of bounded Petri nets has to consider also the transitions between the reachable
states, which are defined by the firing of the Petri net transitions.

State transitions. If we use a state transition just to determine the related successor
state we can think of an implicit usage. If we are interested in the state transition
itself, for instance if some additional measure is associated to it, we use it explicitly.

A symbolic representation of the state transition relation which permits explicit access
can be achieved through characteristic functions which encode a binary relation R ⊆
S×S′. Therefor we consider two disjoint sets of variables {x1, . . . , xn} and {x′1, . . . , x′n}
and define the characteristic function of R as

χR(x1, . . . , xn, x′1, . . . , x′n) = 1
⇔ ∃(s, s′) ∈ R ∶ χs(x1, . . . , xn) = 1 ∧ χs′(x′1, . . . , x′n) = 1.

I will come back to this idea in Section 4.2.2. For now we only require an implicit use
of state transitions, as our concern is the state space construction.

21

2 Petri Nets

We define the one-step reachability relation in terms of the firing of Petri net transi-
tions. For a given state set S we are interested in S′, the states reachable by firing the
transition t in any state in S, and we define the operation

Fire(S, t) = {s′ ∈ SN ∣ s ∈ S ∶ s
tÐ→ s′}.

We get the complete set of successor states of a state set S, if we take into account all
transitions. The related operation is

Img(S) = {s′ ∈ SN ∣ s ∈ S,∃t ∈ T ∶ s
tÐ→ s′} = ⋃

t∈T
Fire(S, t).

The operation Fire. As we encode state sets and related operations using IDDs it is
worth defining a special IDD operation for Fire. The idea of such a dedicated decision
diagram operation was introduced in [119] for Zero-suppressed Binary Decision Dia-
grams (ZBDD) and also applied in [102] (BDD, IDD) and [95] (ZBDD). Algorithm 3
shows a simplified version of the operation for IDDs in [115], which does not consider
reset arcs. I will describe it in more detail as it motivates the IDD operation which I
will present in Section 4.3. The enabling conditions and the firing effect of Petri net
transitions are encoded by means of so-called action lists. Each element of an action
list is a tuple al = (var, enabled, shift) ∈ X × I × Z. The single entries of such a tuple
al have the following semantics:

� al.var ∈ X specifies the related variable

� al.enabled defines the token interval which enables the transition with respect
to this place

� al.shift defines the token change on this place which is caused by the firing of
the transition.

For each transition t with the environment Envt =
●t∪ t● = {pt1 , . . . , ptk} we define the

action list alt = {alt1 , . . . , altk} with

� alti .var = pti

� alti .enabled = [max{t−(pti), tR(pti)}, tI(pti))
� alti .shift =∆t(pti)

and assume that it respects the variable order π.

Algorithm 3 shows the implementation of the function Fire, whose arguments are the
IDD GS encoding a set S and the Petri net transition t . The auxiliary function AuxFire
is used to traverse recursively the IDD, starting with the root node and the complete
action list alt of t.

22

2.2 Symbolic State Space Representation

For the current root v, the first argument, AuxFire looks to the associated variable and
evaluates the enabledness of t and the effect of its firing. The required information is
stored in the second argument, the current element al in action list of T . The following
situations need to be distinguished:

1. The end of recursion has been reached (al =⊥ ∨v = 0). Either the action list has
been completely processed or the algorithm has reached the 0-terminal node. In
both cases v is simply returned. In the first case, the firing of transition t does
not affect the marking of places related to remaining IDD variables, which means
that the IDD rooted by v will not be changed. In the second case, the extracted
state does not enable t.

2. The current node represents a place in the environment of t (a.var = var(v)). The
first step is the evaluation of the enabling values of the related place (NewPart).
This is done by intersecting the interval partition associated to node v with the
enabling interval. The second step is to compute the children of the new IDD
node. If an interval in NewPart intersects an interval of part(v), AuxFire is
called for the related child of v and the tail of the action list. The last step is to
shift the computed interval bounds as defined by a.shift.

3. The value of var(v) does not represent a place in Envt, but the firing of the
transition affects the value of at least one variable at a lower ROIDD level
(a.var > var(v)). Thus the algorithm has to continue the traversal by calling
AuxFire for all its children and the current action list element al .

4. A node with the variable a.var does not occur in the current path and has been
skipped in the variable order (a.var < var(v)). This situation represents the case
that the related place is unbounded. As we consider only bounded Petri net
models, this situation is irrelevant for the state space construction. However, it
is similar to case (2) except that NewPart is simply a.enabled .

As in Algorithm 2, the function MakeNode ensures the construction of a reduced
interval decision diagram. As every efficient decision diagram operation, AuxFire tries
to reuse previously computed sub-problems. Therefor the function uses the look-up
table ResultTable which is implemented as a fast hash map.

Forward state space construction. Based on the function Fire we can realize the
functions Img and FwdReach given in Algorithm 4. FwdReach follows a breath first
search strategy to compute the set of states, which are reachable from the set S. It
distinguishes processed (Old) and unprocessed (New , initially the set S) states. In
each iteration it takes the unprocessed states, computes the set of successor states
using the function Img and determines which of them are newly explored. The current
set of unprocessed states is added to the processed ones. The procedure terminates

23

2 Petri Nets

Algorithm 3 (IDD operation – Fire)

1 func Fire (GS : IDD, t : transition)
2 func AuxFire (v : unsigned, al : ActionList)

3 if al = ⊥ ∨ v = 0 then return v fi
4 a := head(al)
5 if ResultTable [v , a] ≠ ∅ then return ResultTable [v , a] fi
6 if var(v) = a.var then
7 NewPart := Intersect(part(v), a.enabled)
8 forall Ij ∈ NewPart , Ik ∈ part(v) do
9 if Ij ∩ Ik ≠ ∅ then

10 NewChildj := AuxFire(childk(v), tail(al))
11 od
12 Shift(NewPart , a.shift)
13 fi
14 CompletePartition(NewPart , NewChild)
15 res := MakeNode(var(v), NewPart , NewChild)
16 elseif var(v) > a.var then
17 NewPart1 := a.enabled
18 Shift(NewPart , a.shift)
19 NewChild1 := AuxFire(v , tail(al))
20 CompletePartition(NewPart , NewChild)
21 res := MakeNode(a.var , NewPart , NewChild)
22 else /* var(v) < a.var */
23 NewPart := part(v)
24 forall Ij ∈ NewPart do
25 NewChildj := AuxFire(childj(v), al)
26 od
27 res := MakeNode(var(v), NewPart , NewChild)
28 fi
29 fi
30 ResultTable [v , a] := res
31 return res
32 end
33 begin

34 GS ′ := new(IDD)
35 GS ′ .root := AuxFire(GS .root , t .al)
36 return GS ′

37 end

24

2.2 Symbolic State Space Representation

when all states returned by the function Img have already been explored in previous
iterations. When calling FwdReach with S = {s0}, it computes RN(s0).
It is well known that this naive implementation of FwdReach has several drawbacks
[27]. On the one hand, it does not process immediately new states. On the other
hand it considers in each iteration the complete set of Petri net transition ignoring
the local effect of transition firing. Both aspects generally result in a high number
of iterations whereby the intermediate state sets are often represented by large-sized
Decision Diagrams (DD), although the final result may have a very compact DD
representation.

Solutions for these problems are chaining [103] or Saturation [30, 115]. Transition
chaining is the technique where the set of processed states is updated after applying
Fire for each transition. In the Saturation technique described in [115], transitions are
fired in conformance with the IDD, i.e. according to an ordering, which is derived from
the variable order π. A transition is saturated if its firing does not add new states to
the current state space (processed). Transitions are bottom-up saturated (i.e. starting
at the terminal nodes and going towards the root). Having fired a given transition, all
preceding transitions have to be saturated again, either after a single firing (single) or
the exhausted firing (fixpoint) of the current transition.

Both techniques have in common that their efficiency depends on the used transition
order.

Algorithm 4 (Forward state space construction)

1 func FwdReach (S : set of states)
2 Reached := S
3 New := S
4 repeat

5 Old := Reached
6 Reached := Reached ∪ Img(New)
7 New := Reached ∖Old
8 until New = ∅
9 return Reached

10 end

1 func Img (S : set of states)
2 Res := ∅
3 forall t ∈ T do
4 Res := Res ∪ Fire (S , t)
5 od
6 return Res
7 end

Backward state space construction. The forward state space analysis is used to
compute states, which are reachable from a given state set S and thus represent the
possible future evolution of the model. Given a state set S, we can also reason about

25

2 Petri Nets

the possible past evolution of the model. In this case we want to compute the set of
states from which the states in S are reachable. This is based on the backward firing
of the Petri net transitions. Analogously to the functions Fire , Img and FwdReach we
can define the functions RevFire , PreImg and BwdReach with the following semantics:

� RevFire(S, t) = {s′ ∈ SN ∣ s ∈ S ∶ s′
tÐ→ s}

� PreImg(S) = {s′ ∈ SN ∣ s ∈ S,∃t ∈ T ∶ s′
tÐ→ s} = ⋃t∈T RevFire(S, t)

� BwdReach(S) = {s′ ∈ SN ∣ s ∈ S,∃σ ∈ T ∗ ∶ s′
σÐ→ s}

The function RevFire can be easily realized by using Fire taking the reversed action
list revAlt with

� revAlti .var = alti .var

� revAlti .shift = −alti .shift

� revAlti .var = alti .enabled + alti .shift.

State space construction in backward direction represents an important tool for the
analysis techniques I will present in the remainder of this thesis. Please note that
backwards directed state space generation may explore states which are not contained
in RN(s0), and thus may require a special treatment.

26

2.2 Symbolic State Space Representation

Example 2

We can apply the symbolic state space construction to the running example
with N = 2 and get the IDD given in Figure 2.3. Please note that the IDD
graph structure is for this example independent of the actual value of N .
The reason is the use of inhibitor arcs to model the capacity of the places
b1 and b2 .

to2

to1

msg

item

b2

b1

req

res

ready

to1

msg

item

ready

res

0

1

[0,1) [1,2)

[0,1)
[1,2)

[0,1)

[1,oo)

[0,1) [1,2) [0,1)

[1,oo)

[2,oo)

[1,2)

[0,1)

[0,1)

[1,oo)

[1,oo)

[0,1) [0,1)

[0,3)

[0,3)

[1,oo)[1,oo)

[3,oo)

[3,oo)

[0,1) [1,2)

[2,oo)

[0,1) [1,oo)[1,2)[0,1)

[2,oo)

[1,oo)

[1,oo)

Figure 2.3: Interval Decision Diagram encoding the set of reachable states for the net
in Figure 2.1 for N = 2.

☀

27

2 Petri Nets

2.3 CTL Model Checking

Model checking [36] denotes the application of an algorithm, the model checker, to
evaluate for a formal model description the truth of a model property formalized
using some propositional temporal logic in a fully automatic fashion. Under a temporal
logic we understand an extension of a proposition logic by so-called temporal or tense
operators. This allows to express qualitative properties as “eventually p holds in a
state”. Pnuelli considered temporal logics with a linear time semantics (LTL) to reason
about the properties of reactive systems [98]. In the linear time model all possible
executions of the model have to fulfill the given specification.

A different approach is to consider branching time, where it is possible in each state to
chose between different future evolutions. To specify properties with branching time
semantics Clarke and Emerson introduced the Computation Tree Logic (CTL) [36].

The semantics of such temporal logics is traditionally built upon a Kripke structure
K = [S,R,L, s0] with S a finite set of states, R ⊆ S × S a total transition relation
(i.e. ∀s ∈ S,∃s′ ∈ S ∶ (s, s′) ∈ R), L ∶ S → 2AP a labeling function which maps atomic
propositions from AP to the states, and s0 an initial state.

We can treat the reachability graph RGN = [RN(s0),BN] of a Petri net N as a Kripke
structure if we set S =RN(s0), disregard the labels of the transition relation BN and
just consider the existence of state transitions. Doing so we can define R simply as

∃t ∈ T ∶ s
tÐ→ s′⇔ (s, s′) ∈ R

and RN(s) = {s}⇒ (s, s) ∈ R
which adds loops in the case of dead states to make the relation total.

Atomic propositions. The labeling function L maps a set of atomic propositions to
each state. When the Kripke structure is constructed from a Petri net model, it makes
sense to describe the atomic propositions naturally by relations of place markings.
I consider an atomic proposition as a comparison of the results of two arithmetic
functions using the place markings in a state as their arguments. I give an inductive
syntax definition as

ap ∶∶= (f ⋈ f)
with

⋈ ∶∶= < ∣≤ ∣= ∣ ≠ ∣ ≥ ∣ >,

and f ∶ N∣P ∣ → R an arithmetic function defined as

f ∶∶= p ∈ P ∣ n ∈ N ∣ f + f ∣ f − f ∣ f /f ∣ f ∗ f.

28

2.3 CTL Model Checking

This style of specifying atomic proposition is more expressive compared to the ap-
proach in [115] which is restricted to atomic interval logic expression (p ∈ I) and does
not allow to formulate propositions as for instance p1 = p2 + p3. Unfortunately this
higher expressiveness prohibits the construction of a general IDD representation of the
satisfying states as it is possible with interval logic expressions and Algorithm 2. How-
ever, I assume to know the set of reachable states S and propose to accept this restric-
tion. Therefore I need the function extractAP (S, ap = (f ⋈f ′)) ∶= {s ∈ S ∣ f(s)⋈f ′(s)}
which returns the states in S satisfying ap.

For Functions and FunctionArguments I assume the interface given in Algorithm 5.

Algorithm 5 (Interface – Functions)

1 struct FunctionArguments
2 map : map of unsigned

3

4 proc setArgument(var : Variable, value : unsigned)

5 map[var] ∶= value
6 end
7 end
8 struct Function
9 impl : FunctionImpl

10

11 func operator()(args : FunctionArguments)

12 return impl .computeValue(args);
13 end
14

15 func maxVar()
16 return impl .maxVar();
17 end
18

19 func isArg(var : Variable)
20 return impl .isArg(var);
21 end
22

23 func createArgs()
24 return impl .createArgs();
25 end
26 end
27

29

2 Petri Nets

A Function instance can be seen as a functor 1. The function maxVar returns the
maximal index of a variable contained in the function with respect to the IDD variable
order π.

Algorithm 6 (Extract – Atomic proposition)

1 func ExtractAP (G : IDD , ap = (f ⋈ f ′) ∶ atomic proposition)

2 func AuxExtractAP (v : unsigned, args ,args ′ : FunctionArguments)

3 var := var(v)
4 if var > f .maxVar() & var > f ′.maxVar() then
5 if f(args) ⋈ f ′(args′) then return v else return 0 fi
6 fi
7 forall Ij ∈ NewPart do
8 forall si ∈ Ij do
9 if f . isArg(var) then args.setV alue(var, si) fi

10 if f ′. isArg(var) then args′.setV alue(var, si) fi
11 NewChildj := AuxExtract(childj(v))
12 od
13 od
14 res := MakeNode(var(v), NewPart , NewChild)
15 return res
16 end
17 begin

18 GS ′ : = new(IDD)
19 GS ′ := AuxExtractAP(G.root , f .createArgs(), f ′.createArgs())
20 return GS ′

21 end

Given an IDD representation G of a state set, Algorithm 6 extracts all states fulfilling
the atomic proposition ap = (f ⋈ f ′). While traversing G it collects the values of the
relevant variables in two FunctionArguments instances. When the set of function argu-
ments is complete, the function values are computed and compared with respect to the
operator ⋈. If the result is true, the current IDD r is returned. Otherwise the traversal
continues. The results of recursive calls to the auxiliary function AuxExtractAP are
collected to create a new IDD node with a new interval partition and a new list of chil-
dren. Again, the function MakeNode keeps the resulting IDD reduced. AuxExtractAP

1 A functor is an object, which encapsulates the intended behaviour of a function. Its type definition
overloads a dedicated operator and enables to call a function by the object’s name. Therefor one
speaks also of a callable object. An important advantage of this concept is the opportunity to
encapsulate the related data next to a specific behaviour. In the programing language C++, the
operator to be overloaded is operator() < parameter list > . In the remainder of this thesis I will
make intensive use of this concept.

30

2.3 CTL Model Checking

is not realized as a memory function but it terminates the recursive descent as soon as
the maximal variable with respect to the variable order π of both functions has been
reached.

For the set of reachable states S and a set of atomic proposition AP , the labeling
function is

L = {(s, p) ∣ s ∈ S, p ⊆ AP,∀ap ∈ p ∶ s ∈ extractAP (S, ap)}.
Besides such “natural” atomic propositions I will sometimes use apS′ to denote an
atomic proposition which is mapped by L exactly to the states contained in S′, e.g.
apinit to the initial state or apdead to all dead states.

2.3.1 Computation Tree Logic - CTL

Syntax. Given a set of atomic propositions AP , the syntax of CTL can be defined
inductively given state formulas

φ ∶∶= true ∣ ap ∣ ¬φ ∣ φ ∧ φ ∣ φ ∨ φ ∣ E[ψ] ∣A[ψ]
and path formulas

ψ ∶∶=Xφ ∣ φUφ.

This definition contains only the temporal operators NeXt and Until. Often one can
find the operators Finally and Globally and the following relations can be applied:

AFΦ ≡ A[trueUΦ]
EFΦ ≡ E[trueUΦ]
EGΦ ≡ ¬A[F¬Φ]
AGΦ ≡ ¬E[F¬Φ]

Furthermore, the relations

AXΦ ≡ ¬E[X(¬Φ)]
A[ΦUΨ] ≡ ¬E[¬ΨU(¬Φ ∧ ¬Ψ)] ∧ ¬E[G¬Ψ]

allow to convert every CTL formula to contain only EG, E[U] and EX.

Semantics. The semantics of CTL formulas is defined with respect to a Kripke struc-
ture M (a Model) and the satisfaction relation ⊧ for states and paths. As CTL is a
branching time logic, formulas are interpreted over the computation tree (CT) an in-
finite unfolding of the Kripke structure. Each tree node (state) may define different

31

2 Petri Nets

choices for a future evolution of the system. State formulas are interpreted over the
states of the CT. All states satisfy the constant proposition true. The atomic propo-
sition ap is true in a state s, if it occurs in the set of labels, which is associated to s.
The formula ¬φ is fulfilled if the state does not satisfy φ. The formula φ1 ∧ φ2 holds
in s if it satisfies φ1 and φ2. The formula φ1 ∨φ2 holds in s if it satisfies φ1 or φ2. The
CTL formula E[ψ] is true in state s if there is at least one path starting in s which
satisfies the given path formula ψ. A[ψ] requires the satisfaction of ψ for all paths
starting in s.

This can be formalized as follows:

s ⊧ ap ⇔ ap ∈ L(s)
s ⊧ ¬φ ⇔ s /⊧ φ
s ⊧ φ1 ∧ φ2 ⇔ s ⊧ φ1 ∧ s ⊧ φ2
s ⊧ φ1 ∨ φ2 ⇔ s ⊧ φ1 ∨ s ⊧ φ2
s ⊧ E[ψ] ⇔ ∃σ ∈ Pathss ∶ σ ⊧ ψ
s ⊧A[ψ] ⇔ ∀σ ∈ Pathss ∶ σ ⊧ ψ.

As usual, Sat(φ) = {s ∣ s ∈ S ∧ s ⊧ φ} is the set of φ-states, i.e. all states fulfilling the
state formula φ.

Path formulas are interpreted over the infinite paths of the CT. The formula XΦ holds
on a path σ = s0, s1, s2, . . . if s1 is a Φ-state. ΦUΨ holds on a path if it contains a
Ψ-state and all preceding states are Φ-states, more formally:

σ ⊧XΦ ⇔ σ[1] ⊧ Φ
σ ⊧ ΦUΨ ⇔ ∃i ≥ 0,∀0 ≤ j < i ∶ σ[i] ⊧ Ψ ∧ σ[j] ⊧ Φ.

A path σ is a ψ-path if it satisfies the path formula ψ and for a state s I declare
Pathss,ψ = {σ ∈ Pathss ∣ σ ⊧ ψ} as the set of ψ-paths starting in s.

Example 3

We can use CTL to check the reversibility of net with the CTL formula

AGEF[apinit],
and the liveness of a transition t with the CTL formula

AGEF[apenabledt].
We can also probe whether it is possible that the producer has to wait
unnecessarily because the chosen buffer is full while the other is not. We

32

2.4 Summary

define the atomic propositions AP = {to1 = 1, to2 = 1, b1 = N,b2 = N} and
the CTL formula

EF[(to1 = 1 ∧ b1 = N ∧ ¬(b2 = N)) ∨ (to2 = 1 ∧ ¬(b1 = N) ∧ b2 = N)].
☀

2.3.2 Model Checking

CTL model checking [38] is the automatic procedure to determine whether a given
Kripke structure M satisfies a given state formula φ, which is the case if the initial
state s0 is a φ-state, formally written:

M ⊧ φ⇔ s0 ∈ Sat(φ).
The first CTL model checking algorithm has been proposed in [37]. The basic idea is
to label all states with the sub-formulas they satisfy. Given the formula tree, each sub-
formula is evaluated for all states starting with the inner most formulas and ending with
the top formula. The most expensive operation is the evaluation of the until operator
which is done by the construction of paths which either prove (witness) or disprove
(counterexample) the truth of the path formula using depth-first search algorithms.
After the labeling procedure is finished, it remains to check whether the initial state
is labeled with the top formula. This complete model checking procedure has a time
complexity of O(∣φ∣ ⋅ (∣S ∣ + ∣R∣))2.
The state space explosion makes the application of this naive method often unfeasible.
Symbolic CTL model checking algorithms [22, 86] have been developed to alleviate
this problem. In this case we do not label single states, but compute the state set
Sat(f) for each sub-formula f , as it is shown in Algorithm 7. The core algorithm
check checks the sub-formulas recursively. As mention earlier, it is sufficient to consider
only the quantor-operator combinations EX,E[U], and EG. The evaluation of these
temporal operators is done by the related procedures checkEX, checkEG, and checkEU.
checkEG and checkEU require to perform fixed point computations applying backward
reachability analysis. For more details I refer to [115].

2.4 Summary

In this chapter I gave a brief introduction to the Petri net (PN) formalism. I recalled
the symbolic representation of the state space of bounded Petri nets using Reduced

2∣φ∣ is the number of sub-formulas.

33

2 Petri Nets

Algorithm 7 (CTL model checking algorithm)

1 proc checkCTLFormula(φ : formula, K = [S,R,L, s0] : model)

2

3 func check(f : formula)
4 if f ≡ true then Sat(f) ∶= S
5 else if f ≡ ap then Sat(f) ∶= extractAP(S,ap)
6 else if f ≡ Φ ∧Ψ then Sat(f) ∶= check(Φ) ∩ check(Ψ)
7 else if f ≡ Φ ∨Ψ then Sat(f) ∶= check(Φ) ∪ check(Ψ)
8 else if f ≡ ¬Φ then Sat(f) ∶= S ∖ check(Φ)
9 else if f ≡ EXΦ then Sat(f) ∶= checkEX(check(Φ))

10 else if f ≡ EGΦ then Sat(f) ∶= checkEG(check(Φ))
11 else if f ≡ E[ΦUΨ] then Sat(f) ∶= checkEU(check(Φ), check(Ψ))
12 fi
13 return Sat(f)
14 end
15

16 if s0 ∈ check(φ) then
17 print(K ⊧ φ)
18 else
19 print(K /⊧ φ)
20 fi
21 end

Ordered Interval Decision Diagrams (ROIDD) and sketched the basic ideas of model
checking the Computation Tree Logic (CTL).

34

3 Stochastic Petri Nets

The previously introduced Petri nets represent a powerful formalism to model qualita-
tive aspects of concurrent systems. However, they provide no way to specify a notion
of time, which is often an important requirement. Generally, there are different pos-
sibilities to augment Petri nets with time. In most of the cases time information is
added to the Petri net transitions, which may represent

� working time: Timed Petri nets

� deterministic delays: Time Petri nets

� probabilistic delays: Stochastic Petri nets.

In the following I will consider the latter extension: stochastic Petri nets [93]. Their
semantics is a well studied mathematical formalism, which provides a multitude of
established techniques for quantitative analysis. SPN are widely used for system mod-
eling and analysis in fields as performance evaluation – and to an increasing degree –
in systems biology.

3.1 Stochastic Petri Nets

In a stochastic Petri net possibly state-dependent firing rates1 are associated to each of
the Petri net transitions. Formally I consider an SPN as a tuple NS = [N,F] with N =[P,T,V,VR, VI , s0] a Petri net and F ∶ T → F , whereby F = {ft ∣ t ∈ T, ft ∶ N∣P ∣ → R≥0}
and F (t) = ft. The behavioural properties of the Petri net N remain valid. We can
change the reachability graph definition such that we replace the transition relation

BN by the relation R = {(s, ft(s), s′) ∣ s, s′ ∈ RN(s0) ∧ s
tÐ→ s′} which labels each

existing state transition with the related firing rate. The firing rate of a transition t
in a state s can be understood as the average number of firings of t in s which are
observable during one time unit. The amount of time until leaving state s is known
as the sojourn or residence time δ(s). If the sojourn time is treated as a random
variable with a negative exponential distribution governed by the given firing rates,
the resulting graph describes a Continuous-time Markov Chain (CTMC) [93], a simple

1 Sometimes called functional rates.

35

3 Stochastic Petri Nets

and well-studied type of stochastic process.

Stochastic processes. A stochastic process {Xτ ∶ τ ∈ T } is a set of random variables
over a state space S and an index set T , which is usually interpreted as time. Xτ = s
denotes that the value of the random variable Xτ is s and we say that the process is
in state s2. The probability for a random variable Xi to have the value x is

Pr{Xi = x}.

The conditional probability that Xi has the value x given that the random variable
Xj has the value x′ is

Pr{Xi = x ∣ Xj = x
′}.

A stochastic process features the Markov or memoryless property if its future evo-
lution depends only on the current state, formally written as ∀τ0 < . . . < τi < τi+1 ∈T ,∀s0, . . . , si, si+1 ∈ S

Pr{Xτi+1 = si+1 ∣ Xτ0 = s0,Xτ1 = s1, . . . ,Xτi = si} = Pr{Xτi+1 = si+1 ∣ Xτi = si}.

We classify stochastic processes concerning the nature of the state space, the index set
and of course whether the memoryless property holds or not. In the following three
cases will be of interest:

� Discrete-time Markov Chains – discrete states, discrete indices (time),
and memorylessness

� Continuous-time Markov Chains – discrete states, dense indices (time),
and memorylessness

� Performance variables – real valued states, continuous time,
and non-memorylessness.

Discrete-time Markov Chains (DTMC). A discrete-time Markov chain is a stochas-
tic process with a discrete state space and a discrete time model featuring the mem-
oryless property. In each time step (e.g. induced by a system clock) a state transition
occurs with a specified probability. For each state, the probabilities of the possible
state transitions sum up to 1. A DTMC D = [S,P] is characterized by its state spaceS and the transition probability matrix P. P is called a stochastic matrix and fulfills
thus the following constraints:

∀i, j ∈ [0, ∣S ∣) ∶ 0 ≤ Pi,j ≤ 1

2 Usually one uses Xt but I reserved t to denote a transition of a Petri net.

36

3.1 Stochastic Petri Nets

and
∀i ∈ [0, ∣S ∣) ∶ ∑

j∈[0,∣S ∣)
Pi,j = 1.

We will deploy DTMCs as a means to compute measures of Continuous-time Markov
Chains.

Continuous-time Markov Chains (CTMC). A CTMC is a stochastic process with a
discrete state space in continuous time featuring the memoryless property. The mem-
oryless property and the continuous time require the sojourn times to have a negative
exponential distribution. As I consider only CTMCs originating from an SPN I will
give a net-related definition. Nevertheless I may also use X to name a CTMC.

Given the SPN NS = [N,F], the induced CTMC is the tuple CN = [S,R, s0], whereS =RN(s0) is the set of reachable states, R ∶ S ×S → R≥0 the transition rate relation,
and s0 the initial state of N . Assuming that a state transition is given by a unique
Petri net transition3 the entry R(s, s′) is defined as:

R(s, s′) = { ft(s) if ∃ t ∈ T ∶ s
tÐ→ s′

0 otherwise .

The total (or exit) rate E(s) = ∑s′∈SR(s, s′) is the sum of the rates of the transitions
leaving state s. From the state transition relation R we derive the generator matrix Q

Q(s, s′) = { R(s, s′) if s ≠ s′

−E(s) otherwise .

If s is a dead state, E(s) is = 0 and we call s also an absorbing state. Otherwise a
transition will fire, which leads to some state s′. The negative exponentially distributed
delay of this event δ(s) is governed by the firing rate of the responsible transition. The
probability to leave s within τ time units is

Pr{δ(s) < τ} = 1 − e−E(s)⋅τ .
The probability of the state transition s

tÐ→ s′ is

ft(s)/E(s) = P(s, s′).
Its probability within τ time units is

P(s, s′) ⋅ (1 − e−E(s)⋅τ).
3There are no transitions t, t’ with t− = t′− ∧ t+ = t′+ ∧ tI = t′I ∧ tR = t′R

37

3 Stochastic Petri Nets

The relation P describes the so-called embedded discrete-time Markov chain.

The rates R and the one-step probabilities P define ∣S ∣ × ∣S ∣ matrices over R≥0. If
the rates are time-independent, the CTMC is called homogeneous. An inhomogeneous
CTMC is defined by several time-dependent transition relations.

Paths. It is necessary to augment the definition of paths from Section 2.1 in the
context of CTMCs. A path σ = (s0, δ(s0)), . . . , (si, δ(si)) is any finite or infinite
sequence with R(si, si+1) > 0. σ[i] gives state si, σ(τ) the index of the state, occupied
at time τ .

Probability distributions of CTMCs. Given a CTMC C an interesting question is
“what is the probability to be in state s at time instant τ when starting at τ0 in state
s0?”, formalized as

πC(s, τ, s0) = Pr{Xτ = s ∣ X0 = s0}.

In this case, the system is initially in s0 with a of probability one. We can generalize
this for a probability distribution

α ∶ S → [0,1] and ∑
s∈S

α(s) = 1.

πC(s, τ,α) is the probability to be in state s at time instant τ given the initial prob-
ability distribution α. Let πCα,τ denote the transient probability distribution at time

instant τ given the initial distribution α whereby πCα,τ(s) = πC(s, τ,α). In the case of

a single initial state s0 with α(s0) = 1, I may also write πCs0,τ .

Often Markov chains feature the property that they finally reach a probability dis-
tribution, which will not change in the future evolution. This distribution is called a
limiting distribution. Finite and irreducible CTMCs (the inducing SPN is bounded
and reversible) are called ergodic and possess a unique limiting distribution which is
independent of the initial distribution, denoted as the steady state distribution4.
πCα denotes the steady state distribution given as limτ→∞ πCα,τ .

In what follows there is often a high interest in reaching a designated set of states
S′ ⊆ S. Thus I define also

πCα,τ(S′) = ∑
s∈S′

πCα,τ(s′) and πCα (S′) = ∑
s∈S′

πCα (s′).
4 Ergodicity is not a requirement throughout the remainder, although all considered case studies
(See Appendix A.2) are ergodic.

38

3.1 Stochastic Petri Nets

Further I declare πCτ,S′ and π
C
S′ as the ∣S ∣-vectors which store for each state s ∈ S the

probability πCα,τ(S
′) and πCα (S

′) respectively, given that α(s) = 1. Note that πCτ,S′ and

πCS′ do not represent a probability distribution.

The transient probabilities represent an instantaneous measure for a given time point.
In addition we can consider the cumulative transient probabilities

ιCα,τ = ∫
τ

0
πα,udu,

which yield for each state the cumulative sojourn time in the interval [0, τ].
If C and α are uniquely determined by the context, I may lazily use πτ , π, ιτ and
respectively.

39

3 Stochastic Petri Nets

3.2 Extensions

In this Section I will describe briefly two extensions of SPN which

� offer more convenient modeling capabilities: generalized stochastic Petri nets
(GSPN),

� facilitate the easy definition of additional measures: stochastic reward nets (SRN).

In particular I concentrate on subclasses (not necessarily the largest one) of GSPN and
SRN which can be reduced to SPNs or at least can be easily approximated by SPNs.
This will finally enable to apply the evaluation techniques I consider in this thesis.

3.2.1 Generalized Stochastic Petri Nets

In SPNs the firing of transitions occurs always after a time delay. However, in some
situations it is useful to force a state transition to take place immediately. The sojourn
time in a state with such a state transition is zero and for an external observer this
state is not visible. States with zero sojourn time are thus called vanishing states. All
other states are tangible. On the Petri net level the described extension is known as
generalized stochastic Petri nets (GSPN) and has been introduced in [85]. A recom-
mendable textbook on this topic is [84].

In the GSPN formalism, the set of transitions T is divided into a set TS of stochastic
(usually called timed) transitions (graphic:) and a set TI of immediate transitions
(graphic:). As enabled immediate transitions fire without delay, they have a higher
priority than timed transitions. A state which enables at least one immediate transition
is vanishing. In contrast to [84] I do not consider immediate transitions with different
priority levels. I further confine myself to bounded and confusion-free5 GSPNs.

The different priority levels of timed and immediate transitions usually affect the
structure and the behaviour of the originating Markov chain as follows:

� The reachability graph of the underlying PN may not represent the semantics of
the GSPN directly, as timed transitions lose the enabledness in vanishing states.

� A stochastic transition which has the same preconditions as one of the immediate
transitions becomes dead.

� Conflicts between several enabled immediate transitions have to be resolved
by specifying the probabilities of firing the single transitions. I use the ap-
proach given in [85]. For a vanishing state sv which enables the set of immediate
transitions T ′I = enabled(sv) ∖ TS , a random switch as the pair (sv, sp) where

5A confusion is a situation where immediate transitions destroy the locality of a conflict.

40

3.2 Extensions

sp ∶ T ′I → [0,1] defines for each transition ti ∈ T
′
I the probability to fire as

fpi =
fti

∑tj∈T ′I ftj
, (3.1)

where ft defines a possibly state-dependent weight. Two states s and s′ are
sp-equivalent s

sp∼ s′ if they define the same random switch. In Chapter 5 I
will discuss a iterative probability propagation deploying the concept of random
switches.

� The reachability graph of the GSPN contains vanishing and tangible states and
the state transitions are labeled with probabilities and rates, respectively. This
extended reachability graph (ERG) can not be directly interpreted as a CTMC.

Example 4

b1

b2
req

res
to1

to2

itemreadymsg consume

cr

insert b1

i1*(1+b1)

insert b2

i2*(1+b2)

produce

sr/(1+b1+b2)

choose b1

c1

choose b2

c2

fetch b1

f1

fetch b2

f2

N

N

Figure 3.1: GSPN of the running example

Lets define a time behaviour for the example given in Figure 2.1 extending
it to a GSPN. Therefor I specify the type of transitions including firing
rates and weights as follows:

� The transitions choose b1 and choose b2 fire immediately. As the tran-
sitions are in a free-choice conflict we have to specify weights to resolve
the conflict. The weights are defined by the constants c1 ∶ 0 < c1 < 1
and c2 ∶ 1 − c1.

� The transitions fetch b1 and fetch b2 fire immediately, too. The tran-
sition are in structural conflict which may become a dynamic one or

41

3 Stochastic Petri Nets

not. We define the weights to resolve possible conflict situations by
the constants f1 ∶ 0 < f1 < 1 and f2 ∶ 1 − f1.

� The transition consume fires independently of the state with a con-
stant rate cr.

� The transition produce fires with the state-dependent rate sr/(1+b1+
b2) where sr is some constant and b1 and b2 variables yielding the
token values on the related places. The rate decreases with increasing
fill level of the storage instance. The dashed arcs, which we call mod-
ifier arcs, highlight that the transition produce considers places in its
state-dependent weight although these places are not its pre-places.

� The transitions insert b1 and insert b2 fire with the state-dependent
rates i1∗ (1+ b1) and i2∗ (1+ b2) where i1 and i2 are also constants.

☀

The stochastic process which originates from the GSPN is called a Semi-Markov pro-
cess and can be reduced to a CTMC [85]. The general idea is to replace all possible
state transition sequences σv = s0, r0, s1,w1, . . . , sn−1,wn−1, sn where s0 and sn are
tangible states, r0 is the rate of a timed transition and the intermediate states are
vanishing, by a single state transition (s0, r, sn) with rate r = r0 ⋅ ∏1≤i<nwi. This
requires, that there are no loops containing only vanishing states. This is an applica-
ble approach, if the deployed matrix storage scheme supports efficient modifications
in terms of removing and inserting single matrix entries. It may drastically decrease
the size of the transition matrix, as it is shown in Table 3.1. However, the number of
vanishing states is often as huge that it prohibits the state space construction and a
subsequent reduction.

For the on-the-fly computation of the transition matrix which I will introduce in Chap-
ter 4, the reduction can not be applied. In this case it remains to eliminate the im-
mediate transitions at the net level. Each bounded GSPN model can be reduced to
a stochastically equivalent SPN model [25]. Furthermore, the authors of [25] present
a structural ”GSPN to SPN” reduction algorithm for a subset of GSPN families,
whereby the considered restrictions can be further relaxed. Here I want to sketch
situations which have also been intuitively illustrated in [84].

The general idea is to replace stepwise each combination of the firing of a timed tran-
sition and the subsequent firing of an immediate transition by a new timed transition
interpreting both steps into one step. The weight of the immediate transition depends
on the set of simultaneously enabled immediate transitions and the reduction proce-
dure has to consider all possible state-dependent situations. This increases in general
the number of transitions in the net significantly. When applying the reduction e.g. to

42

3.2 Extensions

Table 3.1: The evolution of the state space of the FMS (see A.2.2) and the WC (A.2.2)
model given as SPN and GSPN. ∣SQ∣ denotes the number of states when
completely considered qualitatively, i.e. immediate transitions are not pri-
orized over stochastic transitions. A priorization of immediate transitions
as it is the case in the GSPN semantics yields the set of reachable states S
which consists of the vanishing states SV and the tangible states ST .

model N ∣SQ∣ ∣S ∣ ∣SV ∣ ∣ST ∣

FMS

2 3,444 2,202 1,392 810
4 438,600 138,060 102,150 35,910
6 15,126,440 2,519,580 1,981,812 537,768
8 248,002,785 – – 4,459,455

10 2,501,413,200 – – 25,397,658

WC

8 876 2,772 647 2,125
16 10,132 10,132 2,311 7,821
32 38,676 38,676 8,711 29,965
64 151,060 151,060 33,799 117,261

the workstation cluster (see Appendix A.2.2), the number of timed Petri net transitions
increases from 16 (GSPN) to 270 (SPN).

To illustrate the procedure let us reduce the GSPN model of the running example in
Figure 3.1 to the stochastically equivalent SPN in Figure 3.3.

Free-choice conflicts. The first situation on hand is if two or more immediate tran-
sitions are in conflict and no side conditions are specified as it is the case for the
transitions choose b1 and choose b2.

Let us first consider the general case, where we assume to have a place p with m
pre-transitions, which can be timed or immediate transitions, T1, . . . , Tm, and the n
immediate post-transitions t1, . . . , tn. In this case each combination of the firing of an
input transition Ti and an immediate output transition tj is represented by a new
transition Titj with the type of transition Ti having the same input arcs as Ti and the
same output arcs as tj . Its weight or firing rate, depending on the type of the input
transition, is given as

fTitj = fTi ⋅
ftj

∑k=1,...,n ftk
. (3.2)

In the reduced net, the place p and its complete environment disappear. The free-
choice-conflict situation is easy because the number of tokens on p enables either all
or none of transitions in p●.

43

3 Stochastic Petri Nets

Figure 3.2 shows the GSPN model after the elimination of the free-choice conflict. In
this first step the vanishing place msg has been removed from the net.

However, the immediate transitions fetch b1 and fetch b2 remain. These transitions
may be in conflict situations whose occurrence and resolution depends on the marking
of the places b1 and b2. This brings us to the second situation, non-free-choice conflicts.

b1

b2

req

res

to1

to2

item

ready

cr

consume

i1*(1+b1)

insert b1

i2*(1+b2)

insert b2

c2*sr/(1+b1+b2)

produce choose b2

c1*sr/(1+b1+b2)

produce choose b1

f1

fetch b1

f2

fetch b2

N

N

Figure 3.2: The GSPN after the reduction of the free-choice conflict.

Non-free-choice conflicts. In the non-free-choice case, the conflicts have to be re-
solved by considering all possible situations of the enabledness of the involved transi-
tions. In the reduced model (Figure 3.2) the enabledness of the transitions fetch b1
and fetch b2 depend on the marking of the places req, b1 and b2. Thus we have to
consider the following situations:

1. The transition consume creates a token on place req. Both buffers are empty
and the transitions fetch b1 and fetch b2 are disabled. The rate of consume is
cr. This is a special situation as the immediate transitions can not be removed.
They become enabled when one of the insert-transitions creates a token on the
related buffer. We have to create two additional transitions, namely

a) insert b1 2 which transfers the token from place to1 to place res and re-
moves the token on req with rate i1 ⋅ (1 + b1) ⋅ cr. The transition represents
the transition sequence insert b1, fetch b1 in the original model. The rate
of the new transition is the product of the participating transitions and is
thus state-dependent. As the transition is only enabled in the case that the
place b1 is empty, the rate function is just i1 ⋅ cr.

44

3.2 Extensions

b1

b1

b1

b1

b1

b2

b2

b2

b2

b2
req

res

res

res

res

res

to1

to2

itemready consume

produce choose b1

insert b1 1

insert b2 1

produce choose b2

consume fetch b2 1

consume fetch b1 1

consume fetch b2 2

consume fetch b1 2

insert b1 2

insert b2 2

N

N

Figure 3.3: The SPN model as the result of eliminating immediate transitions from the
GSPN in Figure 3.1. The grey colored places are called logic places. All
logic places with the same name represent one physical place. The concept
of logic nodes is offered by the Petri net editor Snoopy [58] to achieve clear
layouts.

b) Analogously we create insert b2 2 which transfers the token from place to2
to place res and removes the token on req with rate i2 ⋅ cr.

2. The transition consume creates a token on place req and at least one of the
fetch-transitions is enabled. We have to insert new timed transitions for the
following four cases:

a) Only transition fetch b2 is enabled as place b1 is empty. We insert the
transition consume fetch b2 1 with rate cr.

b) Only transition fetch b1 is enabled as place b2 is empty. We insert the
transition consume fetch b1 1 with rate cr.

c) Both transitions are enabled. This is an interesting situation, which must
be modelled by two transitions. The resulting timed transitions are enabled
and stand in a free-choice conflict. We compute firing rates using Equation
3.2 and create the transitions:

i. consume fetch b1 2 with rate cr ⋅ f1
f1+f2 = cr ⋅

f1
1 = cr ⋅ f1.

45

3 Stochastic Petri Nets

ii. consume fetch b2 2 with rate cr ⋅ f2
f1+f2 = cr ⋅

f2
1 = cr ⋅ f2.

In summary we have to introduce five different consume-transitions and two additional
insert (which are actually transfer) transitions. The original transition consume and
the transitions fetch b1 and fetch b2 disappear. The result SPN of the described
transformation, is shown in Figure 3.3.

Example 5

Lets have a closer look on the SPN of the running example in Figure 3.3.
For N = 1, the CTMC has 15 states and 31 states transitions.

Table 3.2: A possible mapping of states to indices.
state to2 to1 item ready b2 b1 req res
0 1 1
1 1 1
2 1 1 1
3 1 1 1
4 1 1 1 1
5 1 1 1
6 1 1 1
7 1 1 1 1
8 1 1 1 1
9 1 1 1 1 1
10 1 1 1
11 1 1 1
12 1 1 1 1
13 1 1 1 1
14 1 1 1 1 1

If we map each state to an index as can be seen in Table 3.2 and consider
the constant values cr = 1, f1 = 0.8, c1 = 0.9, i1 = 2, i2 = 3, sr = 1 we obtain
the rate matrix

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1.000 0.900 0.100

0.900 0.100

1.000 0.450 0.050

1.000 0.450 0.050

0.200 0.800 0.300 0.033

2.000 1.000

2.000

1.000

2.000 1.000

0.200 0.800

3.000 1.000

3.000

3.000 1.000

1.000

0.200 0.800

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

46

3.2 Extensions

and the exit rate vector

ET = (2.00,1.00,1.50, 1.50, 1.33,3.002.001.003.001.004.003.004.001.001.00).

We can further compute the transient probability distributions (see Section
3.3.1) for the time points 0.1, 1 and 5

π0.1 ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.008850488316432
0.905137707825312
0.000012992107382
0.000002123550978
0.000000001250583
0.000257140502110
0.077509121062112
0.000000118541720
0.000000018815276
0.000000000004489
0.000027884219777
0.008202375837119
0.000000012543517
0.000000002160340
0.000000000000499

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

π1 ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.214274920873051
0.449022518044711
0.024626351276071
0.003531239841160
0.000199752793848
0.046102341389217
0.236666146599075
0.002545065839736
0.000268383198995
0.000009763435379
0.004237629349748
0.018295531162148
0.000177711666609
0.000041545647520
0.000001084826153

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

π5 ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.254109119912367
0.260129300391418
0.124101580941124
0.017398055417151
0.007359708315539
0.094049695903364
0.165667848740787
0.051668525860243
0.003006101487222
0.001802920631375
0.006969557186351
0.011081322215262
0.001547483019053
0.000908398961109
0.000200324514597

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

and the probability distribution in the steady state (see Section 3.3.2)

π ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.250589047451738
0.250589047451738
0.129039024684902
0.018699996552253
0.008943481952699
0.095884936476242
0.160707539591403
0.058604169495140
0.003520477332084
0.002683044585810
0.006965073053546
0.010674659266240
0.001627893597087
0.001173492444028
0.000298116065090

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

☀

We can conclude that GSPN provide in principle modelling comfort. A bounded GSPN
can always be reduced to a stochastically equivalent SPN, which can be analysed in
general more efficiently due to the reduced state space. I will prove this observation
empirically in Section 6.6.

47

3 Stochastic Petri Nets

3.2.2 Stochastic Reward Nets

A stochastic Petri net NS = [N,F] inducing the CTMC C can be augmented by a
reward function ̺ ∶ S → R≥0, often also called a reward structure. The reward function
̺ defines for each state s the rate ̺(s), ̺s for short, at which s earns the reward. In
this thesis a stochastic reward net is defined by the tuple NM = [NS , ̺]. Its semantics
M = [C,̺] is called a rate-based Markov reward model (MRM) [57]. Of course more
general types of Markov reward models exist. For instance, stochastic reward nets as
defined in [28] possess impulse rewards which are associated to transitions and gained
upon their firing.

The accumulated reward. As the CTMC evolves over time, the reward earned by
occupying certain system states increases. This defines in turn a stochastic process{Yτ ∶ τ ∈ T } with domain R≥0 and the same index set as for the process X. The value
of the random variable Yτ , the accumulated reward at time instant τ , is

Yτ = ∫
τ

0
̺(Xu)du.

The accumulated reward at time τ for a path σ is given by

Yτ(σ) =
σ(τ)−1
∑
i=0

̺si ⋅ τi + ̺sσ(τ) ⋅ (τ −
σ(τ)−1
∑
i=0

τi).
{Yτ ∶ τ ∈ T } is not Markovian, as it depends on the complete history of the underlying
process X.

In the literature, Y is often referred to as a performance variable and the underlying
model as performance model. There are basically three important types of measures
which are of interest in this context.

1. Expected instantaneous reward rate: The expected value of the reward rate
either in steady state

E[̺(X)] = ∑
s∈S

̺(s) ⋅ π(s) = ̺ ⋆ π
or at a specific time point

E[̺(Xτ)] = ∑
s∈S

̺(s) ⋅ πτ(s) = ̺ ⋆ πτ .
In both cases the expectation is the scalar of the reward vector ̺ and a probability
distribution of the underlying Markov chain.
Applications:

48

3.2 Extensions

� Average number of tokens: In systems biology one is often interested in the
average number of molecules of some species A. To achieve this we define the
reward structure ̺A = {(s, s(A)) ∣ s ∈ S}. The average number of molecules
of species A is E[̺A(X)]. This weights for each state the probability with
the number of tokens and sums the result for all states.

� Indicator functions: Given a partition {S0, S1} of the state space S, an
indicator variable maps the value 0 to the states S0 and the value 1 to the
system states S1. When doing dependability analysis one could distinguish
the states Sup, where the system is up and the states Sdown, where the
system is down which are used in the reward function

̺ups = { 1 if s ∈ Sup
0 otherwise .

The expected probability that the system is up, i.e. in one of the states Sup,
at time τ (known as availability) is in this case E[̺up(Xτ)].

2. Expected accumulated reward rate: The accumulated reward is a measure
which weights the cumulative sojourn time of each state6 with the related rate
reward. Its expectation is defined as

E[Yτ] = ∑
s∈S

̺(s) ⋅ ιτ (s) = ̺ ⋆ ιτ .
Applications:

� Expected sojourn times: We can reuse the reward structure ̺up and get the
expected up-time in the interval [0, τ] of the system under investigation as
̺up ⋆ ιτ .

� Expected number of transition firings: For the transition t we can specify
the reward structure

̺
tfreq
s = { ft(s) if s ∈ enabled(t)

0 otherwise .

and get the expected number of firings of t in the interval [0, τ] as ̺tfreq ⋆ιτ .
In the biological context this can be interpreted as the expected number of
occurrences of a certain type of reaction.

3. Distribution of the accumulated reward: The distribution of the accumu-
lated reward is a special case of Meyer’s performability [89]. In general per-
formability, a made-up word from performance and dependability, measures a

6cumulative transient probabilities

49

3 Stochastic Petri Nets

“system’s ability to perform in a designated environment” [89]. For a system S
and some performance variable Y ,

Perf(B) = Pr{Y ∈ B}
specifies the probability that S performs at a designated level B, where B is a
subset of the range of Y .

In the scenario on hand the system is given as the Markov process {Xτ ∶ τ ∈ T }
and the performance variable as the process {Yτ ∶ τ ∈ T } defined by a reward
structure. So we define the performability

υ[C,̺]α,τ,y (s) = Pr{Xτ = s,Yτ ≤ y},
which is the probability that the stochastic process resides at time instant τ in
state s and at most a reward of y has been accumulated in the interval [0, τ]. If
C and α are uniquely defined by the context, I may use for short υ̺τ,y(s).
Applications:

� Survivability: In [40] performability is used to define a notion of survivability
for critical systems. Given a state space partition {Sup, Sdown} and the
reward structure

̺downs = { costs(s) if s ∈ Sdown
0 otherwise .

which maps costs to the down-states, survivability for a down-state sdown
can be specified as

Pr{X[up]τ ∈ Sup, Yτ ≤ y ∣ X
[up]
0 = sdown}.

This means that with a given probability the system is able to be recovered
from the down-state within τ time units and recovery costs of at most of y.
The process X[up] is derived by making all up-states absorbing.

In the following I will discuss the representation of a stochastic reward net in more
detail. There are two reasons for that:

� Users who model and analyze systems are generally not interested in specifying
explicitly the vector which stores the state-specific rewards. Of course we want
to have a high-level description for reward structures.

� So far I didn’t consider the computation of the presented probability distribu-
tions and related measures. I will do this briefly in Section 3.3. The computation
of transient and steady state probabilities is expensive in terms of memory and
runtime. The computation of the distribution of the accumulated reward is even

50

3.2 Extensions

much more expensive. I will present in Chapter 4 an efficient symbolic approach
for an on-the-fly generation of the Markov chain which allows to compute the
discussed measures. To prepare the use of this approach also for the compu-
tation of performability, I will present now the construction of an SPN which
approximates the original SRN.

Representation of rewards. So far we are able to use SPN as a high-level formalism to
specify the state space and the time behavior of a CTMC. Of course we are interested
in a comparable high-level specification of the reward structure. We chose a definition
style similar to that in [76].

For this purpose I define a reward structure ̺ by a set R of reward items

R = {(g, f) ∣ g ⊆ N∣P ∣, f ∶ g → R≥0}.

A reward item consists of a guard g and a reward function f . The guard specifies
the set of states, a subset of the potential state space, to which we associate the rate
reward f . To define the guard, I use interval logic expressions (Section 2.2.1). Of course
it may happen that the guards of two or more reward items define non-disjoint state
sets. For these states the actual reward is the sum of the related reward functions

̺s = ∑
{i=(gj ,fj)∣i∈R∧s∈gj}

fj.

Although the guard of a reward item may specify an arbitrary set of states, we will be
interested in subsets of the reachable states and consider a reward item as a tuple (S′ ⊆S, ̺S′). This specification style may raise the question for the internal representation
of rewards. I propose to encode the reward structure as a Petri net, in particular by a
set of transitions [105]. The reasons for a transition-based encoding are the following:

1. The reward vector can be similarly computed as the exit rates by applying the on-
the-fly matrix computation, which will be introduced in more detail in Chapter
4.

2. The approximation technique used to compute υ
[C,̺]
α,τ,y (s) is based on a transfor-

mation of an MRM to a CTMC. With a transition-based reward encoding, the
specification of the inducing SPN is rather straightforward.

Therefor I will treat a reward structure ̺ as a Petri net N̺ = [P ̺ ⊆ P,T ̺, V ̺ =
∅, V ̺

R
, V ̺
I
, F ̺,∅], although the mapping F ̺ specifies reward functions instead of rate

functions. The net N̺ can be seen as an extension of the original net N as it shares
a subset of its places, but defines a set of new transitions induced by the reward
structure.

51

3 Stochastic Petri Nets

These additional transitions T ̺ have pre-conditions in terms of read arcs or inhibitor
arcs as they are possible for all other net transitions. They also have an associated
function, but they are never connected with places by standard arcs (V ̺ = ∅). Their
firing will not affect the behaviour of the net, but enable the computation of the
rewards for a set of states.

Example 6

We augment the SPN of the running example given Figure 3.3 by a reward
structure which maps a reward of 1 to states where the producer has to
wait because the chosen buffer is full, although the other buffer has free
storage. We define a reward structure for the unnecessary waiting time

̺wts =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1 if s(to1) > 0∧ s(b1) = N ∧ s(b2) < N
1 if s(to2) > 0∧ s(b2) = N ∧ s(b1) < N
0 otherwise .

We weight the vector ̺wt with the cumulative sojourn times at time point
1 (vector ι1)

̺
wt
⋅ ι1 ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⋅

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.108773223626972

0.659750701950858

0.001011129896766

0.006879545880368

0.000037654671373

0.017469070461261

0.187289276651378

0.000062617187795

0.000551035648327

0.000001532939767

0.001672603732081

0.016450714203455

0.000009147095568

0.000041574917683

0.000000170326641

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000000000000000

0.000551035648327

0.000000000000000

0.000000000000000

0.000000000000000

0.000009147095568

0.000000000000000

0.000000000000000

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

The result is the vector of the expected cumulative sojourn times in states
where the producer has to wait unnecessarily because of a full buffer. The
sum

E[Y1] ≈ 0.000551035648327 + 0.000009147095568 ≈ 0.000560

of the entries yields the expected cumulative unnecessary waiting time up
to time point 1.

☀

Deriving the reward-representing transitions. Let us consider the reward item (S′ ⊆
N
∣P ∣, ̺S′). The basic idea is to define a transition, which is exactly enabled in S′ and

whose associated function defines ̺S′ . Unfortunately, a single reward item may define
a set of states for which we have to create multiple reward transitions, e.g. if its guard

52

3.2 Extensions

expression contains a disjunction. At this point we have to pay attention to create the
correct set of transitions. Take for instance the guard of the reward item

(p1 > 1 ∨ (p1 = 3 ∧ p2 ∈ [2,4)), reward)
which is given in disjunctive normal form. We may derive the transitions shown in
Figure 3.4, but in states satisfying p1 = 3 ∧ p2 ∈ [2,4) both transitions would be
enabled. This would associate a reward of 2 ⋅reward to these states and contradict the
reward item definition. What we need is a guard representation by transitions which

p1 p2

reward

reward

2

3
2

4 4

Figure 3.4: Wrong representation of the guard p1 > 1 ∨ (p1 = 3 ∧ p2 ∈ [2,4))

fire always exclusively.

To specify the correct set of transitions I use the canonical IDD-representation of
a guard, which can be derived using Algorithm 2. In an IDD (see Figure 2.2), each
edge sequence reaching the 1-terminal node represents an interval logic expression just
containing conjunctions of propositions p ∈ [a, b), whereby p is the variable (a place
name) of the current IDD node and [a, b) the label of the chosen arc. For each of these
conjunctions it is straightforward to create the pre-condition for a new transition,
whereby a is represented by a read arc and b by an inhibitor arc. If b ≡ ∞, we can
ignore it. We simply extract all paths leading to the 1-terminal node in the IDD
encoding of the guards. For each path we create a new reward-induced transition.
In general the number of such edge sequences may explode, but in praxis, assuming
simple guard expressions, this number should be moderate. For the example above we
get the transitions shown in Figure 3.5. Subsequently I will present a procedure which
translates an SRN into an SPN approximating its behaviour. The transformation is
based on an approximation technique for MRM, called Markovian Approximation [40],
which has been proposed in the context of model checking.

53

3 Stochastic Petri Nets

p1 p2

reward

reward

2

3 2

4 4

reward

4

3

Figure 3.5: Correct representation of the guard p1 > 1 ∨ (p1 = 3 ∧ p2 ∈ [2,4))

Markovian Approximation. As the name may suggest, the basic idea of this method
is to create a CTMC which approximates the behaviour of the actual MRM. The
accumulated reward will be encoded in the discrete states. This requires to replace
the continuous accumulation of reward by a discrete one. The discretized accumulated
reward increases stepwise by a fixed value ∆. It requires y/∆ steps to approximately
accumulate a reward of y. After n steps the actual accumulated reward lies in the
interval [n ⋅∆, (n + 1) ⋅∆), which is the nth reward level. When the reward level is
considered as a part of the model, the states of this CTMC are tuples (s, i) where
s ∈ S is a state of the original model and i ∈ N the reward level. At level i all state
transitions of the original model, given by the transition relation R, are possible and
now denoted as Ri. The increase of the accumulated reward, the steps to the next
level, must be realized by an additional state transition relation Ri,i+1 which maps
the reward function of the MRM to stochastic rates. During one time unit the original
MRM accumulates a reward of ̺s in the state s. In the derived CTMC CA, we must
observe ̺s

∆ transitions per time unit which increase the discretized reward level. For
each state (s, i) there must be a state transition to the state (s, i + 1) with rate ̺s

∆ .

The state space is infinite but countable as the reward growths monotonically without
an upper bound. The resulting CTMC’s rate matrix RA has the following structure
and represents a special type of a so-called quasi birth-death process (QBD) [101].

54

3.2 Extensions

RA =

⎛⎜⎜⎜⎜⎜⎜⎝

R0 R0,1 0
0 R1 R1,2 0
. . . 0 ⋱ ⋱ 0
. 0 Ri Ri,i+1 0 . . .
. ⋱ ⋱ . . .

⎞⎟⎟⎟⎟⎟⎟⎠
The probability Prs{Xτ ∈ S

′, Yτ ∈ (j∆, (j + 1)∆]} to reach at time τ a state from S′

while accumulating a reward of [j∆, (j + 1)∆) is approximated by

Pr(s,0){XAτ ∈ {(s′, j) ∣ s′ ∈ S′}}.
Transient analysis of infinite QBDs is feasible [101] and requires only a finite number
of n computation steps. This number only depends on the given time t, a constant
λ, which should be at least the maximal exit rate, and an error bound ǫ. Thus only
a finite number of states will be considered, in fact all the states which are reachable
from the initial state by paths with a maximal length of n. For a QBD, n and the
so-called level diameter, the minimal number of state transitions which are necessary
to cross a complete level, can be used to determine in turn a finite set of levels, which
have to be considered, see [101] for more details.
In the scenario on hand, the level diameter is always 1, as the level-increasing state
transitions may be taken sequentially. This means to always consider the first n reward
levels. However, to compute the joint distribution of time and reward we are only
interested in states with an accumulated reward of at most y. Thus we can use y
instead of t to define the finite subset of repeating levels. In [55], y is called the
absorbing barrier. Let Si denote the states at level i, S>i above and S≤i below level i.
For given y and ∆ we define the absorbing level r = ⌊ y∆⌋ representing the reward value
y. States with a higher reward value than y can be abstracted to the set S>r and states
with at most a value of y to the set S≤r. Starting at level 0, one has to cross r+1 levels
(including level 0) to exceed the specified reward bound. Thus we can make all states
in Sr+1 absorbing and get a finite CTMC.

Stochastic Petri net interpretation. A high-level description of the rate matrix RA

by means of an SPN permits its on-the-fly computation. I will sketch the obvious
construction idea.

At first we extend the existing net by an additional place, whose marking represents
the reward levels. The number of tokens on this additional place py increases only by
the firing of the transitions which define the relation Ri,i+1. I already specified this set
of net transitions as T ̺. But so far these transitions only define a reward function for
certain sets of states, but do not affect the set of reachable states. Two steps remain.

55

3 Stochastic Petri Nets

1. The firing of these transitions must increase the number of tokens on py.

2. The reward functions must be transformed to stochastic rates. For all reward
transitions we redefine the associated function as f ′t = ft/∆.

Given the original SRN as [NS , ̺] with NS = [P,T,V,VR, VI , F, s0] and the reward
structure ̺ as the net N̺ = [P ̺ ⊆ P,T ̺, V ̺ = ∅, V ̺

R , V
̺
I , F

̺,∅], a specified reward step
∆, and a specified reward bound y, we define the SPN
NA = [PA, TA, V A, V AR , V AI , FA, s0A] with

1. PA = P ∪ {py}
2. TA = T ∪ T ̺

3. V A = V ∪ {((t, py),1) ∣ t ∈ T ̺}
4. V AR = VR ∪ V

̺
R

5. V AI = VI ∪ V
̺
I
∪ {(py, t, ⌊

y
∆ ⌋ + 1) ∣ t ∈ T ̺}

6. FA = F ∪ {(t, ft/∆) ∣ (t, ft) ∈ F ̺}

7. sA0 = s0.

The set of inhibitor arc weights enforces the finite version of CA. Example 7 shows the
elements which have to be added to the SPN in Figure 3.3 to create the approximating
SPN concerning the reward structure given in Example 6.

The SPN NA = [PA, TA, V A, V AR , V AI , FA, s0A] allows us to approximate the distribu-
tion of the accumulated reward as

Pr{Yτ < y} = ∑
0≤i≤⌊ y

∆
⌋
Pr{XAτ ∈ Si}.

Example 7

We create the approximating net NA for the SPN in Figure 3.3 and the
the reward structure in Example 6 by extending it by the subnet given in
Figure 3.6.

The transient analysis for N = 1, y = 0.01,∆ = 0.01, τ1 = 0.1 and τ2 = 1
gives vectors of size ∣S∣ ⋅ l from which we can derive the following vectors
by applying

υwtτ,y(s) = ∑
0≤i<l

πC
A

τ ((s, i))

56

3.3 Numerical analysis

to1

to2

b1

p y

b2

1/∆

1/∆

N

N
⌊ y

∆
⌋+ 1

⌊ y

∆
⌋+ 1N

N

N+1

N+1

Figure 3.6: The subnet representing the reward accumulation for the SPN in Fig. 3.3
and the reward structure given in Example 6.

υwt
0.1,0.01 ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.008850490961004
0.905137673206139
0.000012993220656
0.000002123704422
0.000000001272433
0.000257139739951
0.077509118491380
0.000000005624919
0.000000018834152
0.000000000005531
0.000027884274709
0.008202375484388
0.000000012555989
0.000000000102172
0.000000000000615

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

υwt
1,0.01 ≈

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0.214249151450070
0.449019394879065
0.024520534866126
0.003528757543612
0.000199534351893
0.045746898760631
0.236616198739971
0.000011000580633
0.000268258860990
0.000009756293859
0.004232171095014
0.018294818705131
0.000177182831325
0.000000176746319
0.000001084032651

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

☀

3.3 Numerical analysis

In this section I sketch numerical methods to compute transient and limiting proba-
bility distributions. An elaborated overview on solution techniques for Markov models
would go beyond the scope of this thesis. Thus I concentrate on established iterative
techniques and refer for further information on this topic to [112]. More or less gen-
eral methods to compute the distribution of the accumulated reward are collected in
[89, 42].

57

3 Stochastic Petri Nets

The presented methods have in common that they do not change the computation
matrix. This characteristics is important if algorithms exploit sparsity or regularity
as it is the case e.g. for symbolic representation techniques. In the work on hand
the matrix entries will be generated on-the-fly by an emulation of the firing of Petri
net transitions combined with a symbolic state space encoding. This prohibits the
application of matrix-changing algorithms. The details of this new approach follow in
Chapter 4.

3.3.1 Transient Analysis

I first sketch a numerical method for the computation of the transient probabilities πCα,τ
given the CTMC C = [S,R, s0] with generator matrix Q. The transient distribution
at time τ is given by

πCα,τ = π
C
α,0 ⋅ e

Q⋅τ = πCα,0 ⋅
∞
∑
k=0

(Q ⋅ τ)k
k!

.

It is possible to compute the so-called matrix exponential eQ⋅τ (see for [92] details)
and to multiply it with the initial distribution. However, in practice one computes
πCα,τ directly. This is achieved by applying ordinary differential equation solvers, e.g.
Runge-Kutta or projection methods as for instance the Krylov subspace method. The
possibly most frequently used method for the computation of transient probabilities of
Markov models is uniformization, also known as randomization or Jenson’s method.

Uniformization. The general idea of this method is to derive from C a discrete-time
Markov chain DU = [S,PU , s0], with

PU = I +
1

λ
Q

for some λ >max{E(s) ∣ s ∈ S}.
DU defines the stochastic process {XUk ∶ k ∈ N} which will be embedded into a Poisson
process {Nτ ∶ τ ∈ T } with rate λ. The embedding gives the stochastic process {XUNτ

∶
τ ∈ T }, which is stochastically equivalent to {Xτ ∶ τ ∈ T }, and allows us to compute
the transient probabilities at time instant τ as

πCα,τ =
∞
∑
k=0

e−λτ
(λτ)k

k!
πCα,0(P

U)k. (3.3)

The formula e−λτ (λτ)
k

k! specifies the probability that the Poisson process N makes k
transitions within the time interval [0, τ].

58

3.3 Numerical analysis

As the matrix PU is a stochastic matrix, the term πCα,0(PU)k can be replaced by

π(k−1)PU with π0 = πCα,0, which reduces the problem to a repeated vector-matrix
multiplication.

In practice we compute an approximation πCα,τ
∗ by truncating the infinite sum. The

method of Fox and Glynn [50] can be used to compute for a given error bound ǫ a left
truncation point L, a right truncation point R, and the related Poisson probabilities{wL, . . . ,wR}, such that ∣πCα,τ − π

C
α,τ

∗∣ < ǫ and

πCα,τ ≈ π
C
α,0

R

∑
k=L

wk(P
U)k = πCα,τ

∗. (3.4)

Algorithm 8 sketches the transient analysis based on uniformization.

Algorithm 8 (Uniformization)

1 func Uniformization(α : vector of double , ǫ, τ : double)
2 L,R : unsigned

3 w : vector of double
4 FoxGlynn(L,R, w , λτ ,ǫ)
5 acc, π: vector of double
6 π ∶= α
7 for k = 0 to k = R do

8 π ∶= π ⋅PU

9 if k ∈ [L,R] then acc ∶= acc +w[k] ⋅ π fi
10 od
11 return acc
12 end

Equation 3.4 computes the transient probability distribution at time instant τ given
a certain initial distribution α. Usually α(s) = 1 holds for a certain state s. If we want
to compute πτ,S′, as for instance in Section 3.4, we have to apply the uniformization
method for each state s ∈ S′.

Fast backward analysis. In [68] the authors proposed a technique to compute πτ,S′
in one pass. The idea is to initialize the goal states S′ with a probability of 1 and to
invert the direction of the probability propagation. This performs transient analysis
backwards and computes for all states s ∈ S the probability to be for sure at time
instance τ in one of the goal states under the assumption that s was the initial state.

59

3 Stochastic Petri Nets

This requires to replace the vector-matrix multiplication by a matrix-vector multipli-

cation in line 8 in Algorithm 8. The vector π has to be initialized with 1 for all
states s ∈ S′ and 0 otherwise. Please note that in this case neither the vectors π
nor the result vector acc represent a probability distribution.

Cumulative transient probabilities. In [100] and [75] it was shown that uni-
formization can also be used to compute ιCα,τ . The required change is a prepara-
tion of the used weights {wL, . . . ,wR} by

wci = 1 − ∑
L≤j≤i

wj.

3.3.2 Limiting Analysis

Next to the computation of transient probabilities, especially of the vector πτ,S′,
we will be interested in computing πCα and πS′. This is done by solving a system
of linear equations in form of

Ax = b.
Several methods exist for this purpose, which can be classified into direct and
iterative methods. Direct methods as Gaussian elimination compute the solu-
tion in a fixed number of operations while iterative methods approximate the
solution step-wise given an initial estimate and a specified convergence criterion.
They rely on the multiplication of a matrix and a vector and do not change
the matrix. Direct methods may produce a huge amount of fill-in, non-zero
entries generated during the solution process, which is problematic concerning
the implementation of efficient storage schemes and often results in extremely
high memory consumption. In Markov analysis one applies traditionally itera-
tive methods as they preserve the often huge, but in general extremely sparse
matrices. I will now sketch two of these methods, namely the method of Jacobi
and Gauss-Seidel. For an elaborated presentation I refer to [112].

In both cases the matrix A is split into two matrices

A =M −N which gives (M −N)x = b
to finally derive the iteration scheme

xk+1 =M−1Nxk +M−1b =Hxk + c
with the iteration matrix H =M−1N. The iteration terminates, if the difference
between the current and the previous approximation has become sufficiently

60

3.3 Numerical analysis

small. Of course there are several ways to specify the difference between two
versions of the approximation. As in [96] I consider the relative measure

maxi
⎛
⎝
∣ xk(i) − xk−m(i) ∣

∣ xk(i) ∣
⎞
⎠ < ǫ

with m = 1 and a default value of 10−6 for ǫ. In what follows we consider the
matrix splitting

A =D − (L +U)
with D as the diagonal, L as the strictly lower, and U the strictly upper tri-
angular matrices. Further we assume that the diagonal does not contain zero
elements, which is always guaranteed in our application scenario.

Jacobi. For the method of Jacobi the iteration matrix is derived by setting
M =D and N = (L +U) which gives the iteration scheme

xk+1 =D−1(L +U)xk +D−1b

in scalar form

xk+1(i) = 1

d(i, i)
⎛
⎝ ∑j≠i (l(i, j) + u(i, j))x

k(j) + b(i)⎞⎠ , i = 1, . . . , n.

As we need to remember the kth version of the approximation to compute the(k + 1)th, two vectors in the size of the state space are required. The Jacobi
method is slow as it requires in general many iterations. Furthermore there is no
guaranty for convergence. However, as all elements of the current approximation
are computed independently of each other the order in which matrix entries are
accessed is irrelevant what makes a parallelization very easy.

Gauss-Seidel. Gauss-Seidel improves Jacobi by making use of recently com-
puted approximations. Each time an element has been computed, the previ-
ous version will immediately be overwritten. Thus Gauss-Seidel converges much
faster than Jacobi. Further it requires only one vector to store the approximation
k and k + 1.

Unfortunately, the immediate use of computed approximations introduces de-
pendencies between the matrix elements. These dependencies require the matrix
entries to be accessed row or column-wise, a fact which must be considered

61

3 Stochastic Petri Nets

when choosing the matrix storage scheme. A parallelization of Gauss-Seidel is
not straightforward.

For the method of Gauss-Seidel the iteration matrix is derived by setting M =(D −L) and N =U which gives the iteration scheme

xk+1 = (D −L)−1Uxk + (D −L)−1b
in scalar form

xk+1(i) = 1

d(i, i)
⎛
⎝
i−1∑
j=1
l(i, j)xk+1(j) + n∑

j=i+1
u(i, j)xk(j) + b(i)⎞⎠ , i = 1, . . . , n.

It is further worth mentioning that Gauss-Seidel’s convergence speed is affected
by the initial order of states.

Reachability of states. A question for which one often wants to get the answer
is: “How probable is it to finally reach a state in the state set S′?”. If the under-
lying bounded Petri net is reversible and the induced Markov chain ergodic,
this probability is always 1 and πS′ = 1. However, numerical computations are
required, if the Petri net is not reversible or if we forbid to visit a second set
of states S′′. For the computation of the vector πS′ , the probabilities to finally
reach a state from S′, we have to solve

PπS′ = v with v(s) = { 1 if s ∈ S′
0 otherwise .

In most cases it is not necessary to consider the state transitions of all states,
a circumstance which may decrease the computational effort and the memory
consumption drastically. One can distinguish the following classes of states for
which I want to give a characterization by means of CTL formulas:

� Sno : states with a probability to reach S′ of zero.

Sno = Sat(¬E [¬apS′′UapS′])
� Syes : states with a probability to reach S′ of one.

Syes = Sat(¬E [¬apS′′UapSno
])

� Smaybe : states whose a probability to reach S′ is neither 0 nor 1 and has to
be computed

Smaybe = S ∖ (Sno ∪ Syes).
Consequently, Syes and Sno states can be made absorbing.

62

3.3 Numerical analysis

The limiting distribution of reversible Petri nets. For the computation of the
steady state probabilities πCα we have to solve

πQ = 0,

rearranged to use matrix-vector multiplication

QTπT = 0.

When using Jacobi we have M = E and N = RT , and obtain Algorithm 9. For

Algorithm 9 (Jacobi – Steady state)

1 func SteadyState(ǫ : double)
2 xk, xk+1: vector of double
3 xk ∶= 1/n // element-wise
4 xk+1 ∶= 0
5 stop ∶= false
6 while ¬stop do
7 stop ∶= true
8 x k+1 ∶=RTx k

9 for 1 ≤ i ≤ n do
10 x k(i) := x k+1 (i)/E(i)
11 stop ∶= stop&converged(x k(i), x k+1 (i), ǫ)
12 x k+1(i) := 0
13 od
14 od
15 return x k

16 end

Gauss-Seidel we formulate Algorithm 10, but we can not easily map E and R
to the matrix splitting N and M as the latter is the inverse of the difference of
the diagonal and the strictly lower triangular matrix of RT .

The limiting distribution of non-reversible Petri nets. If the reachability graph
of a given SPN is not reversible, the originating CTMC is not ergodic. The
computation of the limiting distribution for such situation has been discussed
in [11]. The probability for transient states is 0. The recurrent states yield the
bottom strongly connected components B. For a BSCC Ci ∈ B, the distribution
πCi can be computed with the methods described above, but has to be weighted

63

3 Stochastic Petri Nets

Algorithm 10 (Gauss-Seidel – Steady state)

1 func SteadyState(ǫ : double)
2 x: vector of double
3 x ∶= 1/n // element-wise
4 stop ∶= false
5 while ¬stop do
6 stop ∶= true
7 for 1 ≤ i ≤ n do
8 r ∶= 0
9 forall j ≠ i ∶R(j, i) > do

10 r ∶= r +R(j , i)x (i)
11 od
12 r ∶= r/E(i)
13 stop ∶= stop&converged(x(i), r , ǫ)
14 x(i) ∶= r
15 od
16 od
17 return x k

18 end

with the probability to reach Ci. We have to compute

πCα (s) = { πCi(s) ⋅ πα,Ci
(s) if ∃Ci ∈ B ∶ s ∈ Ci

0 otherwise .

3.4 CSRL Model Checking

In Section 2.3 I recalled the Computation Tree Logic (CTL) and the basic ideas
of the related model checking procedure. CTL has no notion of explicit time
although it is required in many application areas. Thus several quantitative ex-
tensions and related model checking algorithms have been proposed in the past.
In the Real-Time Computation Tree Logic (RTCTL) [49] the tense operators
are decorated with a time bound, whereby time is treated discretely. The Time
Computation Tree Logic (TCTL) [2], syntactically equal to RTCTL, has indeed
a continuous time semantics and is interpreted over structures where additional
time information have been assigned to the state transitions as it is the case
for instance for time Petri nets. The first probabilistic adaption of CTL was the
Probabilistic Real Time Computation Tree Logic (PCTL) [54] which replaces
the RTCTL path quantifier E and A by an operator to bound the probability of

64

3.4 CSRL Model Checking

the truth of path formulas. This allows to express properties as: “the probability
of reaching within 10 time units a state where φ is true is greater than 0.5”.
The semantics of PCTL formulas are interpreted over DTMCs. The continuous
adaption of PCTL for CTMC analysis is the Continuous Stochastic Logic (CSL),
introduced in [5] and extended by a new operator to express steady state prop-
erties in [12]. The Continuous Stochastic Reward Logic (CSRL) [10] extends in
turn CSL by additional reward bounds associated to the tense operators.

3.4.1 Continuous Stochastic Reward Logic

Syntax. CSRL can be seen as the counterpart of CTL for Markov reward mod-
els. The syntactical difference to CTL is that the temporal operators are deco-
rated with a time interval I, and a reward interval J . Further, the path quantifiers
E and A are replaced by the probability operator P⋈p, and there is the steady
state operator S⋈p.
The CSRL syntax is defined inductively given state formulas

φ ∶∶= true ∣ ap ∣ ¬φ ∣ φ ∧ φ ∣ φ ∨ φ ∣ P⋈p[ψ] ∣ S⋈p[φ] ,
and path formulas

ψ ∶∶=XI
Jφ ∣ φUI

Jφ

with ap ∈ AP , ⋈ ∈ {<,≤,≥,>}, p ∈ [0,1], and I, J ⊆ R+.

Semantics. CSRL state formulas are interpreted over the states, and path for-
mulas over the paths of the MRM M , as we have seen it for CTL. The CSRL
formula P⋈p[ψ] is true in state s if the probability to choose a ψ-path is bounded
by the probability p and the operator ⋈. Given the initial distribution α(s) = 1,
the CSRL formula S⋈p[φ] is true in state s, if the probability to be in the steady
state in a φ-state is bounded by ⋈p .

65

3 Stochastic Petri Nets

For state formulas we define the satisfaction relation ⊧ as follows

s ⊧ ap ⇔ ap ∈ L(s)
s ⊧ ¬Φ ⇔ s /⊧ Φ
s ⊧ Φ ∨Ψ ⇔ s ⊧ Φ ∨ s ⊧ Ψ
s ⊧ Φ ∧Ψ ⇔ s ⊧ Φ ∧ s ⊧ Ψ
s ⊧ S⋈p[ψ] ⇔ ∑s′∈Sat(ψ) π

M
s (s′) ⋈ p

s ⊧ P⋈p[ψ] ⇔ ProbMs (ψ) ⋈ p,
with ProbMs (ψ) = Pr{Pathss,ψ} as the probability to satisfy the path-formula
Ψ starting in s. The set Pathss,ψ = {σ ∈ Pathss ∣ σ ⊧ ψ} is measurable [40].

The satisfaction relation ⊧ for path formulas is defined over the set of paths of
the Markov chain. The path formula ψ =XI

JΦ holds on a path starting in s if the
successor state of s is a Φ-state and is reached within the time interval I. The
accumulated reward in this moment must fall into the interval J . The formula
ψ = ΦUΨ holds on a path if it contains a Ψ-state s′ and all its predecessor states
are Φ-states. The time point when s′ is reached must fall into the interval I and
the accumulated reward in this moment into the interval J . More formally:

σ ⊧XI
JΦ ⇔ ∣σ∣ ≥ 1 ∧ δ0 ∈ I ∧ σ[1] ⊧ Φ ∧ Yδ0(σ) ∈ J

σ ⊧ ΦUI
JΨ ⇔ ∃τ ∈ I ∶ σ(τ) ⊧ Ψ ∧ ∀τ ′ < τ ∶ σ(τ ′) ⊧ Φ ∧ Yτ(σ) ∈ J.

Similar to CTL, we define the following relations to use the operators Finally
and Globally: P⋈p[FI

JΦ] ≡ P⋈p[trueUI
JΦ]P⋈p[GI

JΦ] ≡ P⋈(1−p)[trueUI
J¬Φ].

3.4.2 Model Checking

A CSRL model checker answers the question whether a Markov reward model
M = [C = [S ,R,L, s0], ̺] satisfies a CSRL formula φ which is the case if the
initial state is a φ-state, formally written:

M ⊧ φ⇔ s0 ⊧ φ.
The CSRL model checking algorithm is shown in Algorithm 11. It is basically
inherited from that of CTL (see Algorithm 7). Of course, the functions checkEX,
checkEG and checkEU have to be adapted. Further we have to consider the
additional steady state operator.

66

3.4 CSRL Model Checking

Algorithm 11 (CSRL model checking algorithm)

1 proc checkCSRLFormula(φ : formula, M = [C , ̺] : model)

2

3 func check(f : formula)
4 if f ≡ true thenSat(f) ∶= S
5 elseif f ≡ ap thenSat(f) ∶= abstractAP(S,ap)
6 elseif f ≡ Φ ∧Ψ thenSat(f) ∶= check(Φ) ∩ check(Ψ)
7 elseif f ≡ Φ ∨Ψ thenSat(f) ∶= check(Φ) ∪ check(Ψ)
8 elseif f ≡ ¬Φ thenSat(f) ∶= S ∖ check(Φ)
9 elseif f ≡ S⋈pΦ then

10 S ′ ∶= check(Φ)
11 Sat(f) ∶= select(p,⋈, πS ′)

12 elseif f ≡ P⋈p[XI
JΦ] then

13 r ∶= checkX(check(Φ), I ,J)
14 Sat(f) ∶= select(p,⋈, r)
15 elseif f ≡ P⋈p[ΦUI

JΨ] then
16 r ∶= checkU(check(Φ), check(Ψ), I ,J)
17 Sat(f) ∶= select(p,⋈, r)
18 elseif f ≡ P⋈p[GI

JΦ] then
19 r ∶= 1 − checkU(check(true), check(¬Φ), I ,J)
20 Sat(f) ∶= select(p,⋈, r)
21 fi
22 return Sat(f)
23 end
24

25 func select(p :double, ⋈ : cmp, v : vector of double)

26 return {s ∣ v(s) ⋈ p}
27 end
28

29 if s0 ∈ check(φ) then
30 print(M ⊧ φ)
31 else
32 print(M /⊧ φ)
33 fi
34 end

Being a branching time logic, a path formula comes along with the operatorP⋈p, which selects the satisfying states given the operator ⋈ and the probability
bound p. The selection is realized by the function select in Algorithm 11. The
actual work is the computation of the probabilities for each state to take one of
the fulfilling paths.

67

3 Stochastic Petri Nets

This evaluation step is affected by the values of the specified reward function
̺, the time interval I, and the reward interval J . Often it is possible to derive
intervals I ′ and J ′ which may reduce the computational effort or at least allow to
solve the problem by an existing evaluation procedure. Take for instance the path

formula ψ = [ΦU[τ,τ ′](y,∞)Ψ]. If we were choosing a (ΦUΨ)-path whose states gain

all the maximal possible reward value ̺max, the maximal possible accumulated

reward is τ ′ ⋅ ̺max. In this case we can alter the formula to ψ = [ΦU[τ,τ ′](y,τ ′⋅̺max]
Ψ].

If the rate reward function is total, we further check whether y/̺min > τ . Then we
can replace τ by y/̺min which may reduce the computational effort. If y/̺min > τ ′
we skip any numerical computation as the given time and reward bounds are
inconsistent with regard to the given rate reward function. However, the eval-
uation of the resulting formulas generally requires some more or less expensive
numerical computations. In the following I will sketch the evaluation of the NeXt
-and the Until-operator. Depending on the time and reward bounds, we can ap-
ply the evaluation procedures introduced in [9, 11, 40].

X-operator

The evaluation of the formula P⋈p[XI
JΦ] requires to compute for each state s the

probability ProbMs (XI
JΦ). The accumulated reward depends only on the reward

gained in state s and the probability of a state transition to a Φ-state, which
is given by the one-step probabilities P. Further, the transition probability has
to be weighted by a value derived from the given time and reward bounds. Let
us first consider the special situation that the reward interval is J = [0,∞).
Following [11], the probability of a state transition to a Φ-state within the time
interval is

ProbMs (XIΦ) = (e−E(s)⋅inf(I) − e−E(s)⋅sup(I)) ⋅ ∑
s′∈Φ

P(s, s′).

In the case that inf(J) ≠ 0, the state s must yield a positive reward ̺s to
fulfill P⋈p[XI

JΦ]. Then it is possible to derive the time interval Is by dividing all
elements of J by ̺s. Is represents the set of sojourn times in s which do not break
the given reward constraints. This enables to map the problem to the previous
scenario and we have

ProbMs (XI
JΦ) = ProbMs (XI∩IsΦ).

Table 3.3 shows the different intervals I ∩ Is which have to be considered. The

68

3.4 CSRL Model Checking

Table 3.3: Secondary time intervals for the evaluation of the CSRL X-operator.

̺s = 0 ̺s > 0
I ∖ J [0, ⋅] (y, ⋅] [0,∞) [0, y] (y, y′] (y,∞)
[0,∞) I ∅ I [0, y

̺s
] (y

̺s
, y
′

̺s
] (y

̺s
,∞)

[0, t] I ∅ I [0,min(t, y
̺s
)] (y

̺s
,min(t, y′

̺s
)] (y

̺s
, t]

[t, t′] I ∅ I [t,min(t′, y
̺s
)] (min(t, y

̺s
),min(t′, y′

̺s
)] (min(t, y

̺s
), t′]

[t,∞) I ∅ I [t, y
̺s
] (min(t, y

̺s
), y′
̺s
] (min(t, y

̺s
),∞)

evaluation of theX-operator generally requires a single multiplication of a vector
and the matrix P.

U-operator

With regard to the U-operator, the characteristics of the time and reward inter-
vals enable to distinguish the following four sub-logics of CSRL. For a detailed
discussion I refer to [40].

Continuous Stochastic Logic (CSL). CSL is the CSRL subset with J = [0,∞)
and I ≠ [0,∞) meaning that there are no constraints concerning the accumulated
reward. In this case I omit J for readability and do not consider the reward
structure ̺. The model M is characterized by the CTMC C.

CSL model checking can be completely reduced to the numerical computation
of standard CTMC measures in a modified CTMC [9, 11]. Depending on the
specified time bounds, certain states will be made absorbing by setting their rate
to zero. Doing so, the probability to take one of the satisfying paths in the original
model is equal to the probability of reaching a Φ-state in the derived model
[9]. The computation of these probabilities can be realized with the standard
methods I sketched in Section 3.3. In same cases the derived model becomes
inhomogeneous and it is necessary to perform a two phase computation with
different models. In the remainder, M[S′] denotes the Markov model derived
from M by making all states in S′ ⊂ S absorbing.

The following path formulas have to be considered:

69

3 Stochastic Petri Nets

1) ΦU[0,τ]Ψ ∶ In this case it holds that

ProbMs (ΦU[0,τ]Ψ) = ∑
s′∈Sat(Ψ)

π
M[Sat(¬Φ∨Ψ)]
s,τ (s′). (3.5)

A simple transient analysis is necessary while making (¬Φ∨Ψ)-states absorbing.

2) ΦU[τ,τ]Ψ ∶ Paths leading to (¬Φ ∧ ¬Ψ)-states are cut and it holds

ProbMs (ΦU[τ,τ]Ψ) = ∑
s′∈Sat(Ψ)

π
M[Sat(¬Φ∧¬Ψ)]
s,τ (s′). (3.6)

3) ΦU[τ,τ
′]Ψ ∶ In this case we deal with an inhomogeneous CTMC, as the tran-

sition relation R is time-dependent. Before reaching the lower time bound, it
is possible to leave a Ψ-state, provided that it fulfills Φ. After reaching the
lower time bound, also Ψ-states become absorbing. The computation requires
two steps. It holds that

ProbMs (ΦU[τ,τ ′]Ψ)
= ∑
s′∈Sat(Φ)

⎛
⎝πM[Sat(¬Φ])s,τ (s′) ⋅ ∑

s′′∈Sat(Ψ)
π
M[Sat(¬Φ∨Ψ)]
s′,(τ ′−τ) (s′′)⎞⎠ . (3.7)

4) ΦU[τ,∞)Ψ ∶ This case is similar to the previous one as we deal again with
an inhomogeneous CTMC. However the first step is now the computation of the
limiting probabilities in the CTMC M[Sat(¬Φ ∨Ψ)].
ProbMs (ΦU[τ,∞)Ψ)

= ∑
s′∈Sat(Φ)

⎛
⎝πM[Sat(¬Φ)]s,τ (s′) ⋅ ∑

s′′∈Sat(Ψ)
π
M[Sat(¬Φ∨Ψ)]
s′ (s′′)⎞⎠ . (3.8)

Stochastic Logic (SL). In the Stochastic Logic there are no constraints concern-
ing time and accumulated reward and I omit I and J . The evaluation is reduced
to the computation of πS′ for S

′ = Sat(Ψ) while making all (¬Φ ∨ Ψ)-states
absorbing (see Section 3.3.2).

Please note that SL is not equal to CTL. One could interpret E as P>0 and A
as P≥1 but in general it holds that

A[ΦUΨ] /≡ P≥1[ΦUΨ],
as illustrated in Figure 3.7.

70

3.4 CSRL Model Checking

Φ Ψ

Figure 3.7: Due to the loops it is qualitatively possible to stay forever in the Φ-state.
Without any time and reward constraints the probability to observe this
single infinite path is zero and is independent of the actual transition rates.
Each probable execution will stay some time in the Φ-state and will finally
move to the Ψ-state. Thus the model fulfills the CSL formula P≥1[ΦUΨ]
but not the CSL formula A[ΦUΨ].

Continuous Reward Logic (CRL). CRL is the dual to CSL as time does not
influence the truth of the given formula.

Under certain conditions it is possible to interchange the role of time and ac-
cumulated reward in the model and the formula. This enables to evaluate a
CRL formula using the related CSL evaluation procedure and a modified MRM.
The requirements for this approach, known as the principle of duality [40], is
a total rate reward function, meaning that for each state the earned reward
is positive. The accumulated reward of each path is uniquely determined by
the sojourn times of its states. Thus, it is possible to interchange I and J in
the CRL formula and to check the resulting CSL formula with respect to the
model C ′ = [S ,R′,L, s0] where all transition rates are rescaled by the related

rate reward: ∀s ∈ S ∶R′(s, s′) = R(s,s′)
̺s

.

Continuous Stochastic Reward Logic (CSRL). The remaining types of formulas
can be evaluated similar to CSL formulas but require to compute the performa-
bility measure [55, 40, 8]. The CSRL formula ΦUI

JΨ is encoded into the model.
The two-phase approach described by Cloth [40] considers the performability
measure of a possibly time and reward inhomogeneous MRM M⟨ΦUI

JΨ⟩. The
transition relation changes after exceeding both the lower time bound and the
lower reward bound. Starting from this point a path may fulfill the given for-
mula. Before this happens (phase 1), only ¬Φ states become absorbing and their
rate reward becomes zero. After exceeding the lower bounds (phase 2), Ψ-states
become additionally absorbing. When starting phase 2, care must be taken with

71

3 Stochastic Petri Nets

(¬Φ ∧Ψ)- states as they do not contribute to the probability mass. Cloth pro-
poses to create copies, which are only reachable in phase 1. It remains to compute

υ
M⟨ΦUI

J
Ψ⟩

s,sup(I),sup(J)(Sat(Ψ)) for all reachable states, as it holds (Theorem 3 in [40])

ProbMs (ΦUI
JΨ) = ∑

s′∈Sat(Ψ)
υ
M⟨ΦUI

JΨ⟩

s,sup(I),sup(J). (3.9)

This general presentation leaves open how to compute the distribution of the
accumulated reward, which is actually a difficult problem. In this context [42]
discusses five more or less general algorithms. Markovian Approximation, which
I sketched in Section 3.2.2, is one of the methods applicable also in the inhomo-
geneous case.

In the following I will describe an approach for the model checking of CRL and
CSRL formulas which translates the problem specification to CSL and considers
the SPN NA, which I specified in Section 3.2.2.

Model checking based on Markovian Approximation. The core idea of the Marko-
vian Approximation is to encode a discretization of the accumulated reward in-
duced by the MRM M = [C,̺] into the states of the underlying CTMC C. In
Section 3.2.2 I discussed how to derive a bounded high-level description of the
resulting CTMC CA by means of the SPN NA, where each marking of the place
py represents a certain level of the discretized accumulated reward. We defined
l = ⌊ y∆⌋ + 2 reward levels for a specified discretization constant ∆ and a reward
bound y. The lth level represents the reward interval (> y,∞).
With this background I propose to move the reward constraints J into the
C(S)RL formula. To illustrate this simple transformation, let us consider the

CSRL path formula ψ = ΦU
[τ,τ ′]
(y,y′]Ψ. A ψ-path σ must fulfill the following three

conditions:

1. σ is a (ΦUΨ)-path.
2. The related Ψ-state is reached within the time interval I.

3. Its accumulated reward is in J

a) when reaching the Ψ-state after exceeding τ , or

b) when passing τ as far as σ(τ) is a (Φ ∧Ψ)-state.
With respect to ∆, the condition 3 can be encoded into the state formula Ψ by
mapping y and y′ to the markings (reward levels) of the place py. The boundary

72

3.4 CSRL Model Checking

level representing a reward greater than y′ is ⌊y′∆⌋+1. This gives the state formula

ΨJ = Ψ ∧ py > ⌊ y
∆
⌋ ∧ py ≤ ⌊y′

∆
⌋

which replaces Ψ in the original formula. Following this idea we can generally

CSRL CSL

ΦUI
[y,y]Ψ ΦUI(Ψ ∧ py = ⌊ y∆⌋)

ΦUI
[0,y]Ψ ΦUI(Ψ ∧ py ≤ ⌊ y∆⌋)

ΦUI
(y,y′]Ψ ΦUI(Ψpy > ⌊ y∆⌋ ∧ py ≤ ⌊y′∆⌋)

ΦUI
(y,∞)Ψ ΦUI(Ψpy > ⌊ y∆⌋)

Table 3.4: The CSL representation of relevant CSRL formulas for the approximating
SPN NA.

remove J while replacing Ψ by ΨJ . The different situations are shown in Table
3.4. The rest is CSL model checking!

Correctness. Let us take once again the CSRL formula P⋈p[ΦU[τ,τ ′](y,y′]Ψ] to show

exemplified that this CSL-based approach emulates that in [40]. We move the
reward bounds into the state formulas and get the CSL formula

P⋈p[ΦU[τ,τ ′](Ψ ∧ py > ⌊ y
∆
⌋ ∧ py ≤ ⌊y′

∆
⌋)].

To approximate the probability ProbMs (ΦU[τ,τ ′](y,y′]Ψ), we apply the CSL model

checking algorithm with the derived formula and the net NA. Therefor we replace
in Equation 3.7 Ψ by the new state formula Ψ(y,y′] and obtain

ProbC
A

s (ΦU[τ,τ ′]Ψ(y,y′])

= ∑
s′∈Sat(Φ)

⎛⎜⎜⎜⎜⎜⎜⎝
π
CA[Sat(¬Φ)]
s,τ (s′) ⋅ ∑

s′′∈Sat(Ψ)
π
CA[Sat(¬Φ∨(Ψ∧py>⌊ y

∆
⌋∧py≤⌊y

′

∆
⌋))]

s′,(τ ′−τ) (s′′)
´¹¹¹¸¹¹¹¶

phase 2

⎞⎟⎟⎟⎟⎟⎟⎠
.

The term

∑
s′′∈Sat(Ψ)

π
CA[Sat(¬Φ∨(Ψ∧py>⌊ y

∆
⌋∧py≤⌊y

′

∆
⌋))]

s′,(τ ′−τ) (s′′)

73

3 Stochastic Petri Nets

represents the second phase in Cloth’s approach. CA[¬Φ ∨ (Ψ ∧ py > ⌊ y∆⌋ ∧ py ≤⌊y′∆⌋)] approximates the MRM where in addition to the (¬Φ)-states all Ψ-states
have become absorbing, as far as the lower reward bound has been exceeded,
approximated by py > ⌊ y∆⌋. The reward bound sup(J) in Equation 3.9 is approx-

imated by py ≤ ⌊y′∆⌋. That also the lower time bound has been exceeded can be
seen when the transient analysis is done for the time τ ′−τ . The computed proba-
bilities are multiplied with the probability to be in a Φ-state at the end of phase
one, where we consider the CTMC CA[¬Φ]. A separate consideration of (¬Φ∨Ψ)-
states is not necessary. This treatment of C(S)RL formulas yields naturally a

model checking procedure for the formula ΦU
[τ,∞)
(y,∞)Ψ for which [40] does not

present a solution. We can specify the CSL path formula ΦU[τ,∞)(Ψ ∧ py > ⌊ y∆⌋)
and have

ProbMs (ΦU[τ,∞)(y,∞)Ψ)

≈ ∑
s′∈Sat(Φ)

⎛
⎝πC

A[¬Φ]
s,τ (s′) ⋅ ∑

s′′∈Sat(Ψ)
π
CA[¬Φ∨(Ψ∧py>⌊ y

∆
⌋)]

s′ (s′′)⎞⎠ .
In this case the second phase is the computation of the limiting probability to
reach a Ψ-state in the subset of states which represents the equivalence class S>y.

The proposed approach possesses several pros and cons which should be men-
tioned here. I will not provide solutions here for the cons.

Pros. Markovian Approximation has been shown to possess in general a good
performance. It can be applied even for huge state spaces [41, 40, 107]. It does
not require a total reward function. As the rewards are encoded into the model
as well into the formula, the technique enables the use of existing CSL model
checkers.
From my point of view the most important advantage is the “easy to get” high-
level description by means of the SPN NA which enables the efficient matrix
representation which I will discuss in Chapter 4.

Cons. For the time being the error introduced by the Markovian Approximation
is unknown [40]. The proposed encoding may introduce a further inaccuracy due
to the discretization of the interval bounds. The encoding of the reward accu-
mulation into the CTMC is expected to produce a highly stiff model, where the
rates of the state transitions differ considerably. Stiffness affects the numerical

74

3.4 CSRL Model Checking

methods as uniformization with respect to the accuracy and the number of re-
quired iterations. A further disadvantage is the restriction to rate-based Markov
reward models.

Example 8

We can use CSRL to formalize interesting questions concerning reward
augmented SPNs (SRNs) as for instance:

� Availability - The CSL formula

P>p[F[τ,τ]apup]
asks: ”For which states, when starting there, is the probability
greater than some bound p to be at time point τ in an up-state?”

� Reliability - The CSL formula

P>p[G[0,τ]apup]
asks: ”For which states, when starting there, is the probability
greater than some bound p to visit up to time point τ only up-
states?”

� For the running example (See Figure 3.3) we ask for instance:
”What is the probability to reach within time τ a state where
the buffer b1 is full, whereby b2 remains empty and the number
of consumptions is bounded by some B?” by using the reward
structure

̺consumptions =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cr if s ∈ enabled(consume)
cr if s ∈ enabled(consume fetch b2 1)(cr ⋅ f2) if s ∈ enabled(consume fetch b2 2)
cr if s ∈ enabled(consume fetch b1 1)(cr ⋅ f1) if s ∈ enabled(consume fetch b1 2)
0 otherwise .

and the CSRL formula

P=?[b2 < 1U
[0,τ]
[0,B]b1 = N].7

☀
7The P=? operator is not a standard CSRL operator. It is syntactic sugar to get the probability of
the initial state.

75

3 Stochastic Petri Nets

3.5 Summary

In this chapter I recalled (generalized) stochastic Petri nets ((G)SPN), whose
semantics are Continuous-time Markov chains (CTMC), and numerical methods
to compute important probability distributions and secondary measures. As a
useful extension of the SPN formalism I briefly presented rate-based stochastic
reward nets (SRN) whose semantics is a special type of Markov reward model
(MRM). The considered SRN can be approximated by SPN. I presented the
Continuous Stochastic Reward Logic (CSRL) as an advanced analysis approach
of (G)SPN and SRN. I sketched the basic ideas of CSRL model checking and
proposed an approximative model checking approach which is purely based on
CSL, a proper CSRL subset, and the SPN formalism.

76

4 Advanced Matrix Representation

The numerical methods presented in Section 3.3 have in common that they rely
in some sense on the multiplication of an ∣S ∣×∣S ∣-matrix and an ∣S ∣-vector, whereS is the set of reachable states of the investigated model. Although this operation
is very simple from an algorithmic view point, the state space explosion turns it
in many cases into a serious challenge.

In this chapter I present the main contribution of this thesis, a symbolic on-the-
fly approach to enumerate the entries of the rate matrix of a CTMC. The idea
is to compute the matrix entries from the high-level model description and the
related state space, instead of storing them in a dedicated data structure. It was
first proposed in [45] for an explicit storage of the states and suffers from the
state space explosion. For this reason I pick up the basic idea, but discuss it in
a symbolic setting.

I have introduced the necessary ingredients in Chapter 2 and Chapter 3 - ba-
sically stochastic Petri nets as the high-level description of Continuous-time
Markov chains and Interval Decision Diagrams as a data structure to represent
symbolically sets of states.

Several advanced matrix representation techniques have been investigated in the
past with notable results. Before I present the details of my approach, I briefly
review some important encoding techniques of Markov chains, which often enable
a compact matrix storage and which are deployed in public available tools.

4.1 Classical Sparse Matrix Representation

We have seen that the numerical analysis of Markov models can be carried out by
applying matrix-vector and vector-matrix multiplications. The related matrices
are generally extremely sparse, meaning that the vast majority of the potential∣S ∣ × ∣S ∣ entries is zero. As I assume that the Markov model is induced by a Petri
net, the number of non-zero entries per row is bounded by the number of Petri
net transitions, which is typically much smaller than the number of reachable

77

4 Advanced Matrix Representation

states.

It is obviously worth considering this sparsity for the implementation of numeri-
cal Markov chain solvers. There are several established storage schemes for sparse
matrices which differ in the internal representation and the supported operations,
e.g. the modification of the matrix in terms of insert and delete operations or
the support of efficient access to rows or columns.

A frequently used scheme is the Compressed Sparse Row (CSR) format. As the
name may suggest, it enables an efficient access to the matrix rows. I will consider
it also for an experimental comparison in Section 4.3.4.

For an n ×m-matrix M with nnz non-zero entries (in the scenario on hand, it
holds n = m = ∣S ∣), we can encode M using three arrays row, col and val. The
array row stores at the ith position the position j of the array col. Starting with
position j this array contains the column indices of the non-zero elements in
row i. The related values are stored in the array val also starting at position
j for the elements of the ith row. The number of non-zero elements in row i is
row[i + 1] − row[i]. This requires the arrays col and val to be of size nnz. The
array row is of size n + 1. As I assume the value type to be double precision
and the index type to be unsigned int, this requires nnz ⋅ (sizeof(double) +
sizeof(unsigned))+(n+1)⋅sizeof(unsigned) bytes to storeM. A dense encoding
using a two-dimensional array would require n ⋅m ⋅ sizeof(double) bytes. Figure
4.1 shows the CSR encoding of the rate matrix given in Example 5.

row

pos

col

val

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

1 5 10 6 11 0 7 12 0 8 13 2 3 9 14 2 6 0 5 4 5 7 8 3 11 0 4 10 10 12 13

0 3 5 8 11 15 17 18 19 21 23 25 26 28 29

1.0 0.9 0.1 0.9 0.1 1.0 0.45 0.05 1.0 0.45 0.05 0.2 0.8 0.3 2.0 1.0 2.0 1.0 2.0 1.0 0.2 0.8 3.0 1.0 3.0 3.0 1.0 1.0 0.2 0.81/3

Figure 4.1: The CSR format representation of the matrix R in Example 5.

Given a matrix M in CSR format, the multiplication r = M ⋅ v can be realized
as shown in Algorithm 12. If it is required to efficiently extract the columns of
the matrix we can use the Compressed sparse column format, which is encoded
analogously.

78

4.2 State of the Art

Algorithm 12 (Matrix-Vector multiplication – CSR)

1 func multiply(M : CSR matrix , v , r : vector of ValueT)
2 i , innz : IndexT
3 for 0 ≤ i <M .n do
4 i0 ∶=M .row[i]
5 innz ∶=M .row[i + 1]
6 r [i] ∶= 0
7 for i0 ≤ j < innz do
8 r[i] ∶= r [i] +M .val[j] ⋅ v[M .col[j]]
9 end

10 end
11 end

4.2 State of the Art

CSR is a widely used scheme to store sparse matrices. However with regard to
the encoding of large Markov models, the pure consideration of sparsity will
not suffice. Regularity, which results in redundancy, must be taken into account.
There are basically two relevant approaches to encode the rate matrix of CTMCs
[90] addressing this aspect. They are either based on Kronecker representations
encoded by means of Matrix Diagrams or on symbolic representations using
Multi-terminal Decision Diagram s (MTDD).

4.2.1 The Kronecker Algebraic Approach

The general idea. The basic idea of the Kronecker algebraic approach for the
analysis of large CTMCs is to store the rate (or generator) matrix R (or Q) as a
Kronecker algebraic expression where the operands are matrices characterizing
the individual components of a structured model.

A structured modelM is made by composition of its components {M1, . . . ,MK},
each with the state space Si. State transitions are induced by a set of events E ,
which are either local to a certain component or synchronize several components.
The composition of the components generates the potential state space Ŝ =S1 × . . . × SK which is in general much larger than the set of reachable states of

79

4 Advanced Matrix Representation

M . The rate matrix over the potential state space R̂ can be specified as [91]

R̂ = ∑
e∈E

R̂e = ∑
e∈E
(We

K ⊗ . . . ⊗We
1) = ∑

e∈E

1⊗
k=K

We
k.

The matrix We
k represents the state transitions induced by the event e ∈ E with

regard to the component Mk. For a local event e, which is responsible only for
state transitions within the component Mi the matrix We

j equals the identity
matrix In for all j ≠ i, with n being the number of states in Mj . ⊗ is the
Kronecker product defined for the matrices Ak×l and Bm×n as the k ⋅m × l ⋅ n
matrix

A⊗B ∶=
⎛⎜⎜⎜⎝

a1,1B a1,2B ⋯ a1,ℓB
a2,1B a2,2B ⋯ a2,ℓB⋮ ⋮ ⋱ ⋮
ak,1B ak,2B ⋯ ak,ℓB

⎞⎟⎟⎟⎠
,

as it is illustrated in Example 9. At first Plateau [97] used the Kronecker represen-
tation to compute the stationary distribution of stochastic automata networks
(SAN). Later Donatelli [47] considered it for so-called superposed generalized
stochastic Petri nets.

Example 9

For the matrices

M1 = (1 0
0 1
) ,M2 = ⎛⎜⎝

1 2 3
4 5 6
7 8 9

⎞⎟⎠ and M3 = (1 0
0 2
)

we can specify, for instance, the Kronecker products

M4 =M1 ⊗M2 =
⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 0 0 0
4 5 6 0 0 0
7 8 9 0 0 0
0 0 0 1 2 3
0 0 0 4 5 6
0 0 0 7 8 9

⎞⎟⎟⎟⎟⎟⎟⎟⎠

80

4.2 State of the Art

and

M5 =M4⊗M3 =M1⊗M2⊗M3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 2 0 3 0 0 0 0 0 0 0
0 2 0 4 0 6 0 0 0 0 0 0
4 0 5 0 6 0 0 0 0 0 0 0
0 8 0 10 0 12 0 0 0 0 0 0
7 0 8 0 9 0 0 0 0 0 0 0
0 14 0 16 0 18 0 0 0 0 0 0
0 0 0 0 0 0 1 0 2 0 3 0
0 0 0 0 0 0 0 2 0 4 0 6
0 0 0 0 0 0 4 0 5 0 6 0
0 0 0 0 0 0 0 8 0 10 0 12
0 0 0 0 0 0 7 0 8 0 9 0
0 0 0 0 0 0 0 14 0 16 0 18

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

☀
Improvements. The early attempts suffered from the fact that the Kronecker
representation encodes the rate matrix indexed by the potential state space of
the underlying model. Though this generally permits a very compact representa-
tion of huge matrices, numerical computation based on it requires computation
vectors in the dimension of the potential state space, too.

Improvements [19, 70]1 enabled to consider just the reachable states Ŝ but intro-
duced a logarithmic runtime overhead to identify the actual model states using
special search trees. This overhead was eliminated in [32] by replacing search
trees with sparse Multi-valued Decision Diagrams (MDD) with offset-labels.
In general, a Multi-valued Decision Diagram [91] is a data structure similar to
an Interval Decision Diagram. The difference is that each edge is labeled with a
natural number, representing the variable value. A non-terminal MDD node rep-
resents a value range [0, r] for some variable with exactly r + 1 outgoing edges,
even if neighboring arcs refer to the same child. The sparse variant contains
only variable values where the related outgoing edge can be extended to a path
reaching the 1-terminal node. An IDD with all edge intervals having a width
of one can be seen as an MDD. Compared with the IDD representation for the
reachable states of the running example in Figure 2.3, the MDD representation
would contain N + 1 outgoing arcs for the nodes labeled with variables b1 and
b2. An MDD with offset-labels stores for each edge additionally the number of
sub-states, which are reachable over its left siblings. This enables to compute for

1not exhaustive

81

4 Advanced Matrix Representation

each state a lexicographic index as the sum of the edge-offsets of the related path.
I will explain the idea of an offset-augmentation for Interval Decision Diagrams
in Section 4.3.

In [32] the authors introduce further Matrix Diagrams (MxD) as a data struc-
ture to encode Kronecker expressions. Matrix diagrams are decision diagrams
where matrices are associated to the nodes. In non-terminal nodes, each non-
zero matrix element stores in addition to a real value a pointer to a node at
the lower layer in turn representing a matrix. Matrix diagrams support opera-
tions as addition, sub-matrix extraction and column extraction. The extraction
of sub-matrices considers two MDDs representing the set of column and row in-
dices (states) which should be contained in the resulting MxD. This allows in a
first step to generate an MxD representation of a Kronecker expression over the
potential state space. In a second step one uses the offset-labeled MDD represen-
tation of the reachable states to extract an MxD representation containing only
the rows and columns of the reachable states. For a detailed description of this
approach I refer to [91]. The ability to extract columns allows the application of
the method of Gauss-Seidel without further runtime overhead.

The Kronecker algebraic approach was first applied to compute stationary dis-
tributions using the Power method2. Later it was used to realize Jacobi and
Gauss-Seidel solvers, for transient analysis and also for CTL [72] and CSL [20]
model checking. Kronecker algebraic engines are part of tools as the APNN-
Toolbox [21], SMART [29] and PEPS [15]. They are available in SMART and
Möbius [43] in the form of matrix diagrams.

4.2.2 Multi-terminal Decision Diagram-based Approaches

A second important group of Markov chain representation techniques is based
on so-called Multi-terminal Decision Diagrams (MTDDs). MTDDs generalize
common decision diagrams such that they can possess more than two terminal
nodes. In general a (reduced ordered) decision diagram over n variables repre-
sents a function

fn ∶ X n → Y
whereby

� X = B and Y = B for BDDs

� X = N and Y = B for IDDs and MDDs.
2The Power method is a simple iterative method. It can be seen as the uniformization method -
without truncation and accumulation of Poisson weights.

82

4.2 State of the Art

With MTDDs, Y can be any finite set, for instance a finite subset of R≥0. In
combination with the explicit state transition representation sketched in Sec-
tion 2.2.2, it is possible to encode symbolically real-valued matrices. I will il-
lustrate the underlying ideas with Multi-Terminal Binary Decision Diagrams
(MTBDD). Binary Decision Diagrams (BDD) can be seen a special class of IDDs
where each node labeled with a variable xl ∈ X represents the decision for xl to
be either false/zero or true/one. Each non-terminal node has three outgoing
arcs label with [0,1), [1,2) and [2,∞). The latter refers always the 0-terminal
node. A path from the BDD root to the 1-terminal node can be interpreted as a∣X ∣-dimensional bit vector. MTBDDs can have more than two terminal nodes.

The general idea. The symbolic representation of vectors and matrices based
on MTBDDs traces back to [39]. An n-dimensional vector v ∈ Yn is treated as a
mapping from the set of integers (indices) {0, . . . , n−1} to Y. For an index 0 ≤ i <
n the binary encoding is essentially a bit vector vi ∈ Bm, with m = ⌈ld(n−1)⌉ the
smallest number of bits required for the binary encoding of n− 1. This mapping
can be encoded by a MTBDD over the set of variables X = {x1, . . . , xm}. Each
variable represents a bit. A path through the MTBDD gives the sequence of arc
labels defining the binary encoding of some index 0 ≤ i < n. The related terminal
node represents the vector entry v[i].
The idea to encode a matrixM ∈ Yn×n is very similar3.M is treated as a mapping
from {0, . . . , n − 1} × {0, . . . , n − 1} (index pairs) to Y. This requires a second set
of variables X ′ = {x′1, . . . , x′m}. Now a path represents

1. the binary encoding of the row index i in terms of the sequence of the labels
of arcs starting in nodes labeled with a variable from X (row variables),

2. the binary encoding of the column index j as the labels of arcs starting in
nodes labeled with a column variable from X ′,

3. the actual matrix entry M(i, j) represented by the value of the reached
terminal node.

Row and column variables are usually arranged in an interleaving order

π = x1 < x′1 < x2 < x′2 < . . . < xm < x′m,
which

3 The MTBDD-based encoding is not restricted to square-matrices. However, in this thesis matrices
have this feature.

83

4 Advanced Matrix Representation

1. yields naturally a recursive matrix description [39], as it is illustrated in
Example 10,

2. yields in general a compact MTBDD encoding [63].

Example 10

The MTBDD-based matrix representation of a sparse 4×4 matrix M
taken from [96].

1

2 3

4 5

6 7 8

x1

x
′

1

x2

x
′

2

8 2 5

0

0

0 0

0

1
1

1

1

1

1 1

M =

⎛⎜⎜⎜⎝

0 8 0 5
2 0 0 5
0 0 0 5
0 0 2 0

⎞⎟⎟⎟⎠
The path 1 ⇢ 2 ⇢ 4 ⇢ 6 → 8 represents the matrix en-
try M(0,1) = 8. The outgoing arcs of the row-variables
x1 and x2 represent the bit vector (0,0), the out going
arcs of column-variables x′1 and x

′
2 represent the bit vec-

tor (0,1). The value of the matrix entry is the value of
the reached terminal node.

Due to the interleaving of the row and column-variables, the node 4 represents the

sub-matrix M4 = (0 8
2 0

) and the node 3 the sub-matrix M3 =

⎛⎜⎜⎜⎝

0 5
0 5
0 5
2 0

⎞⎟⎟⎟⎠
.

☀
For the MTBDD encoding BM of a matrix M and the MTBDD encoding Bv of a
vector v, the multiplication r =M ⋅ v is realized by the standard BDD operation
APPLY . The result is the MTBDD representation Br of the vector r.

Improvements. When encoding Markov chains by means of MTBDDs an im-
portant issue is the mapping of model variables to decision diagram variables,
and thus indirectly the states to the indices.

84

4.2 State of the Art

Sophisticated approaches to derive the set of variables and their ordering in the
context of Markov chain representation were studied in [63] and [44]. The key
observation: it is worth considering the structural information of the high-level
descriptions, in particular the components of process algebra descriptions [63]
or Kronecker expressions [44]. In the latter work the authors propose a modu-
lar language where each model contains a set of integer variables. The actual
model consists of the composition of the defined modules. Each integer variable
var with range {0, . . . , r} is represented by a set of consecutive MTBDD vari-
ables {xvar1 , . . . , xvar⌈ld(r)⌉}, representing the binary encoding of possible values.
This style of model representation yields variable orders which naturally con-
sider dependencies between the individual model variables, an important aspect
for the definition of static variable orders for decision diagrams. In this context
the problem of the potential versus the reachable states arises similar to the
Kronecker-based approach. If a model variable var with range {0,1,2} is en-
coded by two Boolean MTBDD variables x1 and x2 the states with var = 3 are
indeed unreachable states, but the MTBDD encoding of the rate matrix contains
rows and columns which are related to such states. If the matrices as well as the
computation vectors are encoded by MTBDDs, the unreachable states are rep-
resented by empty rows, empty columns and empty vector entries, respectively,
and are ignored during the numerical computation.

However, Parker [96] showed that the pure MTBDD-based encoding of matri-
ces and vectors performs only well in exceptional cases, were the computation
vectors possess only a moderate number of distinct values and thus a moderate
number of terminal nodes. As problem solution he proposed a hybrid approach,
combining a MTBDD-based matrix encoding and an explicit storage of the com-
putation vectors. Therefor the matrix-vector multiplication is based on a simple
depth-first search traversal of the MTBDD. During the traversal the labels of
the nodes and arcs are used to compute the index of the row and column index.
When reaching a terminal node, the extracted value and the computed indices
are passed to a generic function which reads and updates the dense vectors, de-
pending on the applied operation. In this setting the computation vectors have a
dimension in the size of the potential state space. To solve this second problem,
Parker augmented the MTBDD with offsets4 similar to [32] and improved the
basic traversal algorithm such that it skips unreachable rows and columns dur-
ing the index computation. As it extracts each individual matrix entry without
exploiting the regularity in the data structure, the proposed traversal algorithm
suffers from a very long runtime. Result caching, which usually guaranties the

4Offset-augmented decision diagrams fall into the class of Edge-valued decision diagrams studied in
[80] (EVBDD) and [33] (EV+MDD).

85

4 Advanced Matrix Representation

efficiency of DD operations, is not applicable here. Parker solved this third prob-
lem by merging the MTBDD representation with an explicit storage of matrices.

His idea was to stop the MTBDD traversal at a predefined MTBDD layer. A
pre-processing step converts the sub-matrices encoded by the MTBDD nodes
of this layer to their explicit representation, using a sparse storage scheme as
CSR. Thereby the related nodes become terminal nodes and their values are
references to matrix instances. When the traversal algorithm reaches such a
node, it computes the actual matrix entries by enumerating the entries in the
referred sub-matrix and adding the computed row and column indices. With this
approach there is a trade-off between memory and runtime costs depending on
the chosen layer. See Chapter 6 for some figures. For a detailed description of
the MTBDD-based approach I refer to [96].

MTBDDs are the most famous representatives of MTDDs. In the context of
Markov chain analysis they were first used to compute limiting probability dis-
tributions in [53] (Power) and [63] (Jacobi and Gauss-Seidel). Their application
in probabilistic model checking started with [7]. Further generalizations as MT-
MDDs [27]5 or Multi-terminal Zero-suppressed Binary Decision Diagrams [67]
(MTZDDs) exist. MTDD-engines are used in tools as PRISM (MTBDDs) and
SMART (MTMDDs).

Conclusions. Convinced of the potential of IDDs for efficient state space repre-
sentation I could “invent” Multi-terminal IDDs to apply them to the numerical
analysis of Markov chains. However, the following two reasons suggest to not
follow this line:

� MTDDs are generally sensitive concerning the number of distinct matrix
entries. The regularity in the decision diagram decreases with an increasing
number of terminal nodes; the compactness of the data structures and thus
the efficiency of related operations suffer. The source of a high number of
terminal nodes may be

– state-dependent (functional) rates, used for instance to describe kinet-
ics in biochemical networks,

– the use of secondary matrices as P or PU , which often contain much
more distinct values than the original rate matrix R.

� The encoding of the row and column indices requires to double the number

5This depends on the definition of MDDs. In [27] MTMDDs are mentioned as special generalization.
In [91] MDD can have multiple terminal nodes per definition.

86

4.3 IDD-based On-the-fly Matrix Generation

of decision diagram variables. The consequences are again increasing size
of the data structures and less efficient operations.

I will now present an alternative approach for the representation of the rate
matrix of a CTMC CN = [S ,R, s0] induced by the SPN NS = [N,F]. The
approach builds on a ROIDD-based (Section 2.2) symbolic state space encoding
of S . An on-the-fly computation of the state transitions omits the doubling of
decision diagram variables and the explicit storage of the distinct values of the
matrix entries. It moves the whole computation of the matrixR to a DD traversal
and exploits therefor the effects of firing the Petri net transitions T .

Crucial points of this approach are:

1. The enrichment of the previous ROIDD definition by index offsets. These
offsets enable an efficient computation of the lexicographic state indices
and are basically inspired by [32].

2. A special ROIDD operation generating for non-zero matrix entries the row
and the column index as well as the value. This new operation is basically
inspired by the function Fire in Section 2.2.2.

3. A strategy to reduce the overhead of redundant computations by truncat-
ing the traversal algorithm at a predefined layer. This is inspired by the
approach reported in [96].

In the following section I will provide a detailed discussion of these three aspects.

4.3 IDD-based On-the-fly Matrix Generation

4.3.1 Enumeration of State Indices

Numerical computations with respect to the CTMC CN require a mapping ı ∶S → {0, . . . , ∣S ∣ − 1} of its state space to the index set. A depth-first search
traversal of the ROIDD GS representing S induces naturally a lexicographic
indexing which meets our needs. However, an enumeration of the lexicographic
predecessors when mapping state s to its index is of course not advisable. An
efficient implementation of this mapping requires a slight extension of the basic
data structure. For each arc of the ROIDD GS it is necessary to remember
the number of sub-states reachable over the previous sibling arcs. Similar to
Offset-labeled MTBDDs [96], I denote the resulting data structure Offset-labeled
Reduced Ordered Interval Decision Diagrams (OLROIDD). Beforehand I define

87

4 Advanced Matrix Representation

for a non-terminal ROIDD node v the following functions:6

1. a(v, c) ∈ E returns the j-th outgoing arc of v iff c ∈ pj(v)
2. p(v, c) ∈ I returns the interval of the arc a(v, c)
3. wj(v) ∈ N0, 1 ≤ j ≤ vk returns the width of pj(v)
4. c(v, c) ∈ V returns cj(v) iff c ∈ px≥j(v)
5. rj(v) ∈ N0, 1 ≤ j ≤ vk returns the number of sub-states reachable over the

first j − 1 outgoing arcs of v

rj(v) = { 0 if j = 1
rj−1(v) +wj−1(v) ⋅ rcj−1(v)k(cj−1(v)) otherwise.

6. r(v) ∈ N0 returns the number of all sub-states reachable from v

r(v) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if v = 0
1 if v = 1

rvk(v) otherwise.

7. r(v, c) ∈ N0 returns the number of sub-states reachable over the outgoing
arcs of v considering all assignments of the variable var(v) less then c

r(v, c) = { c ⋅ r(c1(v)) if a(v, c) = 1
ra(v,c)−1(v) + (c − inf(p(v, c))) ⋅ r(ca(v,c)(v)) otherwise.

I am now ready to extend the definition of ROIDDs (Section 2.2) by additional
arc labels to enable the index computation for the encoded states. For the vari-
ables X = {x1, . . . , xn } an OLROIDD is a tuple Ĝ = [G,O] where:

1. G is an ROIDD.

2. O ∶ E → N0 maps to the jth outgoing arc of node v the value rj(v), its
index-offset.

Figure 4.2 shows an OLROIDD encoding the reachable states of the running
example. The offsets are given next to the intervals indicated by the number
sign.

6 The functions make use of the functions defined in Section 2.2. The function names are abbreviated,
e.g. cj(v) means childj(v).

88

4.3 IDD-based On-the-fly Matrix Generation

States, paths and indices. For a finite set of states S ⊆ Nn with IDD representa-
tion GS and a state s = (s1, s2, . . . , sn) ∈ S the corresponding path ρGS

(s) is the
sequence v1

s1
Ð→ v2

s2
Ð→ . . .

sn−1
ÐÐ→ vn

sn
Ð→ 1. The term vl

sl
Ð→ provides the information

that the outgoing arc a(vl, sl) is selected with the variable assignment sl. The
lexicographic index of a state s is defined by its path ρGS

(s) as
ı(ρGS

(s)) = ∑
1≤l≤n

r(vl, sl). (4.1)

Conventions. In what follows I am only interested in indices which are related to
the set of reachable states S of a finite CTMC. So I assume that S is represented
by the OLROIDD ĜS .

Henceforth I consider only (Offset-labeled) Reduced Ordered Decision Diagrams
and will use the abbreviation LIDD or IDD, respectively, for short. Further I
will not distinguish between a state s, its path ρĜS(s) in the LIDD ĜS and its
index ı(ρĜS (s)). I may use the terms as synonyms and abbreviate ρĜS (s) as ρs
and ı(ρĜS (s)) as ıs.

Example 11

Figure 4.2 shows the LIDD encoding ĜS of the set of reachable states
for the net in Figure 3.3 with N = 2 enriched with offsets.

Let us consider three different states, their paths in the LIDD and
their lexicographic indices. The used variable order π is

to2 < to1 < item < ready < b2 < b1 < req < res.
For the state s1 = (0,0,0,1,0,2,0,1) we extract the path

ρs1 = v15 0
Ð→ v13

0
Ð→ v11

0
Ð→ v9

1
Ð→ v8

0
Ð→ v6

2
Ð→ v5

0
Ð→ v2

1
Ð→ 1,

and compute the lexicographic index

ıs1 = 0 + 0 + 0 + 0 + 2 + 1 ⋅ 1 + 0 + 0 = 3.

For the state s2 = (1,0,1,0,0,2,0,1) we extract the path

ρs2 = v15 1
Ð→ v14

0
Ð→ v12

1
Ð→ v10

0
Ð→ v8

0
Ð→ v6

2
Ð→ v5

0
Ð→ v2

1
Ð→ 1,

and compute the lexicographic index

ıs2 = 20 + 0 + 0 + 0 + 2 + 1 ⋅ 1 + 0 + 0 = 23.

89

4 Advanced Matrix Representation

For the state s3 = (0,0,0,1,0,1,0,1) we extract the path

ρs3 = v15 0
Ð→ v13

0
Ð→ v11

0
Ð→ v9

1
Ð→ v8

0
Ð→ v6

1
Ð→ v5

0
Ð→ v2

1
Ð→ 1,

and compute the lexicographic index

ıs3 = 0 + 0 + 0 + 0 + 2 + 0 ⋅ 1 + 0 + 0 = 2.

☀
Indexing of arbitrary states

In the following we will never compute the index for an isolated state. We will
rather be interested in enumerating the indices of a given set of states. The offsets

Algorithm 13 (Enumerate – State indices)

1 proc AuxEnumerateIndices (v , v̂ ∶ unsigned, index : IndexT, op ∶ OP)

2 if v = 0 then return fi
3 if v = 1 then op(index) return fi
4 for 1 ≤ j ≤ ∣p(v)∣ do
5 for inf(Ij) ≤ s < sup(Ij) do
6 j ′ := a(v̂ , s)
7 v̂ ′ :=cj′(v̂)
8 if isValid(v̂ ′) then
9 Ij ′ := pj ′(v̂)

10 index′ := index + rj′(v̂) + r(v̂′) ⋅ (s − inf(Ij′))
´¹¹¸¹¹¶

r(v̂,s)

11 v ′ :=cj(v)
12 AuxEnumerateIndices(v ′,v̂ ′,index ′,op)
13 fi
14 od
15 od
16 end
17 proc EnumerateIndices (GS : IDD , op ∶OP)

18 AuxEnumerateIndices(GS .root , ĜS .root ,0,op)
19 end

enable an efficient implementation of the function EnumerateIndices given in
Algorithm 13. The function realizes the index computation for arbitrary subsets
of S and is parameterized by the type of operation to be executed each time an
index has been mapped to a state.

90

4.3 IDD-based On-the-fly Matrix Generation

In particular the operation is represented by a functor.

The actual work is done in the auxiliary function AuxEnumerateIndices which
extracts recursively all states encoded in the IDD GS . The lexicographic index
of a state is computed conform to Equation 4.1, where the single terms r(vl, sl)
are derived for each node vl from the offsets of its outgoing arcs. The procedure
extracts two paths for each state; one in the IDD representing an arbitrary set
of states GS and one in the LIDD ĜS representing S . Note that S must not be
contained in S . Unreachable states are skipped during the index computation in
line 8. In general a reachable state s which is contained in different finite7 state
sets S and S ′ with different IDD representations is also represented by different
paths. However, for each of these paths we can extract the unique representative
ρĜS(s) in the LIDD representation ĜS .

Initialization of vector entries. An application of the procedure EnumerateIndices
is the initialization of the solution vector in a linear system of equations which
must be solved, e.g., to compute the limiting probabilities as discussed in Section
3.3.2. In this context we have to initialize all entries belonging to the states Syes

with 1. This can now be realized by the procedure InitStates and the related
functor given in Algorithm 14.

Algorithm 14 (Init states)

1 struct InitStates
2 vec : vector of double
3 value : double
4

5 proc operator()(index : IndexT)

6 vec[index] ∶= value
7 end
8 end
9

10 proc InitStates(GS : IDD, vec : vector of double, value :double)

11 is : struct InitStates
12 is .vec := vec
13 is .value := value
14 EnumerateIndices(GS ,is)
15 end

7 If an IDD represents a finite state space, each path to the 1-terminal node contains a node for each
variable.

91

4 Advanced Matrix Representation

Selection of states. A further important application is the selection of states
which are associated with certain values in a given vector; for instance all states
with a probability below some threshold. We can extend the procedure Enumer-
ateIndices for this purpose. The new function SelectStates, given in Algorithm
15, creates the IDD for the states contained in the state set GS and fulfilling a
specified predicate op. Here op is a functor realizing an arbitrary complex pred-
icate8. The related recursive function AuxSelectStates returns a possibly newly
created IDD node. When enumerating the outgoing arcs of an IDD node, the
function fills two lists representing an interval partition and the related children,
as we have seen in Algorithm 2. The use of MakeNode guaranties that the re-
sulting IDD is reduced. Each time the traversal reaches the 1-terminal node, the
function AuxSelectStates checks whether the extracted state fulfills the specified
condition. If so, the return value is 1, otherwise 0. A naive implementation of this
idea would consider each arc of the IDD, even if it is not possible to reach one of
the satisfying states by passing it. Two simple checks before selecting an arc may
prevent the Algorithm 15 from being exponential. Before calling the recursive
auxiliary function we check whether all states reachable over the arc fulfill the
required property (line 16). If so, we just append its child, as it represents the
related sub-states. Otherwise we further check whether there exists no satisfying
state at all (line 18). If so, we just add 0 to the list of children. If both checks
fail, it is necessary to continue the traversal with the current arc (line 21).

The precise realization of the related functions checkAll and checkNone depends
finally on the selection policy, but means in most cases to evaluate the vector
entries in the index interval [index, index′]. To avoid the possibly expensive
explicit evaluation of the index interval as long as possible we exploit the size of
the maximal consecutive block and gap concerning the satisfying states. These
information must be provided by a pre-processing step.

checkNone considers the maximal possible size of a gap between two satisfying
states. If it is smaller than the number of reachable states of the current arc evj
(Figure 4.3b), at least one satisfying state (gray) must exist in the index interval.
If the number of reachable states is indeed below the maximal size of a gap, it
is worth checking all the reachable indices before continuing the traversal of the
current arc (see Figure 4.3a).

Analogously, checkAll has to consider the maximal possible size of an index
interval representing a block of satisfying states. If it is smaller than the number
of reachable states of the current arc (Figure 4.4b), the check fails. Otherwise,
each single vector entry in the interval [index, index′] must be tested explicitly.

8 In C++, a functor whose operator() has a Boolean return value is called a predicate.

92

4.3 IDD-based On-the-fly Matrix Generation

Algorithm 15 (Select states)

1 func AuxSelectStates (v , v̂ : unsigned , index : IndexT, op ∶ OP)

2 if v = 0 then return 0 fi
3 if v = 1 then return op(index) fi
4 bounds ,children : UList
5 for 1 ≤ j ≤ ∣p(v)∣ do
6 for inf(Ij) ≤ s < sup(Ij) do
7 bounds.append(s)
8 j ′ := a(v̂ , s)
9 v̂ ′ :=cj′(v̂)

10 Ij ′ := pj ′(v̂)
11 index′ := index + rj′(v̂) + r(v̂′) ⋅ (s − inf(Ij′))

´¹¹¹¸¹¹¹¶
r(v̂,s)

12 v ′ :=cj(v)
13 child := 0
14 if not isValid(v̂ ′) then
15 child := 0
16 elseif op.checkAll(index ,index ′) then
17 child := v ′

18 elseif op.checkNone(index ,index ′) then
19 child := 0
20 else
21 child := AuxSelectStates(v ′,v̂ ′,index ′,op)
22 fi
23 children.append(child)
24 od
25 od
26 return MakeNode(var(v),bounds ,children)
27 end
28 func SelectStates (GS : IDD , op ∶ OP)
29 GS ′ : new(IDD)
30 GS ′ .root := AuxSelectStates(GS .root ,ĜS .root ,0,op)
31 return GS ′

32 end

93

4 Advanced Matrix Representation

The check is successful, if all entries satisfy the predicate (Figure 4.4a).

The number of states, which are reachable by passing IDD-arcs, decreases as the
algorithm approaches the terminal nodes, and may fall below the maximal gap
and block size, which increases at the same time the probability to perform the
evaluation of the index interval [index, index′].
The gain of this optimization depends generally on the number and the distribu-
tion of the states satisfying the given property. The function SelectStates enables
the implementation of functions as StatesLessThan in Algorithm 16. The func-
tion returns the subset of S represented by GS for which the assigned value in
vector v is less than l. Such functions are required to realize for instance the
evaluation of the CSRL operators P⋈p and S⋈p (see Section 3.4).

94

4.3 IDD-based On-the-fly Matrix Generation

Algorithm 16 (Select states – Less than)

1 struct Compare
2 vec : vector of double
3 value : double
4 op ∶ OP
5

6 func operator()(index : IndexT)
7 return op(vec[index], value)
8 end
9

10 func checkAll()(index : IndexT, index ′ : IndexT)
11 if index′ − index > blockSize then return false fi
12 forall i ∈ [index, index′] do
13 if not op(vec[index], value) then return false fi
14 od
15 return true
16 end
17

18 func checkNone()(index : IndexT, index ′ : IndexT)
19 if index′ − index > gapSize then return false fi
20 forall i ∈ [index, index′] do
21 if op(vec[index], value) then return false fi
22 od
23 return true
24 end
25

26 end
27

28 func StatesLessThan(GS : IDD, v : vector of double, l :double)
29 slt : struct Compare

30 slt .vec := v
31 slt .value := l
32 slt .op := <
33 return SelectStates(GS ,slt)
34 end

95

4 Advanced Matrix Representation

to2 [v15]

to1 [v13]

item [v11]

b2 [v8]

ready [v9]

to1 [v14]

item [v12]

ready [v10]

b1 [v6] b1 [v7]

req [v4] req [v5]

res [v2] res [v3]

0

1

[0,1) #(0)

[1,2) #(20)

[1,oo) #(10)

[2,oo) #(10)

[1,2) #(0)

[0,1) #(0)

[0,1) #(0)

[2,oo) #(24)

[1,2) #(0) [0,1) #(0)

[1,oo) #(10)[2,oo) #(10)

[3,oo) #(10)

[1,oo) #(10)

[2,oo) #(30)

[0,1) #(0)
[1,2) #(10)

[0,1) #(0)

[0,1) #(0)

[0,1) #(0) [1,3) #(4)

[0,3) #(0) [3,oo) #(3)

[3,oo) #(4)

[0,1) #(0)

[1,3) #(2)

[1,oo) #(1)

[0,1) #(0)

[2,oo) #(2)

[1,2) #(1)

[1,oo) #(1)

[0,1) #(0)

[1,2) #(0)[0,1) #(0)

[2,oo) #(1)

[0,1) #(0)

Figure 4.2: The LIDD encoding ĜS of the set of reachable states for the net in Figure
3.3 with N = 2 enriched with offsets. There are 30 reachable states.

96

4.3 IDD-based On-the-fly Matrix Generation

v

v′

evj

[bvj−1
, bvj

)

vector v

. . .

i

maximal gap

i+ 1 i+ 2 i+ 3 i+ 4 i+ 5 i+ 6 i+ 7 i+ 8 i+ 9

. . .

e
v
′

1

index

e
v
′

k

index′

. . .

(a)

v

v′

evj

[bvj−1
, bvj)

vector v

. . .

i

maximal gap

i+ 1 i+ 2 i+ 3 i+ 4 i+ 5 i+ 6 i+ 7 i+ 8 i+ 9

. . .

e
v
′

1

index

e
v
′

k

index′

. . .

(b)

Figure 4.3: checkNone

v

v′

evj

[bvj−1
, bvj

)

vector v

. . .

i

maximal block

i+ 1 i+ 2 i+ 3 i+ 4 i+ 5 i+ 6 i+ 7 i+ 8 i+ 9

. . .

e
v
′

1

index

e
v
′

k

index′

. . .

(a)

v

v′

evj

[bvj−1
, bvj)

vector v

. . .

maximal block

i i+ 1 i+ 2 i+ 3 i+ 4 i+ 5 i+ 6 i+ 7 i+ 8 i+ 9

. . .

e
v
′

1

index

e
v
′

k

index′

. . .

(b)

Figure 4.4: checkAll

97

4 Advanced Matrix Representation

4.3.2 Enumeration of State Transitions

Now, as we are able to enumerate the lexicographic indices related to a set of
states, we can think about the enumeration of the state transitions, i.e. the ma-
trix entries, each specified by a row and a column index and a real value. In
previous approaches, the indices and the value of a matrix entry are computed
either given an explicit (e.g. sparse matrices) or an implicit matrix representa-
tion (MxD, MTBDD). In any case, information concerning the row and column
indices and the matrix entries are held in the same data structure.

Devours and Sanders [45] proposed an explicit matrix-free approach for several
high-level formalisms, among them GSPN. The state transitions were computed
on-the-fly, meaning that for a given state the effect of transition firing is utilized
to determine the successor states and thereby the set of the related state tran-
sitions. To the best of my knowledge there is no published symbolic adaption of
this approach.

The general idea. The operation Fire in Section 2.2.2 (and analogously RevFire)
can be adapted to an operation which just extracts state transitions. Instead of
creating for the states S and the transition t the IDD representation GF ire(S,t)

of the successor set, it computes the indices and the assigned value of the corre-
sponding state transitions. Algorithm 17 shows the procedure EnumerateTransi-
tions which enumerates all state transitions induced by the firing of the transition
t in the state set S.

The procedure extracts recursively the states encoded in the IDD GS. Similar
to Algorithm 13 and Algorithm 15, it extracts simultaneously a state s (src) in

the LIDD ĜS and computes its lexicographic index ıs. Moreover it determines
the successor state s′ (dest) and its index ıs′. Therefor it exploits the enabling
token interval (a.enabled) and the change of tokens (a.shift) on each place
p ∈ Envt provided by the related element in the action list al. The algorithm

simultaneously computes for each state transition s
t
Ð→ s′

1. the path of the state s in the IDD GS,

2. the path of the state s in the LIDD ĜS and its lexicographic index ıs,

3. the path of the state s′ in the LIDD ĜS and its lexicographic index ıs′ .

It remains to compute the actual matrix entry M(s, s′) = ft(s), i.e. the value
which is assigned to the state transition and defined by the possibly state-
dependent function ft of the Petri net transition. At this point I do not require

98

4.3 IDD-based On-the-fly Matrix Generation

Algorithm 17 (Enumerate – State transitions)

1 proc AuxEnumerateTransitions(v , v̂src , v̂dest : unsigned, isrc , idest : IndexT,

2 al : ActionList , f : Function , args : FunctionArguments, op ∶OP)

3

4 if op.firstUse(v , v̂src , v̂dest , isrc , idest ,al ,f ,args) then
5 return
6 fi
7 for 1 ≤ j ≤ ∣p(v̂)∣ do
8 for inf(Ij) ≤ ssrc < sup(Ij) do
9 al ′ := al

10 if al ≠ ⊥ then
11 a := head(al)
12 if var(v) = a.var then
13 if ssrc /∈ a.enabled then continue fi
14 sdest := ssrc + a.shift
15 op.setArgument(var(v̂),args , ssrc ,sdest)
16 al ′ := tail(al)
17 fi
18 fi
19 v ′ := cj(v)
20 i ′src := isrc+r(v̂src ,ssrc)
21 v̂ ′src :=c(v̂src ,ssrc)
22 if not isValid(v̂ ′src) then continue fi
23 i ′dest := idest+r(v̂dest ,sdest)
24 v̂ ′dest :=c(v̂dest ,sdest)
25 if isValid(v̂ ′dest) then
26 AuxEnumerateTransitions(v ′,v̂ ′src ,v̂

′
dest ,i ′src ,i

′
dest , al

′,f ,args ,op)
27 fi
28 od
29 od
30 op.secondUse(v , v̂src , v̂dest , isrc , idest ,al , f ,args)
31 end
32 proc EnumerateTransitions (GS : IDD , t : transition, op ∶ OP)

33 args : ft .createArgs()
34 al := op.selectActionList(alt ,revAlt);

35 AuxEnumerateTransitions(GS .root ,ĜS .root ,ĜS .root ,0, 0,al ,F(t),args ,op)
36 end

99

4 Advanced Matrix Representation

a special semantics of ft (and thus M). It may define a rate of a timed transi-

tion, the weight of an immediate transition or a secondary probability as R(s,s′)
E(s)

(P) or R(s,s′)
λ

(PU). In any case, the procedure must collect the function argu-
ments specified by the individual sub-states. The interface for Functions and
FunctionArguments was already specified in Algorithm 5.

The procedure EnumerateTransitions is parameterized with the type of opera-
tion (OP) which is finally applied to each extracted state transition. The actual
work is done by the parametrized auxiliary function AuxEnumerateTransitions.

The special feature of AuxEnumerateTransitions is in particular the processing
of the variable of the visited IDD node with respect to the firing of the transition
t. If the variable represents a place from t′s environment (line 12), it checks the
enabledness of t in the current sub-state (line 13). If t is enabled, the value of the
variable of the resulting state sdest is computed (line 14) and used to determine

the child node in the LIDD ĜS (line 24). The rest should be self-explanatory. For
reasons of performance I restrict the set of permitted function variables to the
environment of the corresponding Peri net transition (line 15).

I assume that the state set S is a subset of S . However, when firing the transition
backwards, the algorithm may explore states which are not in S . This situation
is treated in line 25, where in the case of an invalid assignment the function
c(v̂dest , sdest) returns the 0-terminal node.

The given procedure can be used to enumerate the entries of the matrix M or
its transpose MT . The latter can be easily achieved by firing all transitions in
backward direction. The operation type OP specifies further the traversal policy
and must take care of the following aspects:

� A first evaluation of the node v. Thus the procedure firstUse must be de-
fined. If v is for instance the 1-terminal node, a state transition has been
extracted and the actual operation is performed. Its return value tells
AuxEnumerateTransitions whether to continue the traversal with the eval-
uation of the outgoing arcs. The procedure has also to define the basic
operation which is applied to an extracted state transition.

� A second evaluation of the node v after traversing the outgoing arcs. The
procedure secondUse must be defined if it is required to perform actions
after the recursive traversal. The functions firstUse and secondUse are es-
pecially important for the optimization I will discuss in the remainder.

� The fire direction of the transition which is represented by the used action
list. This is done by defining the function selectActionList.

100

4.3 IDD-based On-the-fly Matrix Generation

� The selection of the function arguments by the procedure setArgument. If
the transition fires backwards, the argument depends on the successor state
s′.

At this point it should be mentioned that the formulation of the algorithms is
meant to clearly illustrate the underlying ideas. The actual implementation is of
course much more optimized.

Example 12

Let us consider again the LIDD in Figure 4.2, the selected states s1, s2
and s3 in Example 11 and two Petri net transitions in Figure 3.3.

When applying Algorithm 17 with the reachable states GS and the
transition produce choose b2 the fourth extracted path is ρs1 as its
lexicographic index ıs1 is 3. In node v9, node v11 and node v15 the
algorithm emulates the firing of the Petri net transition. It ”removes”
a token from the place ready and ”puts” a token on place item and
on place to2. The path of the target state s′1 is in this case

v15
1
Ð→ v14

0
Ð→ v12

1
Ð→ v10

0
Ð→ v8

0
Ð→ v6

2
Ð→ v5

0
Ð→ v2

1
Ð→ 1

which we already know as ρs2 . It also computes the associated value
as

0.1 ⋅ 1/(1 + s1(b1) + s1(b2)) = 1/(1 + 0 + 2) = 0.03.

This gives the rate matrix entry R(s1, s2) =R(3,23) = 0.03.

The application of the algorithm for transition consume fetch b2 1
gives, among others, the entry R(s1, s3) = R(3,2) = 1. In total, Al-
gorithm 17 enumerates 73 state transitions for the reachable state S
and all Petri transitions .

Observation. A transition which changes the marking of the top-
place induces state transitions with a large index jump concerning
the row and the column index. A transition which only changes the
marking of places in lower levels causes small index jumps.

☀
Algorithm 17 permits to realize the operations for the numerical analysis of
SPN. I will discuss their implementation in Chapter 5. For now I illustrate its
use to print the rate matrix R of a CTMC, given as SPN NS and the LIDD

101

4 Advanced Matrix Representation

representation ĜS of its reachable state S . We use the procedure PrintRates
and the related functor given in Algorithm 18. The entries of the matrix will
not been printed line-by-line. The algorithm prints the state transitions induced
by the Petri net transition ti before those of the transitions tj ∈ T ∶ j > i. A
line-by-line enumeration is only observable when applying the algorithm for a
single transition. Numerical solvers as Gauss-Seidel which require to extract the
matrix entries line-wise can not be realized with such an enumeration policy.

Algorithm 18 (Print the rates)

1 struct PrintRates
2 func firstUse(v , v̂src , v̂dest : unsigned, isrc , idest : IndexT,

3 al : ActionList , f : Function , args : FunctionArgument)

4 if v = 1 then
5 print(isrc+ ’,’+idesr+′ ∶′ +f (args))
6 return true
7 fi
8 if v = 0 then return true fi
9 //otherwise the traversal can not be stopped

10 return false
11 end
12

13 proc secondUse(v , v̂src , v̂dest : unsigned, isrc , idest : IndexT,

14 al : ActionList , f : Function , args : FunctionArgument)

15 //nothing to do
16 end
17 proc setArgument(var : unsigned, args : FunctionArguments,

18 src : unsigned, dest : unsigned)

19 args .setArgument(var ,dest);
20 end
21 func selectActionList(al : ActionList, revAl : ActionList)
22 return al
23 end
24 end

25 proc PrintRates(GS : IDD, CTMC : [ĜS ,NS])

26 pr : struct PrintRates
27 for t ∈ NS .T do
28 EnumerateTransitions(GS ,t ,pr)
29 od
30 end

102

4.3 IDD-based On-the-fly Matrix Generation

4.3.3 Performance Tuning

IDDs provide a very compact representation of a set of states S and Algorithm
17 enables the enumeration of all state transitions caused by the firing of a Petri
net transition t originating in the states enabled(S,t). Consequently we have a
very memory efficient representation technique for the rate or generator matrix
of even huge CTMCs. However, the extraction of the single states performed in
the procedure EnumerateTransitions has the following disadvantages:

1. The plots in Figure 4.14 and Figure 4.15 reveal the same problems reported
by Parker in [96]. Many paths from inner IDD nodes to the terminal nodes
have to be traversed several times, and caching techniques which usually
mitigate the problem of redundant computations are not applicable here.

2. So far Algorithm 17 must be applied separately for all transitions of the
given Petri net.

These drawbacks cause an unacceptable runtime and prohibit special enumera-
tion strategies. I will now present solutions for these two problems, in particular

1. an adaption of Parker’s approach to reduce the depth of recursion, and

2. a generalization of Algorithm 17 which considers arbitrary sets of Petri net
transitions and enables to define different policies for the enumeration of
the state transitions.

Early truncation. A way to reduce the effort introduced by redundant computa-
tions is to store explicitly the information of potential path extensions in selected
nodes of the decision diagram. This enables to truncate the recursion and to use
the available information directly when reaching such nodes. This idea was pro-
posed for MTBDDs by Parker [96] and later adapted for MTZDDs in [67]. I will
now discuss a modification of this technique for the on-the-fly computation of
state transitions.

Given a variable xj ∈X = {x1, . . . , xn} and a state transition s
ft(s)
ÐÐ→ s′, we refine

the path ρs to ρx<j
sj−1
ÐÐ→ v̂j

sj
Ð→ ρx>j´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
ρx≥j

and ρs′ to ρx′<j
s′j−1
ÐÐ→ v̂′j

s′j
Ð→ ρx′>j´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
ρx′≥j

such that

var(v̂j) = var(v̂′j) = xj (see Figure 4.5). For the sub-paths ρx≥j and ρx′≥j we
compute the indices ıρx≥j and ıρx′≥j relative to the nodes v̂j and v̂′j as

ıρx≥j = ∑
j≤l≤n

r(v̂l, sl) and ıρx′≥j = ∑
j≤l≤n

r(v̂′l, s′l).

103

4 Advanced Matrix Representation

v̂1

v̂2 v̂
′
2

v̂j−1 v̂
′
j−1

v̂j v̂
′
j

v̂
′
nv̂n

x1

x2

xj−1

xj

xn

early truncation

layer

1

s1 s
′
1

sj−1 sj−1

s
′
n

sn

ρx<j

ρx′≥j

ρx′<j

ρx≥j

Figure 4.5: A refinement of LIDD paths.

We further bind the variables of the function ft(x1, . . . , xn)→ R>0 to the values
which are given by the sub-path ρx≥j .
The result is the function ft,ρx≥j(x1, . . . , xj−1)→ R≥09. The state transition is now

specified as (ρx<j, ρx≥j) ft,ρx≥j (ρx<j)
ÐÐÐÐÐÐ→ ((ρx′<j, ρx′≥j)) and identifies the matrix entry

M(ı(ρx<j) + ı(ρx≥j), ı(ρx′<j) + ı(ρx′≥j)) = ft,ρx≥j(ρx<j).
The idea is to associate the triple (ı(ρx≥j), ı(ρx′≥j), ft,ρx≥j) to all nodes v̂j in the

LIDD ĜS with var(v̂j) = xj and for each state transition characterized above.
As the index of the target states depends on the Petri net transition t and the
related IDD node v̂′j, the node v̂j gets associated a data structure, which maps
the triple (ı(ρx≥j), ı(ρx′≥j), ft,ρx≥j) as one of multiple values to the tuple (t, vj , v̂′j).
The node vj is the node in the traversed IDD GS.

If all these information have been pre-computed, it suffices to stop the traversal in
Algorithm 17 and to enumerate the entries belonging to t, vj and v̂dest whenever
var(v) equals xj (see Algorithm 19). Yes, the alert reader will notice that we
are implicitly dealing with a Multi-terminal Interval Decision Diagram whose
terminal nodes store lists of multi-maps - for each ”terminal” node one multi-
map for each Petri net transition. Nevertheless, the proposed method still follows

9 Such argument binding is called a partial function application.

104

4.3 IDD-based On-the-fly Matrix Generation

Algorithm 19 (Enumerate – Entries)

1 struct EnumerateEntries
2 xj : unsigned

3 func firstUse(v , v̂src, v̂dest : unsigned, isrc , idest : IndexT,

4 alt : ActionList , f : Function , args : FunctionArgument)

5

6 if var(v)! = xj then return true fi
7 forall (ı(ρx≥j), ı(ρx′≥j), ft,ρx≥j

) ∈ map(v̂src)[(t, v, v̂dest)] do
8 // do something with (isrc + ı(ρx≥j), idest + ı(ρx′≥j), ft,ρx≥j

(args))
9 od

10 return false
11 end
12 end
13 . . .

14 proc Enumerate(GS : IDD, xj : unsigned, ctmc : [ĜS ,NS])

15 ece : EnumerateEntries
16 ece.xj := xj
17 for t ∈ NS .T do
18 EnumerateTransitions(GS ,t ,ece)
19 od
20 end

105

4 Advanced Matrix Representation

an on-the-fly approach. The state s′, especially its lexicographic index, and the

value ft(s) are computed for each state transition s
ft(s)
ÐÐ→ s′ by firing the Petri

net transition t in state s.

Data structures and initialization. An early truncation of the IDD traversal re-
quires at first the pre-computation of the explicitly stored path extensions for
all nodes in the LIDD ĜS labeled with the variable xj and all Petri net transi-
tions. This is realized with the procedure InitExplicitRep in Algorithm 20 which
applies the Algorithm 17 with the related functor. When reaching a node la-
beled with variable xj , the algorithms checks first whether there are available
entries for the Petri net transition t and the LIDD node v̂dest. If so, the re-
cursive descent can be stopped here. Otherwise it resets the content of what I
call an IndexDataCollector and continues the traversal in direction of the termi-
nal nodes. Each time the traversal reaches the 1-terminal node, the computed
state transition is passed to the IndexDataCollector, which maps the index pair(ı(ρx≥j), ı(ρx′≥j)) to the related function ft,ρx≥j (line 12).

a

ma

da a da

MA(1)

deg a

MA(50)
rel a

MA(1)
bind a

MA(10)

deg ma

MA(500)

transc da a

MA(50)

transc da

MA(50)

transl a

N N

N N

N

(a)

da[v6]

da a[v4] da a[v5]

a[v3]

ma[v2]

1 0

[0,1) #(0) [1,2) #(9)

[1,2) #(0)

[0,1) #(0)

[0,3) #(0)

[0,3) #(0) [3,oo) #(3)

[2,oo) #(18)

[1,oo) #(9)[2,oo) #(9)

[3,oo) #(9)

[0,1) #(0)

(b)

Figure 4.6: A Stochastic Petri net and the LIDD encoding of its rechable states for
N = 2.

I want to use the sub-net of the Circadian Clock model (see Appendix A.2,
CLOCK) given in Figure 4.6a to illustrate the following considerations. The
LIDD in Figure 4.6b represents the reachable states for the constant value N = 2

106

4.3 IDD-based On-the-fly Matrix Generation

Algorithm 20 (Initialization – Path extensions)

1 struct InitExplicitRep
2 op ∶ OP //the type of Operation
3 idc : IndexDataCollector
4 xj : unsigned

5

6 func firstUse(v , v̂src, v̂dest : unsigned, isrc , idest : IndexT,

7 al : ActionList , Function , args : FunctionArguments)

8 if v = 0 then
9 return true

10 elseif v = 1 then
11 //state transition has been extracted
12 idc.insert(f (args), isrc , idest)
13 return true
14 elseif var(v) = xj then
15 if map(v̂src)[(t , v , v̂dest)] ≠ ∅ then return false fi
16 idc.reset()
17 return true
18 fi
19 return false
20 end
21

22 proc secondUse(v , v̂src , v̂dest : unsigned, isrc , idest : IndexT,

23 al : ActionList , f : Function , args : FunctionArguments)

24 map(v̂src)[(t , v , v̂dest)] := idc.content()
25 end
26

27 proc setArgument(var : unsigned, args : FunctionArguments ,

28 src : unsigned, dest : unsigned)

29 if var(v) ≥ xj then
30 op.setArgument(var(v),args ,src,dest)
31 fi
32 end
33

34 proc selectActionList(al : actionList, revAl : actionList)

35 return op.selectActionList(al , revAl);
36 end
37 end
38

39 proc InitExplicitRep(GS : IDD, op ∶ OP, xj : unsigned)

40 ic : struct InitExplicitRep

41 ic.op := op

42 ic.xj := xj
43 EnumerateTransitions(GS ,ic)
44 end

107

4 Advanced Matrix Representation

and the variable order π = ma < a < da a < da. The abbreviation MA which is
used for the specification of the rate function stands for the mass-action law and
is defined for a transition t in state s with a reaction-specific constant ct as

MA(ct) = ct ⋅ ∏
p∈●t
(s(p)
t−(p)) .

transc da deg ma transl a bind a deg a transc da a rel a

0 1 MA(50)

1 2 MA(50)

3 4 MA(50)

4 5 MA(50)

6 7 MA(50)

7 8 MA(50)

1 0 MA(10)

2 1 MA(20)

4 3 MA(10)

5 4 MA(20)

7 6 MA(10)

8 7 MA(20)

1 4 MA(50)

2 5 MA(100)

4 7 MA(50)

5 8 MA(100)

3 0 MA(1)

4 1 MA(1)

5 2 MA(1)

6 3 MA(2)

7 4 MA(2)

8 5 MA(2)

3 0 MA(1)

4 1 MA(1)

5 2 MA(1)

6 3 MA(2)

7 4 MA(2)

8 5 MA(2)

0 1 MA(500)

1 2 MA(500)

3 4 MA(500)

4 5 MA(500)

6 7 MA(500)

7 8 MA(500)

0 3 MA(50)

1 4 MA(50)

2 5 MA(50)

3 6 MA(50)

4 7 MA(50)

5 8 MA(50)

Figure 4.7: A naive scheme for the node v3 in Figure. 4.6b

A naive realization of the described concept could simply consider lists of triples(ı(ρx≥j), ı(ρx′≥j), ft,ρx≥j) as it is illustrated in Figure 4.7, but a closer look reveals
potential for improvements:

1. Many list entries share the same function. There are 40 list entries in total,
but only seven different functions. Although the rate matrix of a CTMC
may contain an huge amount of non zero entries, the number of distinct
values is usually quite small10. At this point it makes sense to group the
index entries by the associated functions, as it is illustrated in Figure 4.8.

2. After the reorganization it stands out that complete index lists may appear
several times. Further, there are often references to the same function. It
seems worth detecting occurrences of index lists and function instances and
to store for the Petri net transitions just the related pointers as it can be
seen in Figure 4.9.

10 A small number of distinct values is a requirement for an efficient application of MTDD-based
representation techniques.

108

4.3 IDD-based On-the-fly Matrix Generation

3. A further observation is that a couple of the index lists exhibit some kind
of regularity. This enables to store them in a very compact way.

transc da deg ma transl a bind a deg a transc da a rel a

MA(50)

1 2

3 4

4 5

6 7

7 8

1 0

4 3

7 6

2 1

5 4

8 7

MA(10)

MA(20)

MA(100)

2 5

5 8

MA(50)

1 4

4 7

MA(1)

MA(2)

6 3

7 4

8 5

3 0

4 1

5 2

MA(1)

MA(2)

6 3

7 4

8 5

3 0

4 1

5 2

MA(500)

0 1

1 2

3 4

4 5

6 7

7 8

MA(50)

0 3

1 4

2 5

3 6

4 7

5 8

Figure 4.8: An improved scheme for the node v3 in Figure. 4.6b

transc da deg ma transl a bind a deg a transc da a rel a

MA(50)

1 2

3 4

4 5

6 7

7 8

1 0

4 3

7 6

2 1

5 4

8 7

MA(10)

MA(20)

MA(100)

2 5

5 8

1 4

4 7

MA(1)

MA(2)

6 3

7 4

8 5

3 0

4 1

5 2

MA(500)

0 3

1 4

2 5

3 6

4 7

5 8

Figure 4.9: An improved scheme for the node v3 in Figure 4.6b which takes into account
the multiple occurrence of similar functions and index lists.

Exploitation of regularities. As one may expect, the success of the overall ap-
proach directly depends on the storage and the access to the functions and
especially to the possibly huge amount of indices.

In the following I assume that a set of index pairs is represented by the structure
IndexPairs:

109

4 Advanced Matrix Representation

1 struct IndexPairs
2 indices : array of IndexT
3 size : unsigned
4

5 proc process(offR, offC : IndexT , val : double, op ∶OP)
6 for 0 ≤ i < size do
7 op(row(i) + offR, col(i) + offC , val)
8 od
9 end

10 end

The procedure process iterates over all index pairs stored somehow in the array
indices using the functions row and col, adds the offsets offR and offC , and calls
the functor op with the resulting index pair and the value val. Once again, op
encapsulates the actual operation and the related data.

The set of index pairs which is associated to a function instance often exhibits
regularities in the set of row indices, the column indices or even both. My experi-
ments revealed that at least the following patterns (types) should be considered,
which I will characterize in more detail:

Type 1: No regularities. All row and column indices must be stored in the array,
either absolute or relative with the distance of rows and columns to the
related predecessor pair. I have chosen the relative encoding and store
the first index pair at the positions zero and one. For the following pairs
I store the distance to their predecessor pair in alternating order of rows
and columns. This is motivated by the fact that the row and the column
index of a pair will always be accessed simultaneously and should be
located in the same cache line11. The ith index pair is defined as

row(i) = {indices[0] if i = 0

row(i − 1) + indices[2 ⋅ i] if 1 ≤ i < size.
and

col(i) = {indices[1] if i = 0

col(i − 1) + indices[2 ⋅ i + 1] if 1 ≤ i < size.
This definition directly represents how the algorithms access the entries
of a set of index pairs. An index pair is always computed from its direct

11 A cache line represents a consecutive block of Random Access Memory (RAM) which is completely
transferred to the substantially faster cache memory, even if only a single datum is needed.

110

4.3 IDD-based On-the-fly Matrix Generation

predecessor. In the implementation this suggests to make intensive use
of an Iterator concept instead of an index-controlled For loop from 0
to size.

Type 2: All row and all column indices have a fixed distance. Of course the
distance between the rows can differ from the one between the columns.
The complete list contents can be mapped to only four values, the first
two indices and the distance between the rows and the columns. The
ith index pair is defined as

row(i) = {indices[0] if i = 0

row(i − 1) + indices[2] if 1 ≤ i < size
and

col(i) = {indices[1] if i = 0

col(i − 1) + indices[3] if 1 ≤ i < size.
The ith row (column) is nothing else than indices[0(1)]+i⋅indices[2(3)].

Type 3: The distance of all entries is one, which is special case of the previous
type. During the numerical computations such a set of index pairs rep-
resents successive vector blocks. Such blocks enable the application of
Single Instruction Multiple Data (SIMD) techniques.
The ith index pair is defined as

row(i) = {indices[0] if i = 0

row(i − 1) + 1 if 1 ≤ i < size
and

col(i) = {indices[1] if i = 0

col(i − 1) + 1 if 1 ≤ i < size.
The ith row(column) is nothing else than indices[0(1)] + i.

Type 4: The row indices possess fixed distance, while the column indices do not
show regularity. Only the distance between the column indices of two
pairs must be stored starting at array position three. Position two keeps
the constant distance of the row indices.
In this case the ith index pair is defined as

row(i) = {indices[0] if i = 0

row(i − 1) + indices[2] if 1 ≤ i < size

111

4 Advanced Matrix Representation

and

col(i) = {indices[1] if i = 0

col(i − 1) + indices[2 + i] if 1 ≤ i < size.
Type 5: Analogously to the previous type only the column indices can be char-

acterized by a constant distance. Here the row indices require explicit
storage. In this case the ith index pair is defined as

row(i) = {indices[0] if i = 0

row(i − 1) + indices[2 + i] if 1 ≤ i < size
and

col(i) = {indices[1] if i = 0

col(i − 1) + indices[2] if 1 ≤ i < size.
Type 6: The last case is on hand, when the distance between row and column

indices changes from pair to pair but the distance between two row
indices is equal to the distance of the related column indices. The start
indices are stored at the positions zero and one. The shared distances
between two pairs are stored starting at position two.
The ith index pair is defined as

row(i) = {indices[0] if i = 0

row(i − 1) + indices[1 + i] if 1 ≤ i < size.
and

col(i) = {indices[1] if i = 0

col(i − 1) + indices[1 + i] if 1 ≤ i < size.
The investigation of these pattern saves memory and enables a fast computation
of index pairs. The computation of the index pairs for the Type1 requires access
to RAM for each pair. This is slow and may invalidate the fast cache memory.
For Type2 and Type3 it is possible to compute a huge number of pairs from
only five values, in particular the number of pairs, the indices of the first pair
and distances between neighboring pairs. The use of the remaining types saves
nearly half of the required memory compared to the first one.

Figure 4.10 shows the previous scheme after the exploitation of the regularities
in the index lists.

A single list of index pairs may be composed of several regular blocks. This
calls for a detection mechanism which can be compared with a lexical analyzer,

112

4.3 IDD-based On-the-fly Matrix Generation

breaking a stream of characters into tokens. The IndexDataCollector serves as
such an analyzer.

transc da deg ma transl a bind a deg a transc da a rel a

MA(50)

T6(6)

0

1

1

2

1

2

1

T2(3)

1

0

3

3

T2(3)

2

1

3

3

MA(10)

MA(20)

MA(100)

T2(2)

2

5

3

3

T2(2)

1

4

3

3

MA(1)

MA(2)

T3(3)

6

3

T3(3)

3

0

MA(500)

T3(6)

0

1

Figure 4.10: A scheme for the node v3 in Figure 4.6b which considers the multiple
occurrence of similar functions and regularities in the index lists.

When appending a new index pair, it observes the distance between neighboring
indices and identifies the introduced types of regularities. In the best case, as for
instance in Figure 4.10, each index list can be represented by one of the men-
tioned types, except Type1, which indeed represents the worst case. Each time
the IndexDataCollector observes the end of a regular block, it decides whether
it is worth creating an instance of the detected type or not as there is trade-off
between a huge number of instances representing very small blocks and a small
number of instances representing big blocks. Therefore the IndexDataCollector
considers a minimal block size. It turned out for the experiments I made that a
minimal block size of 100 appears to be a suitable value.

I omit a discussion of the internal implementation of the IndexDataCollector,
but it is obvious that it can be realized as a finite automaton.

Further data structures. The identified blocks of IndexPairs must be associated
with a function instance. An instance of the structure MatrixEntries serves for
this purpose. It defines a set of matrix entries with the same value. The structure

113

4 Advanced Matrix Representation

defines, similar to IndexPairs, the parametrized procedure process which indeed
triggers the enumeration of the index pairs by calling the related procedure.

1 struct MatrixEntries
2 indices : IndexPairs
3 f : Function
4

5 proc process(offR, offC : IndexT , args : FunctionArguments, op ∶OP)
6 val ∶= f (args)
7 indices .process(offR,offC , val ,op)
8 end
9 end

As the functions are potentially state-dependent, a Petri net transition t may
define for the same LIDD node v̂j various combinations of different functions
and blocks of index pairs. Thus, each node v̂src labeled with variable xj refers to
a map which associates a list of MatrixEntries instances to the key (t, v, v̂dest).
Generalization. At the beginning of this section I mentioned a second problem
with the on-the-fly enumeration of state transitions. Algorithm 17 extracts for a
given set of states S, encoded by the IDD GS , the state transitions induced by the
firing of a single Petri net transition t. An iterative application of the algorithm
with all Petri net transitions and the set of reachable states S enumerates the
complete transition relation of the given model, as it is done in Algorithm 18.
However, doing so processes the Petri net transitions one after the other. Because
the same IDD (GS) will be traversed ∣T ∣ times, we can expect a long runtime.
Further, the approach would not serve our needs if the numerical algorithm, as
for instance Gauss-Seidel, requires a certain order in which the state transitions
have to be enumerated.

Thus it is necessary to generalize the Algorithm 17. Instead of a single Petri
net transition, the auxiliary function AuxEnumerateTransitions considers simul-
taneously a set of Petri net transitions. The consequence: all procedures and
all related functors I have introduced so far have to deal with sets of Petri net
transitions, IDD nodes, indices, action lists, and function arguments. The gener-
alization of Algorithm 17 is straightforward and for reasons of readability I omit
it here. At this point I define just the resulting interface which I refer to in the
remainder.

The structure TransitionData encapsulates for a transition t

114

4.3 IDD-based On-the-fly Matrix Generation

Algorithm 21 (Enumerate state transitions – Generalized)

1 proc EnumerateTransitions (GS : IDD , T : set of transitions , op ∶ OP)

2 . . .
3 end
4 proc AuxEnumerateTransitions (v : unsigned, td : set of TransitionData, op ∶ OP)

5 . . .
6 end
7 //functions implemented by the specific policies
8 func firstUse(v : unsigned, td : set of TransitionData)

9 . . .
10 end
11 func secondUse(v : unsigned, td : set of TransitionData)

12 . . .
13 end

� the transition – t

� the current lexicographic index – index

� the current node in the LIDD – v̂

� the current ActionList – al

� the associated function – f

� the list of function arguments – args

� a lower step bound – lsb

� an upper step bound – usb

� and a Boolean flag – shift.

The latter three features permit an on-the-fly generation of the approximating
CTMC CA discussed in Section 3.2.2. I will explain them later in Section 5.2.3.

The argument for the related procedures TraverseTransitions, AuxTraverseTran-
sitions, firstUse and secondUse is a list of TransitionData instances, representing
the transitions which are enabled in terms of the extracted sub-path.

Algorithm 19 realizes the enumeration of possible path extensions in the func-
tion firstUse of the structure EnumerateEntries . It must also specify the base
operation which is applied to a state transition.

115

4 Advanced Matrix Representation

In the following I will distinguish between the actual base operation (e.g. print a
matrix entry) and the enumeration of the path extensions. This enables the com-
bination of different enumeration policies with different operations. Therefore
I extract the enumeration of the path extensions to parameterizable functor
types. Each type realizes a different policy for the enumeration of the path ex-
tensions and encapsulates the actual operation by a reference to a dedicated
functor named base.

Enumeration policies. The implementation of the numerical solvers to cover
the analysis of SPN,GSPN and SRN models requires basically three different
enumeration policies. I assume that T in Algorithm 21 represents T , and GS the
set of reachable states. With this restriction the algorithm enumerates all state
transitions of a row block, when it reaches a node of the truncation level j. The
algorithm enumerates the blocks sequentially. Within a block there are jumps
between rows and columns, depending on the processed index pair pattern and
the considered Petri net transition. The size of a block (the number of rows) is
defined by the maximal row index, which is contained in the set of the stored
path extensions. The number and the size of the blocks depends on the number
of nodes labeled with the variable xj and thus on the selected layer j.

If the chosen layer is ∣X ∣, the enumeration algorithm extracts single matrix rows.
Of course, in this case a row-wise enumeration has a non-acceptable runtime.
An efficient row-wise enumeration of the matrix entries must be realized in the
function firstUse of the according policy.

Next to the base operation it may be necessary to perform a further operation
to prepare computed or collected results. For instance, after having printed all
entries in a row we may want to start a new line. In most cases the operation
deals with gathering of the recently computed result, so it is represented by a
functor gather. For the realization of a numerical solver based on uniformization
(see Algorithm 8), the related functor type encapsulates for instance the vector
acc and takes care of the accumulation of the results (line 9). In this case the
gather operation is carried out after the multiplication of the matrix PU and does
not affect the enumeration of the path extensions. However, in Algorithm 10 the
update of a vector entry (line 14) must be done immediately after the extraction
of the related row. Thus I distinguish immediate and subsequent gathering.

Enumeration of blocks. Algorithm 22 enumerates the entries of a complete block
of the truncation level. The function firstUse checks whether the current IDD

116

4.3 IDD-based On-the-fly Matrix Generation

Algorithm 22 (Enumeration policy – BLOCK/ALL)

1 struct EnumerateBLOCK /ALL
2

3 base ∶ BASE//base operation
4 gather ∶ GATHER//gather policy
5 xj : unsigned

6

7 func firstUse(v : unsigned, td : list of TransitionData)

8 if var(v) ≠ xj then return true fi
9 v̂src := td1 .v̂

10 isrc := td1 .index
11 for 2 ≤ i ≤ ∣td ∣ do
12 entries ∶= map(v̂src)[(tdi .t , v , tdi .v̂)]
13 if entries ≠ ∅ then
14 forall ej ∈ entries do
15 rowIndex ∶= isrc
16 colIndex ∶= tdi .index
17 value ∶= ej .f(tdi.args)
18 ej .process(0, rowIndex, colIndex, value,base)
19 od
20 fi
21 od
22 gather(isrc, isrc +maxRow(entries))
23 return false
24 end
25

26 end

117

4 Advanced Matrix Representation

node v is labeled with the variable xj . If so, it processes the existing entries.
The LIDD node v̂src and the lexicographic index of the related sub-path are
provided by the first entry of the TransitionData list td. The LIDD nodes of
the sub-path of target states and their related lexicographic index in case of
enabled transitions start with the second entry of td. For existing entries it calls
the procedure process and delegates the basic operation by passing the functor
base. After that it finishes with a call of the functor gather providing the index
interval given by the index ısrc and the block size.

If the operation does not carry out immediate gathering, the algorithm applies
the base operation to all matrix entries before the actual gathering step; and
I refer to this special case as ALL. The return value tells the calling procedure
AuxEnumerateTransitions whether to continue (true) or to truncate (false) the
recursive descent.

Figure 4.11: Visualization of an enumeration of the transposed rate matrix of a CTMC.

Enumeration of rows/columns. Algorithm 23 enumerates the entries of a block
of the truncation layer line by line. This is achieved by using a list of Iterator
instances. An iterator enables for a MatrixEntries instance the stepwise enu-
meration of its contents. The idea is quite simple. The list stores at position
i all iterators which refer a MatrixEntries instance whose current row index is
i. The iterator operation next computes the successor index pair depending on

118

4.3 IDD-based On-the-fly Matrix Generation

the encapsulated pattern of index pairs. The fist part equals that of Algorithm
22, but does not process the complete content of a MatrixEntries instance. It
creates an iterator (line 19) and evaluates its contents. If the current row index
is zero, it applies the base operation and sets the iterator to the next index pair.
In any case, the iterator, provided that it is still valid, is inserted in the list at
its row position. After this first phase (line 14 - line 27), the iterator list has been
initialized and all index pairs with a row index of zero have been processed.

In the second phase, the algorithm enumerates the single row indices starting at
position one. For each position it goes through the associated iterators, processes
the referred matrix entry by applying the base operation and sets the iterators
to the next pair, including the movement of valid iterators to the correct list
position. Having processed the current row position, the algorithm applies the
immediate gather -operation restricted to the current row index (line 28 and line
37).

Figure 4.12: Visualization of a column-wise enumeration of the rate matrix of a CTMC.

Multiple enumeration. An enumeration policy which may not appear reasonable
at the first glance is given in Algorithm 24. Again, it is very similar to the
enumeration of blocks, but the algorithm considers also the shift , the lsb and
the usb members of the TransitionData instances. The complete set of matrix
entries is processed for each step within the bounds lsb and usb (line 17 and

119

4 Advanced Matrix Representation

line 20). The actual index pairs are further shifted by the number of reachable
states of the model (line 24 and line 25). A transition for which the shift flag is
set to true shifts the column index one times further and connects thereby two
neighboring repeating levels (line 19).

The described enumeration of the repeating levels can be used to compute on-
the-fly the rate matrix of the CTMC CA discussed in Section 3.2.2. To omit a
repeated computation of the actual values, they are computed once and stored
in the array values .

Figure 4.13: Visualization of an enumeration of the rate matrix of a CTMC which ap-
proximates an MRM. The four repeating levels are enumerated by means
of the enumeration policy MULTI.

Variable order and functions. I mentioned in Section 2.2 that the variable order
has crucial impact on the efficiency of DD-based approaches. A good variable
order yields small-sized decision diagrams in terms of the number of nodes and
arcs. Several research in this area has been done, whereby most approaches use
heuristics to generate a static variable order [95, 111, 31, 83].

The IDD library [115] my work is based on implements the greedy algorithm
proposed by Noack [95]. The algorithm works from the bottom (∣X ∣) to the top
and associates in each step the current variable to a place of the net. To decide

120

4.3 IDD-based On-the-fly Matrix Generation

which of the unprocessed places, represented by the set U , will be selected next,
the algorithm uses a simple heuristic which considers explicitly the Petri net
structure. It is based on the observation that places (variables) whose values
effect each other and thus are dependent, should be grouped together. Two
places in a Petri net can be seen as dependent if they are connected to the same
transition. Noack set up equation 4.2 to compute a structural criterion for each
of the unprocessed places. In every step the algorithm weights the unprocessed
places and selects the place with the highest value.

W(p) ∶=
∑
t∈ ●p

∣ ●t∩U ∣
∣ ●t ∣ + ∑

t∈p●
∣t●∩U ∣
∣t●∣

∣ ●p ∪ p● ∣ . (4.2)

This heuristic produces good variable orders for the nets I consider here. In [108]
I drastically pushed the performance of the probabilistic model checker PRISM
[78] by using this heuristic to compute a variable order for the MAPK model (see
Table 6.1). However, for the proposed on-the-fly enumeration of state transitions
with an early truncation of the IDD traversal, the heuristic can be improved.

The value of a state transition may depend on several variables. If the corre-
sponding variables appear above the specified truncation layer, the computa-
tional effort to derive the actual function value may increase significantly. The
variables should be located below this layer to reduce this effort. In this case
the actual function value is computed only one time in the initialization step.
Though this replacement of function instances by constant values may decrease
the runtime it may increase at the same time the memory consumption if a
function instance is shared among several tuples (t, v, v̂). When computing the
function values for all possible assignments the compression effect possibly gets
lost.

Noack’s ordering algorithm creates the order starting at the terminal node level.
An adaption should select places which are used as variables in many transi-
tion functions as early as possible. This can be achieved if the computation of
weights takes into account the occurrence of each place in all transition functions
#p ∶= ∣{t ∣ p ∈ dom(ft)}∣. A high value #p should give a high value for W(p).
In the implementation of Equation 4.2, I replaced some “magic” constants with
the values of #p . This modification will not accelerate the enumeration of state
transition in any case. If each transition function depends on its pre-places, which
is often the case for biological networks, we may also observe a degradation.

121

4 Advanced Matrix Representation

If all transition functions are constants (KANBAN, Appendix A.2.2) the occur-
rence of places is zero and will not affect the variable order computation.

122

4.3 IDD-based On-the-fly Matrix Generation

Algorithm 23 (Enumeration policy – LINE)

1 struct EnumerateLINE
2

3 base ∶ BASE //base operation
4 gather ∶ GATHER //gather policy
5 xj : unsigned

6

7 func firstUse(v : unsigned, td : list of TransitionData)

8 if var(v) ≠ xj then return true fi
9 it : Iterator

10 list : list of Iterator
11 row = 0
12 v̂src := td1 .v̂
13 isrc := td1 .index
14 for 2 ≤ i ≤ ∣td ∣ do
15 entries ∶= map(v̂src)[(tdi .t , v , tdi .v̂)]
16 if entries ≠ ∅ then
17 forall ej ∈ entries do
18 value ∶= ej .f(tdi.args)
19 it ∶= createIterator(ej .indices , value)
20 if it .rowIndex = 0 then
21 base(it .row , it .col , it .value)
22 it .next()
23 fi
24 if it .hasMore() then list .insertAt(it .rowIndex , it) else release(it) fi
25 od
26 fi
27 od
28 gather(row , row)
29 rowIndex ∶= 1
30 while rowIndex < list .size() do
31 it = list .getAndRemoveFirstElementAt(row)
32 while it do
33 base(it .row , it .col , it .value)
34 it .next()
35 if it .hasMore() then list .insertAt(it .row , it) else release(it) fi
36 od
37 gather(row , row)
38 row ∶= row + 1
39 od
40 return false
41 end
42 end

123

4 Advanced Matrix Representation

Algorithm 24 (Enumeration policy – MULTI)

1 struct EnumerateMulti
2

3 base ∶ BASE //the type of Operation
4 xj : unsigned

5

6 func firstUse(v : unsigned, td : list of TransitionData)

7 if var(v) ≠ xj then return true fi
8 v̂src := td1 .v̂
9 isrc := td1 .index

10 for 2 ≤ i ≤ ∣td ∣ do
11 entries ∶= map(v̂src)[(tdi .t , v , tdi .v̂)]
12 if entries ≠ ∅ then
13 values[size(entries)] : array od double

14 forall ej ∈ entries do
15 values[ej] = ej .f (tdi .args)
16 od
17 step ∶= tdi .lsb
18 row ∶= isrc + lsb ⋅ ∣S ∣
19 col ∶= tdi .index + (lsb + tdi .shift) ⋅ ∣S ∣
20 while step < tdi.usb do
21 forall ej ∈ entries do
22 ej .process(row, col, values[ej],base)
23 od
24 row ∶= row + ∣S ∣
25 col ∶= col + ∣S ∣
26 step:=step + 1
27 od
28 fi
29 od
30 return false
31 end
32 end

124

4.3 IDD-based On-the-fly Matrix Generation

4.3.4 First Results

The proposed on-the-fly approach and the discussed improvements have been
implemented in the model checker MARCIE [109]. I will describe the implemen-
tation of its numerical engine in the next Chapter. At this point I present some
first results meant to illustrate the potential of the implementation. Therefor I
took eight case studies (see Appendix A.2) and enumerated the entries of their
rate matrices. The results are shown in Figure 4.14 and Figure 4.15.

I measured the overall memory consumption and the average time to enumerate
all matrix entries using

� the Compressed SPARSE Row (Section 4.1) storage scheme,

� the on-the-fly method with enumeration policy ALL,

� the on-the-fly method with enumeration policy LINE.

I used for all experiments an empty base operation. The implementation requires
to allocate at least on computation vector with double precision in the size of
the state space. It is contained in the measured memory consumption (left inner
plot). The outer plot shows the time per iteration as the average of ten sequential
iterations. The right inner plot shows the total runtime and indicates the initial-
ization effort. For all models I considered the possible truncation layers starting
with two. A value of one would represent a genuine on-the-fly computation. But
even for a value of two the achieved runtime is not acceptable.

The test system is MAC Pro 4×2.2 GHz with 32 GB RAM running Cent OS 5.5.

It stands out that the on-the-fly computation can compete with the sparse matrix
storage with regard to runtime for higher truncation layers if the enumeration
of single lines is not relevant. Concerning memory consumption the on-the-fly
approach outperforms the sparse matrix storage in all cases. A line-wise enu-
meration must be paid with a runtime increase of a factor between five and
ten.

125

4 Advanced Matrix Representation

 0

 5

 10

 15

 20

 25

 30

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer

	ALL
	LINE

	SPARSE

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

m
e

m
o

ry
 i
n

 G
B

00:00

03:00

06:00

09:00

12:00

15:00

18:00

21:00

24:00

27:00

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

to
ta

l
ti
m

e
 i
n

 m
:s

AKAP N=4

 0

 5

 10

 15

 20

 25

 30

 35

 2 3 4 5 6 7 8 9 10 11
ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer

	ALL
	LINE

	SPARSE

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 3 4 5 6 7 8 9 10 11

m
e

m
o

ry
 i
n

 G
B

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

08:00

09:00

10:00

11:00

12:00

 2 3 4 5 6 7 8 9 10 11

to
ta

l
ti
m

e
 i
n

 m
:s

ERK N=30

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer

	ALL
	LINE

	SPARSE

 0

 5

 10

 15

 20

 25

 30

 35

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m
e

m
o

ry
 i
n

 G
B

00:00:00

00:05:00

00:10:00

00:15:00

00:20:00

00:25:00

00:30:00

00:35:00

00:40:00

00:45:00

00:50:00

00:55:00

01:00:00

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

to
ta

l
ti
m

e
 i
n

 m
:s

MAPK N=10

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 2 3 4 5 6 7 8 9

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer

	ALL
	LINE

	SPARSE

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2 3 4 5 6 7 8

m
e

m
o

ry
 i
n

 G
B

00:00

00:10

00:20

00:30

00:40

00:50

01:00

01:10

01:20

01:30

01:40

01:50

 2 3 4 5 6 7 8 9
to

ta
l
ti
m

e
 i
n

 m
:s

CLOCK N=20

Figure 4.14: Time per iteration, memory consumption and total time for the enumera-
tion of the rate matrix of biologic models with different truncation layers.
A truncation layer of one would represent a genuine on-the-fly computa-
tion.

126

4.3 IDD-based On-the-fly Matrix Generation

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer

	ALL
	LINE

	SPARSE

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

m
e

m
o

ry
 i
n

 G
B

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

to
ta

l
ti
m

e
 i
n

 m
:s

PSS N=20

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer

	ALL
	LINE

	SPARSE

 0

 2

 4

 6

 8

 10

 12

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m
e

m
o

ry
 i
n

 G
B

00:00

03:00

06:00

09:00

12:00

15:00

18:00

21:00

24:00

27:00

30:00

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

to
ta

l
ti
m

e
 i
n

 m
:s

FMS N=10

 0

 2

 4

 6

 8

 10

 12

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer

	ALL
	LINE

	SPARSE

 0

 1

 2

 3

 4

 5

 6

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

m
e

m
o

ry
 i
n

 G
B

00:00

00:15

00:30

00:45

01:00

01:15

01:30

01:45

02:00

02:15

02:30

02:45

03:00

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

to
ta

l
ti
m

e
 i
n

 m
:s

KANBAN N=6

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer

	ALL
	LINE

	SPARSE

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

m
e

m
o

ry
 i
n

 G
B

00:00

00:05

00:10

00:15

00:20

00:25

00:30

00:35

00:40

00:45

00:50

00:55

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

to
ta

l
ti
m

e
 i
n

 m
:s

WC N=256

Figure 4.15: Time per iteration, memory consumption and total time for the enumer-
ation of the rate matrix of technical models. A truncation layer of one
would represent a genuine on-the-fly computation.

127

4 Advanced Matrix Representation

Figure 4.16 illustrates the positive effect of the described modification of the
variable order heuristics for the FMS model (see Appendix A.2.2). In this case
the better time per iteration comes with an in trend higher initialization time
and also with an increased memory consumption. However, in the first half of
the truncation layer range an analysis can profit of the modified variable order,
provided an sufficient number of iterations.

 0

 10

 20

 30

 40

 50

 60

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ti
m

e
 p

e
r

it
e
ra

ti
o
n
 i
n
 s

e
c
o
n
d
s

truncation layer

	ALL_noak
	ALL_noak_mod

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

m
e
m

o
ry

 i
n
 G

B

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

18:00

20:00

22:00

24:00

26:00

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

to
ta

l
ti
m

e
 i
n
 m

:s

FMS N=10

Figure 4.16: Time per iteration, memory consumption and total time for the enumer-
ation of the rate matrix of the FMS system for different variable orders.

4.4 Summary

In this chapter I discussed advanced representation techniques for large matrices
in the context of CTMCs. I sketched briefly the basic ideas of encoding tech-
niques relying on Kronecker algebraic expressions and Multi-terminal Decision
Diagrams. As the main contribution of the thesis I proposed a symbolic on-the-
fly enumeration of the matrix entries given a state space representation in terms
of Interval Decision Diagrams. I discussed further how to improve the approach
to achieve an acceptable runtime and to realize different enumeration policies of
the state transitions.

128

5 Implementation of Numerical Solvers

In the previous chapters I have presented generalized stochastic Petri nets and
stochastic rewards nets as high level formalisms to define continuous-time Markov
chains and rate-based Markov reward models as well as numerical methods to
compute probability distributions and secondary measures. As a useful technique
for the evaluation of such models I have further considered model checking tech-
niques and the Continuous Stochastic Reward Logic as a powerful language to
formulate quantitative model properties. To tackle the state explosion problem,
I proposed an on-the-fly computation of the related matrix based on a symbolic
state space representation by means of Interval Decision Diagrams.

This chapter rounds up these considerations with a brief discussion of some
implementation concepts of numerical solvers. The analysis methods I outlined
are available in the model checker MARCIE [109].

The tool is written in C/C++ and uses the IDD library of A. Tovchigrechko [115].
MARCIE’s multi-threaded symbolic numerical engine builds on the approach I
proposed in Chapter 4. The CSRL model checker represents a further important
contribution of this thesis. Figure 5.1 shows the architecture of the tool. The
highlighted components have been developed by me while pursuing the Ph.D.
project.

5.1 Concepts

Two features influenced the development of MARCIE’s numerical engine, which
are responsible for MARCIE’s performance and they are supposed to ease the in-
tegration of further advanced analysis techniques. The iterative methods rely on
a generic design of the solver classes. The use of C++ with its support of pa-
rameterizable classes by templates enables to extend the implementation without
using polymorphism at runtime. The numerical solvers execute tasks, realized
as functor objects, in most of the cases concurrently. For short, important
numerical solvers are multi-threaded and enjoy a generic design.

129

5 Implementation of Numerical Solvers

.ltl .crsl .rw .andl .pnml .po/.to .ctl

Marcie

PLTLc CSRL Rewards ANDL PNML Orders CTL

P
a
rs
er

PLTLc
Model Checker

CSRL
Model Checker

Quantitative
Analysis

Stochastic Sim-
ulation Engine

Approximative
CTMC Engine

Symbolic
CTMC Engine

Net
Representation

Order
Generator

Interval
Decision Diagram

Engine

CTL
Model Checker

State Space
Analysis

BFS
Chaining
Saturation

Qualitative
Analysis

Yes/No
Probabilities

Traces
.csv

Place/Transition
Order
.po/.to

Liveness
Reversibility
#States

#Dead States

Yes/No

Figure 5.1: MARCIE’s architecture [59]. The gray-colored components have been im-
plemented, the lightgray-colored components have been upgraded by me.

When dealing with large models, it is common to use iterative methods. This
holds for transient as well as steady state analysis. In Section 3.3 I sketched re-
lated methods, which can be characterized by the following algorithmic skeleton.

1 PrepareComputation
2 while notfinished do
3 Multiplication
4 Gathering
5 od
6 PrepareResults

The most important, concerning runtime the most expensive, tasks are the
Multiplication and the Gathering . Both tasks are intrinsically tied to each other

130

5.1 Concepts

in the method of Gauss-Seidel. However, they can be separated and even broken
into smaller sub-tasks in the case of uniformization or the method of Jacobi.

For the definition of the single tasks in MARCIE I applied a C++-specific de-
sign concept, namely Policy-based Design. In the following I will explain the
underlying ideas and illustrate the benefits of this concept for MARCIE’s im-
plementation.

5.1.1 Policy-based Design

The term originates from [1]. I think the following quotation, given there, ex-
plains the goal of it best: “In brief, policy-based class design fosters assembling
a class with complex behavior out of many little classes (called policies), each
of which takes care of only one behavioral or structural aspect. . . . Because you
can mix and match policies, you can achieve a combinatorial set of behaviors
by using a small core of elementary components”. It should be clear why this
concept is applied in MARCIE, as I already used the term policy in Chapter 4
and started to combine and nest several policies.

Policy-based design can be seen as a language-specific concept exclusively1 of-
fered by the programming language C++ where classes and functions can be
defined in a parameterizable fashion. So it is possible to define

� classes where the type of some members or the superclass(es)

� (member) functions where the type of some arguments or the result type

is not given explicitly. The not specified types are represented by placeholders
which are replaced at compile time. Suchlike parts of the code are called tem-
plates. The C++ compiler instantiates templates with existing types and gen-
erates thus new types. The template mechanism complements object-oriented
programming and represents an alternative approach for generic programming.
A recommendable textbook on C++-templates is [116]. While inheritance and
polymorphism enable to realize context-dependent behaviour at runtime, the
template mechanism provides similar effects at compile time. This concept is
also known as static polymorphism.

I want to give an example why the difference can be – and in my opinion indeed
is – crucial. For the implementation of the multiplication of a matrix and a vector
one could encapsulate the actual operation using the following C++ structs.

1 currently

131

5 Implementation of Numerical Solvers

struct OpBase {

// abstract function wich MUST be defined by derived classes

virtual void multiply (int row , int col , double value) = 0;

};

struct MatrixVector : public OPBase {

// the vectors v and r

virtual void multiply (int row , int col , double value){

r[row] += v[col]* value;

}

};

struct VectorMatrix : public OPBase {

// the vectors v and r

virtual void multiply (int row , int col , double value){

r[col] += v[row]* value;

}

};

void multiply (CSRMatrix &M , OPBase op*){

for(IndexT i = 0 ;i < M.rows; i++){

IndexT i_0 = M.row [i];

IndexT nnz = M.row [i+1];

r[i] = 0;

for (IndexT i_0 = M.row [i]; j < nnz ; j++) {

op ->multiply (i,M.col[j],M.val[j]);

}

}

}

The used technique to represent the matrix (CSR in the code snippet above) does
not really matter in this context. More importantly: the algorithm may perform
a matrix-vector or a vector-matrix multiplication depending on the type of the
pointer op. The related enumeration procedure appears in the code only one time
and is parameterizable. The evaluation of the pointer type happens in this case
at runtime, and produces an in general negligible overhead. But, as we consider
matrices with billions of entries, this overhead will be noticeable.

A more notable observation is that each implementation of the functionmultiply
possesses only one line of code causing an expensive procedure call. This will
definitely produce an huge overhead. C++ compilers are able to replace function
calls by the function’s contents. This feature is known as inlining2 and may
significantly increase the performance of an application. However, in general
virtual functions can not be inlined and the parameterized code comes with a
price.

2 The keyword inline makes a suggestion to the compiler.

132

5.1 Concepts

Fortunately, this price has not to be paid as templates can help. The following
C++ code snippet deploys static polymorphism. The function multiply is de-
fined as a template function. The classes MatrixVector and VectorMatrix have
no shared superclass and declare the function multiply as inline. The genuine
routines for the multiplication are created by the compiler using template in-
stantiation, hopefully with inlining.

struct MatrixVector{

//the vectors v and r

inline void multiply (int row , int col , double value){

r[row] += v[col]* value;

}

};

struct VectorMatrix{

//the vectors v and r

inline void multiply (int row , int col , double value){

r[col] += v[row]* value;

}

};

template <typename OP >

void multiply (CSRMatrix &M , OP *op){

/* code as before */

}

I promise to bother not the reader with C++ code anymore. I think for the
remainder the pseudo-code style will suffice to mediate the basic ideas. Types
which would be declared in C++ as template type names are highlighted in bold.

Let us strain the multiplication operation of a matrix with a vector as the ex-
ample to motivate the use of policies. In MARCIE, the core of any kind of mul-
tiplication consists of the IDD traversal in Algorithm 21. The algorithm is the
same for all numerical methods, which I consider, but lefts open three aspects,
in particular:

� the enumeration strategy,

� the fire direction, and

� the base operation.

These different aspects (policies) permit to compose a multitude of multiplication
types.

Take for instance the simple transient analysis given in Algorithm 8. The de-
scription hides several details, such as the representation of the matrix diagonal,
or the fact that π ∶= π ⋅PU requires two vectors (in the following v and r).

Here, the exit rates are the result of the matrix-vector multiplication R ⋅ 1, and

133

5 Implementation of Numerical Solvers

stored in the dense vector diag. Algorithm 25 shows a refined version which
also checks, whether the newly computed distribution has changed compared to
the previous one, or whether a steady state has been reached3. It contains two
different types of multiplication of a matrix and a vector. In line 6 it is the matrix-
vector multiplication mentioned above. Translating this into the proposed on-
the-fly approach means to combine the extraction policy ALL, the forward firing
of Petri net transitions (FWD), and the following functor class RS (RowSum)
specifying the basic operation.

1 struct RS
2 r : vector of double
3 proc operator()(rowIndex , colIndex : IndexT, value : double)
4 r[rowIndex] ∶= r[rowIndex] + value
5 end
6 end

In line 17, it is the vector-matrix multiplication with the argument vector v. In
this case we can combine the extraction policy ALL, the fire direction FWD and
the functor class VM (V ectorMatrix).

1 struct VM
2 r : vector of double
3 v : vector of double
4 proc operator()(rowIndex , colIndex : IndexT, value : double)
5 r[colIndex] ∶= r[colIndex] + value ⋅ v[rowIndex]
6 end
7 end

Alternatively we can use the combination of ALL, the backward (BWD) firing
and the functor class MV (MatrixVector).
1 struct MV
2 r : vector of double
3 v : vector of double
4 proc operator()(rowIndex , colIndex : IndexT, value : double)
5 r[rowIndex] ∶= r[rowIndex] + value ⋅ v[colIndex]
6 end
7 end

3 Such a transient analysis without accumulation and predefined iteration truncation is known as
the Power Method.

134

5.1 Concepts

Algorithm 25 (Uniformization – Refined)

1 func Uniformization(α : vector of double, ǫ, τ : double)
2

3 L,R : unsigned

4 w : vector of double
5 acc, v , r ,diag : vector of double

6 diag =R ⋅ 1
7 λ ∶=max(diag)
8 FoxGlynn(L,R, w , λ ⋅ τ ,ǫ)
9 converged ∶= false

10 v ∶= α
11 acc, r ∶= 0
12 diag ∶= (1 − diag)/λ
13 PU ∶=R/λ
14 k ∶= 0

Prepare
Computation

15 while k < R and not converged do
16

17 r ∶= v ⋅ (PU) Multiplication

18

19 r ∶= r + v/diag
20 if k ∈ [L,R] then
21 acc ∶= acc +w[k] ⋅ π
22 fi
23 converged ∶= diff(v, r)
24 v ∶= r
25 r ∶= 0

Gathering

26 k ∶= k + 1
27 od
28 if k < R then
29 for j = k to j = R do
30 acc ∶= acc +w[j] ⋅ v
31 od
32 fi

Prepare
Results

33 return acc
34 end

One detail still needs some further explanation. The uniformization procedure
uses the matrix PU derived from R by dividing each element by λ. In the imple-

135

5 Implementation of Numerical Solvers

mentation I encode the uniformization into the rate functions of the transitions
and define for each t ∈ T the uniformized rate function fUt = ft

λ
.

A similar discretization of the rate matrix is applied when the embedded Markov
chain is considered, for instance to compute the probability to finally reach a set
of states (see Section 3.3.2). In this case the discretization cannot be encoded in
the rate functions, instead the following policy MVE (MatrixVectorEmbedded)
is required.

1 struct MVE
2 r : vector of double
3 v : vector of double
4 diag : vector of double
5 proc operator()(rowIndex , colIndex : IndexT, value : double)
6 r[rowIndex] ∶= r[rowIndex] + value/diag[rowIndex] ⋅ v[colIndex]
7 end
8 end

In the dialect of policy-based design, ALL, FWD , BWD , MV , VM , MVE and
RS are called policy classes. The class specifying the traversal algorithm and
which can be parameterized with the different policies, is called a host class.
I name the host class MatrixProcessor (see Algorithm 26). Its internal type
ProcessingPolicy is the result of combining the different policies.

The C++ compiler instantiates a new data type for each specified policy com-
bination. From a technical view point, there are several alternatives to realize
the policy classes and their composition within a host class using aggregation
or inheritance. At this point I forgo a more detailed discussion and refer to [1].
In any case, it is important to understand that policy-based design is a type
generating approach. The C++ compiler generates new data types by template
instantiation, automatically and concise. In the numerical core of the PRISM
model checker [78], which is also written in C++, the different solver classes are
handcrafted by adapting copies of the same algorithm.

5.1.2 Multi-threading

In Section 3.3 I already alluded to the opportunity to improve the method of
Jacobi by means of parallelization. Parallelization basically means to break a big
problem into several smaller sub-problems which can be solved concurrently by
different processes using multiple processing units. The type of the processes,

136

5.1 Concepts

Algorithm 26 (Matrix processor)

1 struct MatrixProcessor
2 struct ProcessingPolicy
3 enumeration : Enumeration //firstUse, secondUse
4 base : BaseOperation // op

5 direction : FireDirection //selectActionList, selectArgument
6 end
7

8 GS : IDD
9 T : set of transitions

10

11 proc operator()()

12 proc : struct ProcessingPolicy

13 // configure the processing policy
14 EnumerateTransitions(GS , T , proc) // Algorithm 21
15 end
16 end

the memory access model, the architecture of the processing units and their con-
nection delineate a fine-grained classification of parallel computing techniques. I
confine myself to distinguish here only approaches based on the memory model,
in particular distributed memory approaches and shared memory approaches.
Both have already been considered for the analysis of large Markov models
[73, 71, 79, 14].

Distributed memory. In the distributed memory approach, the participating
processes reside on different machines with their own memory. The connection
of these machines allows to distinguish for instance grids, where the single ma-
chines are connected via the world wide web, or clusters, where the connection
consists of a fast network or bus system.

The major benefit is, next to the workload distribution of the actual computa-
tion, the increase of the available memory. The drawback is a possibly expensive
communication and a challenging partitioning of the computational problem, es-
pecially if data dependencies have to be taken into account. Distributed analysis
of large Markov chains is reported for instance in [73] and [14].

137

5 Implementation of Numerical Solvers

Shared memory. In this case the participating processes share the same main
memory, and we can distinguish between heavy-weight processes having their
own address space and light-weight threads , sharing the address space of an su-
perordinate process. Processes are completely independent of each other, and
due to their own address space, any communication, as for instance for synchro-
nization or for data exchange, is based on message passing.

Threads also run independently, but their communication is based on shared
data, with all benefits and troubles. The ability of direct access to the same data
by different threads without communication overhead enables to achieve high
efficiency, but requires special discipline at the developer side due to the missing
protection against inconsistent memory access.

Multi-threaded uniformization-based transient analysis with Kronecker represen-
tations has been considered in [71]. In [79] the authors propose a multi-threaded
solver for Gauss-Seidel based on an MTBDD encoding of the model.

Multi-threading is a core feature of MARCIE’s numerical engine and is cur-
rently supported by several solvers. Modern programming languages as Java
and recently C++ offer skilled developers concepts to easily create robust multi-
threaded applications4. Therefor this section will discuss the partition of the
actual computational tasks rather than the implementation details or the use of
concurrency patterns.

In brief: Computational tasks as theMultiplication and the Gathering are refined
into several sub-tasks and processed concurrently by different threads. As the
Gathering must happen after the Multiplication, and the next iteration can start
after finishing the Gathering , the implementation requires some kind of barrier to
synchronize the involved threads at the end of each computation phase. MARCIE
uses the concept of a threadpool to achieve such behaviour. A group of so-called
worker threads gets associated a synchronized queue of tasks. A user of the pool
puts its tasks in the queue and waits until all tasks have been processed. Thereby
all aspects of concurrency in the numerical solvers are encapsulated in an instance
of the class ThreadPool which offers the function SubmitTasksAndWait. A caller
of this functions, any iterative algorithm, will be suspended until the worker
threads have finished their submitted tasks. For the implementation of thread
pools in C++ I refer to [118]. In the following I concentrate on the definition of
the tasks based on a simple state space partition.

4MARCIE’s first version was based on the pthread library. When writing the thesis, the implemen-
tation was prepared to make use of the multi-threading facilities offered by the C++11 standard.

138

5.1 Concepts

Partitioning of the state transition relation. The definition of tasks which can be
processed concurrently by several threads requires to break the state transition
relation R of a large Markov chain into smaller pieces.

As R is implicitly given by the reachable states S of a bounded SPN and its
set of transitions T , a partition of R must be specified by means of S and T . A
proper definition of the following issue requires operations similar to preImg(S)
and Img(S) (see Section 2.2.2) which represent sets of state transitions. Let us
define them as

preTr(S,T) ∶= {(s, t, s′) ∣ s ∈ S, s′ ∈ SN , t ∈ T ∶ s′ t
Ð→ s}

and

postTr(S,T) ∶= {(s, t, s′) ∣ s ∈ S, s′ ∈ SN , t ∈ T ∶ s t
Ð→ s′}.

Algorithm 21 enumerates a set of state transitions defined by an arbitrary subset
of the reachable states and an arbitrary subset of the Petri net transitions, and
we can partition the transition relation of the corresponding model as follows.

For a Petri net N = [P,T,V,VR, VI , s0] with the set of reachable states S a state
transition partition PN ⊆ (2S × 2T) is a set featuring the following standard
properties of any partition:

1. PN = {(S′,T) ∣ (S′ ⊆ S) ≠ ∅ ∧ (T ⊆ T) ≠ ∅}
Each element is a tuple consisting of a non-empty subset of the reachable
states of N and a non-empty subset of the Petri net transitions T .

2. ⋃
(S′,T)∈PN

postTr(S′,T) = postTr(S , T)
The set of state transitions R is complete.

3. ⋂
(S′,T)∈PN

postTr(S′,T) = ∅
There is no state transition which is defined in the context of two or more
elements of PN .
Example 13

For a Petri net N = [P,T,V,VR, VI , s0] with the reachable states S
� PN1

= {(S , T)}
� PN2

= ⋃s∈S{(s,T)}
� PN3

= ⋃t∈T{(S , t)}

139

5 Implementation of Numerical Solvers

are trivial state transition partitions.

☀
Having a transition partition PN , we can apply the function EnumerateTransi-
tions (Algorithm 21) to each of its elements fully independently of the others
and thus concurrently, as far as the specified operation does not involve shared
write access to any data. If we were combining the extraction policy ALL, the
fire direction FWD and the functor class VM (VectorMatrix)

1 struct VM
2 r : vector of double
3 v : vector of double
4 proc operator()(rowIndex , colIndex : IndexT, value : double)
5 r[colIndex] ∶= r[colIndex] + value ⋅ v[rowIndex]
6 end
7 end

to realize a parallel vector-matrix multiplication, it is generally possible to have
a race condition when updating vector r.

However, if the partition preempts potential race conditions per se, it is not
critical to perform the single tasks in parallel.

Lexicographic state transition partition. In [71] it is argued to use a column-
based partition for a vector-matrix multiplication because this preempts write
conflicts and does not require several computation vectors. In MARCIE any
multiplication is a matrix-vector multiplication. If an analysis method requires
a vector-matrix multiplication, it is realized by transposing the matrix. As the
matrix entries are enumerated on-the-fly, transposing means to fire the Petri net
transitions backwards. Thus I consider only row-based partitions.

I describe now how to derive efficiently a row-based partition to be used with
the method of Jacobi and the uniformization-based transient analysis, and thus
also for the computation of performability. It is based on a partition of the
lexicographic indices of the reachable states. Each element (S′, T) contains a set
of states, representing a successive block of rows, and the complete set of Petri

140

5.1 Concepts

net transitions T 5. For a given size k, the partition is defined as

Pk = {(S1, T), (S2, T), . . . , (Sk, T)}
with Sj<k = {s ∣ (j−1)⋅∣S ∣/k ≤ ıs < (j)⋅∣S ∣/k} and Sk = {s ∣ (k−1)⋅∣S ∣/k ≤ ıs < ∣S ∣}6.
Correctness. The specified partition fulfills the criteria to be a state transition
partition, because

1. all considered states are reachable states, and

2. all Petri net transitions are fired in all their enabling states exactly one
time.

This state transition partition is used in all multi-threaded solvers. Algorithm
27 computes the required state sets Sj given S and k, reusing the Algorithm 15
with the functor AmountOfStates. Each call of the function SelectStates returns
the IDD representing the ∣S ∣/k lexicographic smallest states contained in the
unprocessed state set U7.

5.1.3 A Generic Solver

It is time to assamble the outlined ideas to define the skeleton of a param-
eterizable algorithm to instantiate the different iterative numerical solvers of
MARCIE’s multi-threaded model checker for the Continuous Stochastic Reward
Logic.

A generic solver. Algorithms 28 shows a possible implementation. The solver is
parameterized with the type of analysis. The function solve undergoes a prepara-
tion phase, the iterative computation phase, and finally a phase of result prepa-
ration. The computation phase is the loop which first processes the matrix and
then gathers the computed results. The loop’s termination criterion is specified
by the analysis type. The single steps are realized as callable objects, created by
an instance of the analysis type. The solver possesses a ThreadPool instance and
submits to it the tasks performing the actual numerical computation. These tasks
are generated in a setup step using designated functors offered by an instance of
the analysis type.

5 The idea builds on the optimistic assumption that the number of state transitions is evenly dis-
tributed over the states.

6 k is supposed to be the number of threads, which in turn, represent the system’s concurrency.
7 The last element has ∣S ∣/k + ∣S ∣modk states.

141

5 Implementation of Numerical Solvers

Algorithm 27 (Lexicographic partition)

1 struct LexicographicPartition
2 struct AmountOfStates
3 size : unsigned

4 func operator()(index : IndexT)
5 size ∶= size − 1
6 return size > 0
7 end
8

9 func checkAll(index : IndexT, index ′ : IndexT)
10 if index′ − index > size then return false fi
11 size := size + index − index′

12 return true
13 end
14

15 func checkNone(index : IndexT, index ′ : IndexT)
16 if size > 0 then return false fi
17 return true
18 end
19 end //AmountOfStates
20

21 func Create(GU : IDD, T : set of transitions, k : unsigned)

22 size := ∣U ∣/k
23 slt : AmountOfStates
24 PN := ∅
25 for 1 ≤ j < k do
26 slt .size := size
27 GSj

:= SelectStates(GU ,slt) //Algorithm 15
28 GU := diff (GU ,GSj

);
29 PN := PN ∪ {(GSj

,T)}
30 od
31 PN := PN ∪ {(GU ,T)} //the remaining states represent Sk
32 return PN

33 end
34 end

142

5.1 Concepts

Algorithm 28 (Generic solver)

1 struct Solver
2 analysis : AnalysisType

3 threads : ThreadPool
4 gather : set of GatherTasks
5 multiply : set of Multiplications //specific type of MatrixProcessor

6

7 func setUp(k : unsigned)

8 P ∶= analysis.createStateTransitionPartition(k));
9 for p ∈ P do

10 multiply.add(analysis.createMultiplication(p)
11 gather.add(analysis.createGathering(p))
12 od
13 init ∶= analysis.createInitializer()
14 init()
15 TerminationPolicy terminate := analysis.createTerminationPolicy()
16 forall g ∈ gather do
17 g.check ∶= terminate
18 od
19 end
20

21 func cleanUp()
22 deleteTasks();
23 end
24

25 func solve()
26 iteration ∶= 0
27 while not terminate(iteration) do
28 threads .SubmitTasksAndWait(multiply)
29 bind(gather , iteration) //bind the argument to the functors
30 threads .SubmitTasksAndWait(gather)
31 iteration := iteration + 1
32 od
33 prepare ∶= analysis.createResultPreparator()
34 prepare(iteration)
35 end
36 end

143

5 Implementation of Numerical Solvers

A transient solver. An exhaustive discussion of the implementation of all avail-
able solvers would go beyond the scope of this thesis. However, I think it is
worth illustrating the composition of a transient solver for the computation of
the vector πCτ,S′ based on the fast backwards-uniformization described in [68].

For this purpose the transitions fire in forward direction (FWD)8. The multi-
plication type is MatrixVector (MV). The results are gathered (accumulated)
after a complete multiplication of the matrix PU ; thus the enumeration pol-
icy is ALL. I call the resulting matrix processor CompleteMultiplication. The
specified multiplication can be performed concurrently and the solver uses the
LexicographicPartition. It remains to define dedicated functor classes for the
initialization step, the gathering and the preparation of results. The details

Algorithm 29 (Initialization functor – Uniformization)

1 struct InitUniformization
2 ctmc : [NS ,S]
3 vecs : Vectors
4 GS ′ : IDD
5 fgw : FoxGlynnWeights

6 τ, ǫ : double
7 proc operator()()

8 vecs.diag ∶=R ⋅ 1
9 λ =max(vecs.diag)

10 fgw .generate(λ ⋅ τ, ǫ)
11 forall t ∈ NS .T do

12 f Ut ∶= ft/λ //uniformize the transition relation
13 od
14 vecs.diag ∶= 1 − vecs.diag/λ
15 InitStates(GS ′ , vecs.v ,1 .0) // Algorithm 14
16 end

of the implementation of the algorithm of Fox and Glynn [50] are encapsu-
lated in the structure FoxGlynnWeights which yields access to the members
L, R and pw, the actual Poisson weights. The function generate initializes
the internal data depending on the uniformization constant λ. At first I de-

8 This may seem confusing: the probabilities are propagated backwards by a matrix-vector mul-
tiplication. An on-the-fly matrix-vector multiplication requires a forward firing of the Petri net
transitions.

144

5.1 Concepts

fine the functor class InitUniformization given in Algorithm 29. An instance
encapsulates the related data and takes care of their initialization when the
GenericSolver calls its function call operator. Further I define the functor class
GatherTransientWithConvergenceCheck in Algorithm 30. Its purpose is the ac-
cumulation of the transient probabilities in the vector acc and the preparation
of the vectors v and r for the next iteration. These vectors are shared among all
functor instances. It checks also whether the computed probabilities differ signif-
icantly from the previous computation step. An instance considers the contents
of the vectors within the positions lb and ub. If the individual instances define
a partition of the vector entries, what I assume here, the gathering can be per-
formed without interference by different threads. A preparation of the computed

Algorithm 30 (Gather functor – Uniformization)

1 struct GatherTransientWithConvergenceCheck
2 struct Vectors
3 r : vector of double
4 v : vector of double
5 diag : vector of double

6 acc : vector of double
7 end vecs
8 ub : IndexT
9 lb : IndexT

10 fgw : FoxGlynnWeights

11 check : TerminationPolicy

12 func operator()(iteration : unsigned)

13 for lb ≤ i < ub do
14 old ∶= vecs.v[i]
15 vecs.r [i] ∶= vecs.r [i] + vecs.v [i]/vecs.diag[i]
16 check(old,vecs.v[i])
17 vecs.r [i] = 0
18 if iteration ∈ [fgw.L, fgw.R] then
19 vecs.acc[i] ∶= vecs.acc[i] + fgw .pw[iteration − pw .left] ⋅ vecs.v[i]
20 fi
21 od
22 end
23 end

results is required if the iteration procedure is truncated due to the detection of

145

5 Implementation of Numerical Solvers

a steady state. In this case the iteration number is below truncation point R, and
the computed stable probability distribution must be weighted and accumulated
for the remaining iterations. This is done by one instance9 of the functor class
ProcessRemainingIterations in Algorithm 31. To evaluate for example the CSL

Algorithm 31 (Result preparation functor – Uniformization)

1 struct ProcessRemainingIterations
2 vecs : Vectors
3 ub : IndexT
4 lb : IndexT
5 fgw : FoxGlynnWeights

6 proc operator()(iteration : unsigned)

7 for iteration ≤ j < fgw.R do
8 if i ≥ fgw.L then
9 for lb ≤ i < ub do

10 vecs.acc[i] ∶= vecs.acc[i] + fwg .pw[j − fgw .L] ⋅ vecs.v[i]
11 od
12 fi
13 od
14 end
15 end

(see Section 3.4) formula P<p[ΦU[τ,τ]Ψ],
we can finally use the procedure in Algorithm 32.
The actual classBWDTransientAnalysis (not given), which is used by the Gener-
icSolver, acts as a factory for the single tasks and specifies for this purpose the
procedures CreateInitializer , CreateMultiplication , CreateGathering
and CreateResultPreparator .

5.2 Miscellaneous

In this section I address some aspects which may need some further explana-
tion, as for instance the extensions which are necessary to deal with generalized
stochastic Petri nets or stochastic reward nets.
9 This step can also be parallelized.

146

5.2 Miscellaneous

Algorithm 32 (Evaluation of a CSL formula)

1 func EvalUntilAtTime(ctmc : [NS ,S], τ,p: double, Sat(Φ),Sat(Ψ): IDD)
2 analysis ∶ BWDTransientAnalysis

3 analysis.init ∶= Sat(Ψ)
4 analysis.abs ∶= diff (S,union(Sat(Φ),Sat(Ψ)) //¬Φ ∧ ¬Ψ
5 analysis.ctmc ∶= copy(ctmc) //the solver may change the CTMC
6 analysis.τ ∶= τ
7 solver : GenericSolver
8 solver .analysis ∶= analysis
9 solver .solve(System.concurrency())

10 return StatesLessThen(S,analysis.vecs.acc ,p) // Algorithm 16
11 end

5.2.1 Parker’s Pseudo-Gauss-Seidel

The experimental results given in Section 4.3.4 indicate that an efficient im-
plementation of a Gauss-Seidel solver using the on-the-fly approach is a severe
problem. The line-wise enumeration of the state transitions is bought with high
runtime overhead. A similar problem with this method was identified by Parker
[96] in the context of MTBDD based analysis of Markov models10. He came up
with an hybrid of the methods of Gauss-Seidel and Jacobi, called Pseudo-Gauss-
Seidel (PGS). The idea is quite simple. In the method of Jacobi, the computation
vector is updated after the enumeration of the complete matrix. In the method
of Gauss-Seidel, the update is done after enumerating the state transitions of a
single line. In PGS, the update is done after a block of rows specified by the avail-
able entries in a node of the truncation layer. The hybrid algorithm requires less
iterations than Jacobi. A second advantage is a decreased memory consumption
as the second computation vector must only have the size of the largest block in
terms of rows (Figure 5.2). A parallelization is indeed not obvious.

To realize a PGS solver, the MatrixProcessor is instantiated with BLOCK enu-
meration, combined with a dedicated immediate Gather -policy, and with BWD
or FWD firing depending on the multiplication type.

10 PRISM’s efficient Gauss-Seidel is based on a different data structure which is closely related to
matrix diagrams [88].

147

5 Implementation of Numerical Solvers

 50

 100

 150

 200

 250

 300

 350

 400

 2 4 6 8 10 12

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

it
e
ra

ti
o
n
s

ro
w

s

truncation Layer

PSS N=10

Gauss-Seidel (28)

Jacobi (407) Iterations to convergence
Maximal number of rows

 400

 450

 500

 550

 600

 650

 700

 2 4 6 8 10 12 14 16 18 20

 0

 5000

 10000

 15000

 20000

 25000

it
e
ra

ti
o
n
s

ro
w

s

truncation Layer

FMS N=4

Gauss-Seidel (410)

Jacobi (732)
Iterations to convergence
Maximal number of rows

 150

 200

 250

 300

 350

 2 4 6 8 10

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

it
e
ra

ti
o
n
s

ro
w

s

truncation Layer

ERK N=10

Gauss-Seidel (159)

Jacobi (370)

Iterations to convergence
Maximal number of rows

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

 2 4 6 8 10 12 14 16 18

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

it
e
ra

ti
o
n
s

ro
w

s

truncation Layer

AKAP N=2

Gauss-Seidel (404)

Jacobi (1220) Iterations to convergence
Maximal number of rows

Figure 5.2: Pseudo-Gauss-Seidel: The number of iterations and the size of the tem-
porary computation vector depending on the truncation layer for selected
models. The required number of iterations for Gauss-Seidel and Jacobi are
given for comparison.

5.2.2 Generalized Stochastic Petri Nets

The analysis of GSPN models requires an extended version of the multiplication.
So far the multiplication treats all state transitions explicitly as induced by timed
transitions enabled in tangible states. In the case of GSPN we have to consider
also the immediate Petri net transitions firing in the vanishing states. Then the
function of a transition does not specify a firing rate, but a weight which quanti-
fies the transferred portion of probability. If an immediate transition is enabled
and not in conflict with another one, the weight is 1. Otherwise the conflict reso-
lution can be realized by deploying the concept of random switches (see Section
3.2.1). Given the symbolic state space representation of the reachable states S
consisting of the tangible states ST and the vanishing states SV , Algorithm 33
can be used to compute the set RS ∶= {(SV1 , TI1), . . . , (SVm , TIm)}. Each tuple

148

5.2 Miscellaneous

(SVi ⊆ SV , TIi) represents a set of vanishing states where the transitions in TIi,
which are additional transitions in the GSPN, are enabled and fire with the
probability defined by the Equation 3.1. RS is a compact encoding of the set of
all random switches. To explain the different treatment of timed and immediate

Algorithm 33 (Computation of random switches)

1 proc ComputeRandomSwitches(N = [P,T = TS ∪ TI , V, VR, VI , F, s0] : GSPN)
2

3 RS : ∅
4 proc AuxComputeRandomSwitches(SVi : set of states, Tr, Tc : set of transitions)

5 if S = ∅ then
6 return
7 end
8 if Tr ≠ ∅ then
9 t ∶= SelectOneOf(Tr)

10 Tr ∶= Tr ∖ {t}
11 Se ∶= enabledt(SVi)
12 Sd ∶= S′ ∖ Se
13 AuxComputeRandomSwitches(Se, Tr,Tc ∪ {t})
14 AuxComputeRandomSwitches(Sd, Tr, Tc)
15 else
16 TIi ∶= ∅
17 forall t ∈ Tc do
18 t′ := createCopyOfTransition(t,N)
19 F := F ∪ {(t′, ht/∑t′′∈Tc h′′t)}
20 TIi := TIi ∪ {t′}
21 od
22 RS ∶= RS ∪ {(SVi , TIi)}
23 end
24 end
25

26 SV ∶= enabledTI(RN(s0))
27 AuxComputeRandomSwitches(SV , TI , ∅)
28 end

149

5 Implementation of Numerical Solvers

state transitions, let us consider the ∣S ∣ × ∣S ∣ matrices

RT = (RTT RTV

0 0
) and PV = (0 0

PTV PV V
) ,

based on the order of states (rows) s1 < . . . < si´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
ST

< si+1 < . . . < sn´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
SV

, with

1. RTT defines the rates of state transitions between tangible states

2. RTV defines the rates of state transitions from tangible to vanishing states

3. PV T defines the probabilities of state transitions from vanishing to tangible
states

4. PV V defines the probabilities of state transitions between vanishing states.

The complete set of state transitions is characterized by the matrix

U =RT +PV = (RTT RTV

PTV PV V
) .

We specify the actual rate matrix R = RT + PV T ⋅ P∞
V V [85] by replacing each

possible path through the vanishing states by a timed state transition. Given that
PV defines an acyclic transition relation, there exists a k such that P∞

V V = Pk
V V ,

and we can rewrite R as RT + PV T ⋅ Pk
V V . It is not possible to compute R

this way with the proposed on-the-fly approach. The enumeration of its entries
requires the related SPN description, which can be generated using the reduction
I already sketched in Section 3.2.1.

However, MARCIE supports the explicit analysis of GSPN by iteratively prop-
agating the probability mass through the set of vanishing states. The entries of
the matrix PV can be enumerated by applying Algorithm 21 for the elements of
RS. The state transitions have to be treated differently depending on the type
of multiplication.

Vector-matrix multiplication. Let us first consider a vector-matrix multiplica-
tion. In this case, the vanishing states, reachable from tangible states in one
step, receive a non-zero value representing the probability to reside there. This
value moves immediately to their successor states. If the successors are vanishing
states as well, this probability propagation repeats until the complete probability
mass has been absorbed by tangible states. We can characterize this procedure

150

5.2 Miscellaneous

recursively as

v0 + (k∑
i=1
vi−1 ⋅PV V) ⋅PV T with v0 = (v ⋅RT)

and achieve this behavior with Algorithm 34.

Algorithm 34 (Vector-Matrix multiplication – GSPN)

1 o ∶= 0
2 r ∶= v ⋅RT

3 tmp ∶= r
4 while o ≠ v do
5 o ∶= v
6 r ∶= v ⋅PVV

7 tmp ∶= tmp + r

8 v ∶= r
9 od

10 v ∶= tmp ⋅PVT

11 r ∶= v + tmp

12 InitStates(SV, r,0)

The first step is the multiplication with the matrix RT . The probability mass is
propagated in a second step by the transitions connecting only vanishing states.
The propagated probability mass is accumulated in the additional vector tmp.
When there is no further change, the accumulated mass is propagated in a last
step from the vanishing states with a transition to tangible states.

Matrix-Vector multiplication. In case of a matrix-vector multiplication, the prop-
agation through vanishing states is directed backwards and applied before mul-
tiplying with the rate matrix. We can rewrite R ⋅ v as (RT +PV T ⋅Pk

V V) ⋅ v and
formulate the following recursive definition

RT ⋅ (v + k∑
i=1

PV V ⋅ vi−1) with v0 = PV T ⋅ v
yielding in Algorithm 35.

The disadvantages of an iterative propagation are obvious.

151

5 Implementation of Numerical Solvers

Algorithm 35 (Matrix-Vector multiplication – GSPN)

1 o ∶= 0
2 r ∶= PVT ⋅ v
3 tmp ∶= v
4 v ∶= r
5 while o ≠ v do
6 o:=v
7 r ∶= PVV ⋅ v
8 tmp ∶= tmp + r

9 v ∶= r
10 od

11 r ∶=RT ⋅ tmp

� The computation vectors have to be in the size of S and in general it holds
that ∣S ∣ >> ∣ST ∣.

� The accumulation of the propagated probabilities requires an additional∣S ∣-vector.
� The propagation is time-consuming.

In general the explicit treatment of immediate transitions has to be paid with a
significant increase of memory consumption and runtime (see Figure 6.28).

Nevertheless, in [24] the authors discuss CSL model checking of GSPNs where
atomic propositions refer to the marking of so-called vanishing places which
would be removed when reducing the GSPN. The discussed iterative probability
propagation permits to consider also such formulas11.

5.2.3 Stochastic Reward Nets

For a stochastic reward net, specified by the SPN NS = [P,T,V,VR, VI , F, s0]
and the Petri net N̺ = [P ̺ ⊆ P,T ̺, V ̺ = ∅, V ̺

R , V
̺
I , F

̺,∅], MARCIE’s analysis
capabilities range from the computation of reward vectors, for instance to de-
rive instantaneous and cumulative reward measures, to model checking of CSRL
formulas. In the latter case MARCIE computes the distribution of the accumu-
lated reward based on Markovian approximation (Section 3.2.2). For the sake

11 When writing the thesis vanishing places are not considered by MARCIE’s CSL model checker.

152

5.2 Miscellaneous

of completeness some important aspects shall be mentioned on this topic, too.
However, the reader should not expect an in-depth discussion.

Computation of the reward vector. The computation of the reward vector is
realized in the same way as the computation of the exit rate vector. The set of
reachable states S and the reward transitions T ̺ specify formally the matrix

M̺(s, s′) = { ̺s if s = s′
0 otherwise .

Its diagonal elements represent the reward vector ̺. To compute ̺ = M̺ ⋅ 1 we
can deploy the composition of ALL, FWD and RS with respect to the state
transition partition P̺ ∶= {(S , T ̺)}.

Computation of performability. The computation of υ
[C,̺]
α,τ,y is basically a transient

analysis in the context of the approximating SPN NA the generation of which
is described in Section 3.2.2. The solver is derived from the transient solver
I discussed so far. Its distinguishing feature is that it considers the place py
just implicitly. For this purpose the MatrixProcessor is instantiated with the
enumeration policy MULTI . Given that the number of reward levels is l12, all
transitions (TA) fire within the step bounds [0, l). When preparing the transition
set TA, the solver does not create arcs to a place py, but sets the shift flag
in the related TransitionData instances to true. This constitutes implicitly the
transition relation Ri,i+1 for all 0 ≤ i < l.
The computation vectors v, r and acc must have the size ∣S ∣ ⋅ l. To store the exit
rates, the vector diag can have size ∣S ∣. With exception of the absorbing level l,
all reward levels possess the same exit rates. However, the last level absorbs the
probability mass and is not relevant for computation of the transient probabilities
of interest. Thus an access to an exit rate, independently of the reward level, can
be redirected to the related exit rate of reward level R0. This requires to adapt
the Gathering policy in Algorithm 30 at line 15 by a translation of the actual
index.

CSRL specific adaptions. In the context of CSRL model checking, the computa-
tion of the distribution of the accumulated reward may require some adaptions
which depend on the given time and reward interval. According to Section 3.4 I

12 l = ⌊ y
∆
⌋ + 2

153

5 Implementation of Numerical Solvers

implicitly encode the level-dependent CSL formulas (Table 3.4) into the solvers.
This affects the step bounds ul and lb, the initialization of the argument vector
and also the size of the exit rate vector diag and the access to it.

� Vector initialization With the fast backward transient analysis [68] we

are able to compute ProbC
A(ΦUΨ) in one pass. The argument vector v is

initialized in each position with the probability of the related state to reach
a Ψ-state, which is 1 for all Ψ-states and 0 otherwise. This initialization
must be done for the levels specified by the reward interval J . The different
cases are given below.

J v[i] = 1⇔ s(i mod ∣S ∣) ∈ Sat(Ψ) and[y, y] ∣S ∣ ⋅ (l − 2) ≤ i < ∣S ∣ ⋅ (l − 1)[0, y] 0 ≤ i < ∣S ∣ ⋅ (l − 1)(y, y′] ∣S ∣ ⋅ ⌊ y∆⌋ < i ≤ ∣S ∣ ⋅ (l − 1)(y,∞) i = l
� Restricting the state transition relation The reward interval J must
be further encoded into the state transition relation by means of the en-
abledness of the transitions. The enabledness of a transition depends now
on the actual system state and on the reward level represented by the level
bounds lb and ub, and may affect also the exit rates of states. We must
distinguish the following situations for the specification of the restricted
transition relation:

1. In the simplest case we are dealing with homogeneity in the reward
dimension (J = [0, y)) or consider a single time point (I = [t, t]). Ho-
mogeneity in the reward dimension allows to fire all transitions inde-
pendently of the reward bound, and the absorbing states are derived
solely from the time interval I. If the latter specifies a time point, the
situation is similar, as only (¬Φ)-states are made absorbing. In this
case the vector storing the exit rates has size ∣S ∣.

2. If J ≠ [0, y] and I ≠ [t, t] we have an inhomogeneous model, possibly
in both dimensions. We have now to consider the lower reward bound
when specifying the absorbing states. In this case the exit rate vector
has the size of the implicit state space. Further, the inhomogeneity
must be encoded into the transition relation as follows:

a) all transition fire in (Φ ∧ ¬Ψ)-states for all reward levels,

b) reward induced transitions fire in (¬Φ∧Ψ)-states only until reach-
ing the lower reward level bound, which is ⌊ y∆⌋

154

5.3 Summary

c) all transitions fire in (Φ ∧Ψ)-states only until reaching the lower
reward level bound, which is ⌊ y∆⌋

d) (¬Φ ∧ ¬Ψ)-states are absorbing.

5.3 Summary

The analysis techniques for SPN, GSPN and SRN, which I consider in this
thesis, are available in the CRSL model checker MARCIE . In this chapter I
briefly described the most important implementation features of the numerical
engine, which is based on the proposed on-the-fly generation of the involved
matrices. The various solvers are realized on a generic design principle and are
instantiated from a manageable number of so-called policies classes (see Table
5.1). Multi-threading is a core feature of MARCIE’s numerical engine.

Table 5.1: An excerpt of MARCIE’s numerical solvers as discussed in this thesis and
their composition by instantiation of policy classes. There are more CSRL-
specific solvers. 1) indicates multi-threading support, 2) indicates GSPN support

Analysis MatrixProcessor Im. Gathering Gathering Init Application

MatrixV ector1),2) FWD,ALL,RS - - - diag, ̺,XI
J

FTransient1),2) BWD,ALL,MV - GT Unif πC
α,τ ,ι

C
α,τ

BTransient1),2) FWD,ALL,MV - GT Unif πτ,S′

FMTransient1) BWD,MULTI,MV - GTM UnifM υ
[C,̺]
α,τ,y

BMTransient1) FWD,MULTI,MV - GTM UnifM υτ,t,S′

JacobiHOM1),2) FWD,ALL,MV - GJH HLES πC
α

GSHOM FWD,LINE,MV GGSH - HLES πC
α

PGSHOM FWD,BLOCK,MV GGSH - HLES πC
α

JacobiLIN1),2) FWD,ALL,MVE - GJL LES πS′

GSLIN FWD,LINE,MVE GGSL - LES πS′

PGSLIN FWD,BLOCK,MVE GGSL - LES πS′

155

5 Implementation of Numerical Solvers

156

6 Evaluation

6.1 Methodology

In this chapter I present an experimental evaluation of the capabilities of the
CSRL model checker MARCIE in terms of runtime and memory consumption.
I consider the eight case studies given in Appendix A.2. To enable a judgement
of the results, I compare them with figures obtained for the probabilistic model
checker PRISM [78] in version 4.0, in particular with its hybrid engine.

One could compare with a couple of tools and technologies as it has been done in
[66] or [67]. However, therein the comparison considers tools which are actually
hard to compare, or the tools were employed with their default settings which
often do not reflect their actual potential. I am interested in a meaningful com-
parison and restrict myself to PRISM, which I regard to be - in accordance with
the literature - the state-of-the art model checker for Markov models. Further I
require,

1. that the considered tools are built with same the compiler on the same
hardware. The source code of PRISM is available under the GPL licence.
MARCIE and PRISM 4.0 have been compiled with the GNU C++ compiler
in version 4.1.2 with identical optimization settings (-O3).

2. that the used engines and analysis capabilities are comparable. Both tools
are model checkers and support the Continuous Stochastic Logic. This eases
to consider in the experiments the complete state space or to make a con-
siderable set of states absorbing. Both tools compute complete probability
distributions. A comparison with simulative/statistical or approximative
engines is not meaningful. Both MARCIE and PRISM’s hybrid engine re-
alize the multiplication of a matrix and a vector as an early truncated DD
traversal. The traversal depth can be specified by the user and represents
the most important parameter affecting the tool’s performance. The con-
sideration of several truncation layers permits to relate the obtained figures
to each other. Contrary, only fixed values were used in [67].

3. that the comparison is, as far as possible, independent of the model spec-

157

6 Evaluation

ification style. For all experiments I consider the same variable order for
PRISM and MARCIE.

Nevertheless, the consideration of tools as SMART or Möbius, in particular their
Matrix Diagram-based engines, would be very interesting. Because of the lac of
model checking capabilities and especially the requirement to define structured
models I do not consider them here. For the time being the figures presented
in [67] could be used to appraise their capabilities in relation to PRISM and
MARCIE.

Model specification. For the experiments I ignore the modularization feature
of the PRISM language. In particular, all used PRISM models are generated by
MARCIE1 using the variable order heuristics mention in Section 4.3.3 applied to
the model descriptions given in Appendix A.2. This approach is also motivated
by our observations in [61], were we compared such generated PRISM model
with the modularized version from [77]. Table 6.1 is taken from [61] and shows,
how the used variable order affects the state space construction with PRISM.

Further, variables in PRISM need to be specified with an upper bound of the
value range. The export permits to specify the actual value computed by MAR-
CIE.

The FMS and the WC system as given in Appendix A.2.2 are GSPN models. For
the experiments I considered in both cases the stochastically equivalent SPN.

The settings. All experiments were done on a MAC Pro 8×2.2 GHz with 32 GB
RAM running Cent OS 5.5. For each experiment I measured the average run-
time per iteration, the memory consumption peak, and either the total runtime,
including model construction and initialization, or the total iteration runtime in-
cluding the initialization time2. The time information where extracted from the
tools‘ output. The memory consumption was obtained by a background shell-
script which runs periodically the ps-command. Each experiment was automat-
ically repeated for MARCIE and PRISM by a script with different truncation
layers. The obtained figures are given in plots as shown in Figure 6.1. The x1-axis
is labeled with the truncation layers for the experiments made with MARCIE.
The x2-axis shows the truncation layers for the PRISM experiments. In PRISM,
the number of truncation layers corresponds to the number of variables required
to represent the binary encoding of the reachable states. A comparison of the

1 MARCIE’s PRISM export is an undocumented feature, available on request.
2 When explicitly limiting the number of iterations, the tools do not not output the total runtime.

158

6.2 Transient Analysis

Table 6.1: Comparison of two variable orders. The table shows the time and the num-
ber of MTBDD nodes, which PRISM needs to construct the rate matrix of
the CTMC for a good variable order,computed using Equation 4.2, and for
the plain order of the original PRISM model, specified according to [77].

levels terminal good order original order

nodesa) time nodes time nodes

4 30 0.12 8,672 2.47 123,730
8 76 1.56 60,452 401.68 3,881,914
12 140 22.99 199,496 - -
16 219 71.25 542,339 - -
20 320 296.87 953,146 - -
24 453 635.92 2,029,598 - -
28 697 928.45 3,771,617 - -
32 770 1847.60 6,015,521 - -

a)i.e., number of different entries in rate matrix; ’– exceeds the available memory;

range of the x-axes shows how PRISM expands the set of model variables (and
the set of variables has implicitly to be doubled due to encoding of state tran-
sitions). The numerical computation were triggered by model-specific CS(R)L
formulas which may not necessarily be meaningful from a modeler‘s perspective.
I provide all scripts, models, property and result files as supplementary mate-
rial3. MARCIE is documented [106] and available in terms of statically linked
binaries for Linux and MAC/OS. All experiments can be reproduced.

Please note that the presented results are only samples. The same experimental
setting with a slight modification of the considered variable order in the model
specification may result in different runtime and memory consumption. But a
comparison of the tools, which considers the models with different initial states
and different variable orders exceeds by far any reasonable size of a thesis.

6.2 Transient Analysis

In this section I evaluate the capabilities of PRISM and MARCIE for transient
analysis and utilize the backward transient analysis reported in [68]. The exper-

3available on request

159

6 Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 2 3 4 5 6 7 8 9

 2 4 6 8 10 12 14 16 18 20 22 24 26 28

ti
m

e
 p

e
r

it
e
ra

ti
o
n
 i
n
 s

e
c
o
n
d
s

Truncation layer MARCIE

Truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2 3 4 5 6

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

m
e
m

o
ry

 i
n
 G

B

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3 4 5 6 7 8 9

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ti
m

e
 p

e
r

it
e
ra

ti
o
n
 i
n
 s

e
c
o
n
d
s

00:00:00

00:10:00

00:20:00

00:30:00

00:40:00

00:50:00

01:00:00

01:10:00

01:20:00

01:30:00

 3 4 5 6 7 8 9

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

to
ta

l
ti
m

e
 i
n
 m

:s

CLOCK N=20 P=?[F
[0.001,0.001]

a = 1]

Model Scaling CS(R)L formula

Main plot: The average time for one iteration for
different truncation layers starting with layer two.

The total time to evaluate
the given CS(R)L-formula
for different truncation layers
starting with 40 percent
of the possible layers.

The required memory to evaluate
the given CS(R)L-formula
for different truncation layers
starting with 40 percent
of the possible layers.

The average time for one iteration
for different truncation layers
starting with 40 percent
of the possible layers.

Figure 6.1: An example plot.

iments are triggered with the CSL template

P=?[FIφ],
where I and φ are defined in a model-specific way. The time interval I is generally
chosen to achieve a small number of iterations. Its shape enables further to make
the φ-states absorbing. As MARCIE offers multi-threaded transient analysis, I
run the experiments also with two, four and eight threads.

No absorbing states. To consider the complete Markov chain, experiments are
triggered with the CSL-template

P=?[F[τ,τ]φ].
The settings are summarized in Table 6.2.

160

6.2 Transient Analysis

Table 6.2: Overview of experiments P=?[F[τ,τ]φ].
Model N # φ τ it plot

AKAP 4 1993 cAMP < 2 0.001 11 6.2
CLOCK 20 209 a = 1 0.001 15 6.3
ERK 30 1522 ERK = 0 0.000625 10 6.3
MAPK 10 53 kpp + kkpp = 12 0.0005 13 6.4
LEV 10 127 kpp + kkpp = 12 0.01 14 6.4
FMS 10 74 P1 = 0 0.1 16 6.5
KANBAN 8 14 x1 = 1 0.1 9 6.5
PSS 20 4 s1 = 1 ∧ ¬(s = 1 ∧ a = 1) 0.01 13 6.6
WC 256 267 Down 4 = 1 1.0 16 6.6

’#’ is the number of terminal nodes in the MTBDD representation. ’it’ is the number of

iterations.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

 2 7 12 17 22 27 32 37 42 47 52

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 7 8 9 10 11 12 13 14 15 16 17 18

 22 25 28 31 34 37 40 43 46 49 52 55

m
e

m
o

ry
 i
n

 G
B

 0

 0.5

 1

 1.5

 2

 2.5

 7 8 9 10 11 12 13 14 15 16 17 18

 22 25 28 31 34 37 40 43 46 49 52 55

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00

03:00

06:00

09:00

12:00

15:00

18:00

21:00

24:00

27:00

 7 8 9 10 11 12 13 14 15 16 17 18

 22 25 28 31 34 37 40 43 46 49 52 55

to
ta

l
ti
m

e
 i
n

 m
:s

AKAP N=4 P=?[F
[0.001,0.001][cAMP < N/2]]

Figure 6.2: P=?[F[τ,τ]φ] – AKAP

161

6 Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 2 3 4 5 6 7 8 9

 2 4 6 8 10 12 14 16 18 20 22 24 26 28

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2 3 4 5 6

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
m

e
m

o
ry

 i
n

 G
B

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3 4 5 6 7 8 9

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00:00

00:10:00

00:20:00

00:30:00

00:40:00

00:50:00

01:00:00

01:10:00

01:20:00

01:30:00

 3 4 5 6 7 8 9

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

to
ta

l
ti
m

e
 i
n

 m
:s

CLOCK N=20 P=?[F
[0.001,0.001]a = 1]

 0

 10

 20

 30

 40

 50

 60

 2 3 4 5 6 7 8 9 10 11

 2 7 12 17 22 27 32 37 42 47 52

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 4 5 6 7 8 9 10 11

 21 24 27 30 33 36 39 42 45 48 51 54

m
e

m
o

ry
 i
n

 G
B

 0

 0.5

 1

 1.5

 2

 2.5

 3

 4 5 6 7 8 9 10 11

 21 24 27 30 33 36 39 42 45 48 51 54

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00

03:00

06:00

09:00

12:00

15:00

18:00

21:00

24:00

27:00

30:00

 4 5 6 7 8 9 10 11

 21 24 27 30 33 36 39 42 45 48 51 54

to
ta

l
ti
m

e
 i
n

 m
:s

ERK N=30 P=?[F
[0.000625,0.000625][ERK = 0]]

Figure 6.3: P=?[F[τ,τ]φ] – CLOCK and ERK
162

6.2 Transient Analysis

 0

 50

 100

 150

 200

 250

 300

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 2 7 12 17 22 27 32 37 42 47 52 57

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 2

 3

 4

 5

 6

 7

 8

 8 9 10 11 12 13 14 15 16 17 18 19 20

 23 26 29 32 35 38 41 44 47 50 53 56

m
e

m
o

ry
 i
n

 G
B

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 23 26 29 32 35 38 41 44 47 50 53 56

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00:00

00:10:00

00:20:00

00:30:00

00:40:00

00:50:00

01:00:00

01:10:00

01:20:00

01:30:00

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 23 26 29 32 35 38 41 44 47 50 53 56

to
ta

l
ti
m

e
 i
n

 m
:s

MAPK N=10 P=?[F
[0.0005,0.0005][kpp+ kkpp < N/2]]

 0

 50

 100

 150

 200

 250

 300

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 2 6 10 14 18 22 26 30 34 38 42

tim
e

pe
r

ite
ra

tio
n

in
 s

ec
on

ds

cache layer MARCIE

cache layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 1

 2

 3

 4

 5

 6

 7

 8

 8 9 10 11 12 13 14 15 16 17 18 19 20

 17 19 21 23 25 27 29 31 33 35 37 39 41 43

m
em

or
y

in
 G

B

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 17 19 21 23 25 27 29 31 33 35 37 39 41 43

tim
e

pe
r

ite
ra

tio
n

in
 s

ec
on

ds

00:00:00

00:10:00

00:20:00

00:30:00

00:40:00

00:50:00

01:00:00

01:10:00

01:20:00

01:30:00

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 17 19 21 23 25 27 29 31 33 35 37 39 41 43

to
ta

l t
im

e
in

 m
:s

LEV N=10 P=?[F
[0.01,0.01]kpp+ kkpp = 12]

Figure 6.4: P=?[F[τ,τ]φ] – MAPK and LEV
163

6 Evaluation

 0

 10

 20

 30

 40

 50

 60

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 2 8 14 20 26 32 38 44 50 56 62

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 1

 1.5

 2

 2.5

 3

 3.5

 8 9 10 11 12 13 14 15 16 17 18 19 20

 25 28 31 34 37 40 43 46 49 52 55 58 61 64
m

e
m

o
ry

 i
n

 G
B

 0

 1

 2

 3

 4

 5

 6

 7

 8

 8 9 10 11 12 13 14 15 16 17 18 19 20

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00

03:00

06:00

09:00

12:00

15:00

18:00

21:00

24:00

27:00

 8 9 10 11 12 13 14 15 16 17 18 19 20

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

to
ta

l
ti
m

e
 i
n

 m
:s

FMS N=10 P=?[F
[0.1,0.1][P1 = 0]]

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 2 8 14 20 26 32 38 44 50 56 62

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 4

 6

 8

 10

 12

 14

 16

 18

 6 7 8 9 10 11 12 13 14 15

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

m
e

m
o

ry
 i
n

 G
B

 0

 5

 10

 15

 20

 25

 6 7 8 9 10 11 12 13 14 15 16

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00:00

00:10:00

00:20:00

00:30:00

00:40:00

00:50:00

01:00:00

01:10:00

01:20:00

 6 7 8 9 10 11 12 13 14 15 16

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

to
ta

l
ti
m

e
 i
n

 m
:s

KANBAN N=8 P=?[F
[0.1,0.1]x1 = 1]

Figure 6.5: P=?[F[τ,τ]φ] – FMS and KANBAN
164

6.2 Transient Analysis

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 2 4 6 8 10 12 14 16 18 20 22 24 26

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 1

 1.5

 2

 2.5

 3

 3.5

 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

m
e

m
o

ry
 i
n

 G
B

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00:00

00:10:00

00:20:00

00:30:00

00:40:00

00:50:00

01:00:00

01:10:00

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

to
ta

l
ti
m

e
 i
n

 m
:s

PSS N=20 P=?[F
[0.01,0.01]s1 = 1 ∧ ¬[s = 1 ∧ a = 1]]

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 2 6 10 14 18 22 26 30 34 38 42 46

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 6 7 8 9 10 11 12 13 14 15 16

 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

m
e

m
o

ry
 i
n

 G
B

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 6 7 8 9 10 11 12 13 14 15 16

 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00

05:00

10:00

15:00

20:00

25:00

30:00

35:00

40:00

45:00

50:00

 6 7 8 9 10 11 12 13 14 15 16

 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

to
ta

l
ti
m

e
 i
n

 m
:s

WC N=256 P=?[F
[1,1][Down 4 = 1]]

Figure 6.6: P=?[F[τ,τ]φ] – PSS and WC

165

6 Evaluation

With absorbing states. To make certain states absorbing, I use the CSL template

P=?[F[0,τ]φ].
The settings are summarized in Table 6.3. As all φ-states become absorbing, the
choice of the sub-formula φ affects the size of the resulting Markov chain. The
column % in Table 6.3 displays the percentage of the original number of states.

Table 6.3: Overview of experiments P=?[F[0,τ]φ].
Model N # φ % τ it plot

AKAP 4 1993 cAMP < N/2 95.0 0.001 11 6.7
CLOCK 20 209 a < N/2 52.5 0.001 15 6.8
ERK 30 1522 ERK < N/2 20.2 0.000625 10 6.8
MAPK 10 53 kpp + kkpp = N/2 40.2 0.0005 13 6.9
LEV 10 127 kpp + kkpp < N/2 40.2 0.01 14 6.9
FMS 10 74 P1 < N/2 12.5 0.1 16 6.10
KANBAN 8 14 x1 < N/2 21.2 0.1 9 6.10
PSS 20 4 s1 = 1 ∧ ¬(s = 1 ∧ a = 1) 50.8 0.01 13 6.11
WC 256 267 Down 4 = 0 42.8 1 16 6.11

’%’ is the fraction of non-absorbing states with regard to S. ’#’ is the number of terminal

nodes in the MTBDD representation. ’it’ is the number of iterations.

166

6.2 Transient Analysis

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

 2 7 12 17 22 27 32 37 42 47 52

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 7 8 9 10 11 12 13 14 15 16 17 18

 22 25 28 31 34 37 40 43 46 49 52 55

m
e

m
o

ry
 i
n

 G
B

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 7 8 9 10 11 12 13 14 15 16 17 18

 22 25 28 31 34 37 40 43 46 49 52 55

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00:00

00:10:00

00:20:00

00:30:00

00:40:00

00:50:00

01:00:00

01:10:00

 7 8 9 10 11 12 13 14 15 16 17 18

 22 25 28 31 34 37 40 43 46 49 52 55

to
ta

l
ti
m

e
 i
n

 m
:s

AKAP N=4 P=?[F
[0,0.001][cAMP < N/2]]

Figure 6.7: P=?[F[0,τ]φ] – AKAP

167

6 Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 2 3 4 5 6 7 8 9

 2 4 6 8 10 12 14 16 18 20 22 24 26 28
ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 3 4 5 6 7 8

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

m
e

m
o

ry
 i
n

 G
B

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 3 4 5 6 7 8 9

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s
00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

 3 4 5 6 7 8 9

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

to
ta

l
ti
m

e
 i
n

 m
:s

CLOCK N=20 P=?[F
[0,0.001][a < N/2]]

 0

 2

 4

 6

 8

 10

 12

 2 3 4 5 6 7 8 9 10 11

 2 7 12 17 22 27 32 37 42 47 52

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 4 5 6 7 8 9 10 11

 21 24 27 30 33 36 39 42 45 48 51 54

m
e

m
o

ry
 i
n

 G
B

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 4 5 6 7 8 9 10 11

 21 24 27 30 33 36 39 42 45 48 51 54

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

04:30

05:00

05:30

06:00

 4 5 6 7 8 9 10 11

 21 24 27 30 33 36 39 42 45 48 51 54

to
ta

l
ti
m

e
 i
n

 m
:s

ERK N=30 P=?[F
[0,0.000625][ERK < N/2]]

Figure 6.8: P=?[F[0,τ]φ] – CLOCK and ERK168

6.2 Transient Analysis

 0

 20

 40

 60

 80

 100

 120

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 2 7 12 17 22 27 32 37 42 47 52 57

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 23 26 29 32 35 38 41 44 47 50 53 56

m
e

m
o

ry
 i
n

 G
B

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 23 26 29 32 35 38 41 44 47 50 53 56

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00:00

00:10:00

00:20:00

00:30:00

00:40:00

00:50:00

01:00:00

01:10:00

01:20:00

01:30:00

01:40:00

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 23 26 29 32 35 38 41 44 47 50 53 56

to
ta

l
ti
m

e
 i
n

 m
:s

MAPK N=10 P=?[F
[0,0.0005][kpp+ kkpp < N/2]]

 0

 20

 40

 60

 80

 100

 120

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 2 7 12 17 22 27 32 37 42 47 52 57

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 23 26 29 32 35 38 41 44 47 50 53 56

m
e

m
o

ry
 i
n

 G
B

 0

 1

 2

 3

 4

 5

 6

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 23 26 29 32 35 38 41 44 47 50 53 56

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00:00

00:10:00

00:20:00

00:30:00

00:40:00

00:50:00

01:00:00

01:10:00

01:20:00

01:30:00

01:40:00

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 23 26 29 32 35 38 41 44 47 50 53 56

to
ta

l
ti
m

e
 i
n

 m
:s

LEV N=10 P=?[F
[0,0.01][kpp+ kkpp < N/2]]

Figure 6.9: P=?[F[0,τ]φ] – MAPK and LEV 169

6 Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 2 8 14 20 26 32 38 44 50 56 62
ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 8 9 10 11 12 13 14 15 16 17 18 19 20

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

m
e

m
o

ry
 i
n

 G
B

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 8 9 10 11 12 13 14 15 16 17 18 19 20

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s
00:10

00:20

00:30

00:40

00:50

01:00

01:10

01:20

01:30

01:40

01:50

 8 9 10 11 12 13 14 15 16 17 18 19 20

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

to
ta

l
ti
m

e
 i
n

 m
:s

FMS N=10 P=?[F
[0,0.1][P1 < N/2]]

 0

 10

 20

 30

 40

 50

 60

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 2 8 14 20 26 32 38 44 50 56 62

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 3

 4

 5

 6

 7

 8

 9

 10

 6 7 8 9 10 11 12 13 14 15 16

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

m
e

m
o

ry
 i
n

 G
B

 0

 1

 2

 3

 4

 5

 6

 7

 6 7 8 9 10 11 12 13 14 15 16

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

01:00

02:00

03:00

04:00

05:00

06:00

07:00

08:00

09:00

 6 7 8 9 10 11 12 13 14 15 16

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

to
ta

l
ti
m

e
 i
n

 m
:s

KANBAN N=8 P=?[F
[0,0.1]x1 < N/2]

Figure 6.10: P=?[F[0,τ]φ] – FMS and KANBAN170

6.2 Transient Analysis

 0

 5

 10

 15

 20

 25

 30

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 2 4 6 8 10 12 14 16 18 20 22 24 26

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

m
e

m
o

ry
 i
n

 G
B

 0

 0.5

 1

 1.5

 2

 2.5

 3

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

04:00

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

to
ta

l
ti
m

e
 i
n

 m
:s

PSS N=20 P=?[F
[0,0.01]s1 = 1 ∧ ¬[s = 1 ∧ a = 1]]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 2 6 10 14 18 22 26 30 34 38 42 46

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 6 7 8 9 10 11 12 13 14 15 16

 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

m
e

m
o

ry
 i
n

 G
B

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 6 7 8 9 10 11 12 13 14 15 16

 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00

05:00

10:00

15:00

20:00

25:00

30:00

35:00

40:00

45:00

50:00

 6 7 8 9 10 11 12 13 14 15 16

 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

to
ta

l
ti
m

e
 i
n

 m
:s

WC N=256 P=?[F
[0,1][Down 4 = 0]]

Figure 6.11: P=?[F[0,τ]φ] – PSS and WC 171

6 Evaluation

Discussion. The evaluation of the obtained figures for transient analysis bares
the following observations. With regard to the average runtime per iteration we
observe that both approaches have an unacceptable runtime if the truncation
layer is near the terminal nodes. There is a considerable improvement starting
with layer three. For MARCIE, the initialization effort explodes if the truncation
layer is set near to the root. In general it seems to be advisable to set the layer
between 40 and 70 percent of the maximal value. Within this interesting range,
MARCIE is in almost all cases much faster than PRISM if the complete Markov
chain has to be considered. The speedup factor lies often between two and four
(KANBAN, PSS, WC). If only a subset of the states is considered, the differences
become moderate. In any case, theMARCIE is at least on a par. Multi-threading
decreases significantly the runtime in all cases without an influence on memory
consumption. But the achieved speedup is not linear to the number of threads. It
stands out that for truncation layers near the root layer,MARCIE’s initialization
effort is not acceptable. However, for the interesting range, the initialization can
be neglected for all considered models. In contrast, PRISM’s generation of the
sparse matrices may represent a bottleneck independently of the chosen layer.
This effect is model-dependent and was observed for ERK, LEV and WC. For
LEV I did not obtain results within the specified time limit of three hours.

There is no clear picture for the memory consumption. For some models, MAR-
CIE has a significant higher consumption than PRISM and vice versa. Further-
more, PRISM implements some ideas as indexing4. It could also be introduced
in MARCIE .

PRISM’s memory consumption is highly affected by the fraction of absorbing
states, compare Figure 6.3 and Figure 6.8.

4The exit rate vector stores unsigned indices referring to entries in a separate array which contains
the actual double precision values. This optimization can by applied if there are only few different
exit rates.

172

6.3 Steady State Analysis

6.3 Steady State Analysis

In this section I investigate the potential of PRISM andMARCIE for steady state
analysis with the Jacobi, Gauss-Seidel and the Pseudo-Gauss-Seidel methods.
The experiments are triggered with the CSL template

S=?[φ],
where φ is some model-specific proposition. The choice of φ does not affect the
size of the considered state space. We are dealing with the complete Markov
chain. In most cases the solution of the problem would take hundreds of it-
erations. In some cases the method of Jacobi does not converge within 10000
iterations5. Thus I limited all experiments to 15 iterations. PRISM as well as
MARCIE offer a related option. In this case the tools do not output the total
time. Thus the right inner plot in the diagrams shows now the total iteration
time, which represents the actual solution time and the time for initialization. It
does not contain the time for state space construction and the time to determine
the BSCCs. For reasons of completeness, the settings are summarized in Table
6.4. At this point I do not consider multi-threading, although MARCIE’s Jacobi
(JAC) solver supports this feature. I present related figures in Section 6.4. The
most important point is the comparison of the Jacobi and the Pseudo-Gauss-
Seidel (PGS) method. MARCIE’s current implementation of the Gauss-Seidel
(GS) method can not compete with that of PRISM, which is indeed based on
techniques which are no genuine BDDs anymore [88]. The related figures just
highlight that there is demand for improvements.

5 The default limit in PRISM and MARCIE.

173

6 Evaluation

Table 6.4: Overview of experiments S=?[φ].
Model N φ plot

AKAP 4 cAMP < N/2 6.12
CLOCK 20 a < N/2 6.13
ERK 30 ERK < N/2 6.13
MAPK 10 kpp + kkpp < N/2 6.14
LEV 10 kpp + kkpp < N/2 6.14
FMS 10 P1 < N/2 6.15
KANBAN 8 x1 < N/2 6.15
PSS 20 s1 = 1 ∧ ¬(s = 1 ∧ a = 1) 6.16
WC 256 Down 4 = 0 6.16

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 2 7 12 17 22 27 32 37 42 47 52

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(JAC)
	MARCIE(PGS)

	MARCIE(GS)
	PRISM(JAC)
	PRISM(PGS)

	PRISM(GS)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 7 8 9 10 11 12 13 14 15 16 17 18

 22 25 28 31 34 37 40 43 46 49 52 55

m
e

m
o

ry
 i
n

 G
B

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 6 7 8 9 10 11 12 13 14 15 16 17

 22 25 28 31 34 37 40 43 46 49 52 55

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

 0

 20

 40

 60

 80

 100

 120

 140

 6 7 8 9 10 11 12 13 14 15 16 17

 22 25 28 31 34 37 40 43 46 49 52 55

it
e

ra
ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

AKAP N=4 S=?[cAMP < N/2]

Figure 6.12: S=?[φ] – AKAP

174

6.3 Steady State Analysis

 0

 2

 4

 6

 8

 10

 12

 2 3 4 5 6 7 8

 2 4 6 8 10 12 14 16 18 20 22 24 26 28

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(JAC)
	MARCIE(PGS)

	MARCIE(GS)
	PRISM(JAC)
	PRISM(PGS)

	PRISM(GS)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 3 4 5 6 7 8 9

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

m
e

m
o

ry
 i
n

 G
B

 0

 1

 2

 3

 4

 5

 6

 7

 8

 3 4 5 6 7 8

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

 0

 100

 200

 300

 400

 500

 600

 3 4 5 6 7 8

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

it
e

ra
ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

CLOCK N=20 S=?[a < N/2]

 0

 10

 20

 30

 40

 50

 60

 70

 2 3 4 5 6 7 8 9 10

 2 7 12 17 22 27 32 37 42 47 52

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(JAC)
	MARCIE(PGS)

	MARCIE(GS)
	PRISM(JAC)
	PRISM(PGS)

	PRISM(GS)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 4 5 6 7 8 9 10 11

 21 24 27 30 33 36 39 42 45 48 51 54

m
e

m
o

ry
 i
n

 G
B

 0

 1

 2

 3

 4

 5

 6

 7

 8

 4 5 6 7 8 9 10

 21 24 27 30 33 36 39 42 45 48 51 54

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 4 5 6 7 8 9 10

 21 24 27 30 33 36 39 42 45 48 51 54

it
e

ra
ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

ERK N=30 S=?[ERK < N/2]

Figure 6.13: S=?[φ] – CLOCK and ERK
175

6 Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 2 7 12 17 22 27 32 37 42 47 52 57

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(JAC)
	MARCIE(PGS)

	MARCIE(GS)
	PRISM(JAC)
	PRISM(PGS)

	PRISM(GS)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 23 26 29 32 35 38 41 44 47 50 53 56
m

e
m

o
ry

 i
n

 G
B

 0

 5

 10

 15

 20

 25

 30

 35

 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 23 26 29 32 35 38 41 44 47 50 53 56

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 23 26 29 32 35 38 41 44 47 50 53 56

it
e

ra
ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

MAPK N=10 S=?[kpp+ kkpp < N/2]

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 2 7 12 17 22 27 32 37 42 47 52 57

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(JAC)
	MARCIE(PGS)

	MARCIE(GS)
	PRISM(JAC)
	PRISM(PGS)

	PRISM(GS)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 23 26 29 32 35 38 41 44 47 50 53 56

m
e

m
o

ry
 i
n

 G
B

 0

 5

 10

 15

 20

 25

 30

 35

 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 23 26 29 32 35 38 41 44 47 50 53 56

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 23 26 29 32 35 38 41 44 47 50 53 56

it
e

ra
ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

LEV N=10 S=?[kpp+ kkpp < N/2]

Figure 6.14: S=?[φ] – MAPK and LEV
176

6.3 Steady State Analysis

 0

 10

 20

 30

 40

 50

 60

 70

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

 2 8 14 20 26 32 38 44 50 56 62

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(JAC)
	MARCIE(PGS)

	MARCIE(GS)
	PRISM(JAC)
	PRISM(PGS)

	PRISM(GS)

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 8 9 10 11 12 13 14 15 16 17 18 19 20

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

m
e

m
o

ry
 i
n

 G
B

 0

 2

 4

 6

 8

 10

 12

 14

 16

 7 8 9 10 11 12 13 14 15 16 17 18 19

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 7 8 9 10 11 12 13 14 15 16 17 18 19

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

it
e

ra
ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

FMS N=10 S=?[P1 < N/2]

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 2 8 14 20 26 32 38 44 50 56 62

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(JAC)
	MARCIE(PGS)

	MARCIE(GS)
	PRISM(JAC)
	PRISM(PGS)

	PRISM(GS)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 6 7 8 9 10 11 12 13 14 15 16

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

m
e

m
o

ry
 i
n

 G
B

 0

 10

 20

 30

 40

 50

 60

 70

 6 7 8 9 10 11 12 13 14 15

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 6 7 8 9 10 11 12 13 14 15

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

it
e

ra
ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

KANBAN N=8 S=?[x1 < N/2]

Figure 6.15: S=?[φ] – FMS and KANBAN
177

6 Evaluation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 2 4 6 8 10 12 14 16 18 20 22 24 26

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(JAC)
	MARCIE(PGS)

	MARCIE(GS)
	PRISM(JAC)
	PRISM(PGS)

	PRISM(GS)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

m
e

m
o

ry
 i
n

 G
B

 0

 2

 4

 6

 8

 10

 12

 14

 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

it
e

ra
ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

PSS N=20 S=?[s1 = 1 ∧ ¬[s = 1∧ = 1]]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 3 4 5 6 7 8 9 10 11 12 13 14 15

 2 6 10 14 18 22 26 30 34 38 42 46

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(JAC)
	MARCIE(PGS)

	MARCIE(GS)
	PRISM(JAC)
	PRISM(PGS)

	PRISM(GS)

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 6 7 8 9 10 11 12 13 14 15 16

 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

m
e

m
o

ry
 i
n

 G
B

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 6 7 8 9 10 11 12 13 14 15

 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 6 7 8 9 10 11 12 13 14 15

 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47

it
e

ra
ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

WC N=256 S=?[Down 4 = 0]

Figure 6.16: S=?[φ] – PSS and WC178

6.4 Embedded Markov Chain

Discussion. For the considered models (for the chosen state space sizes) PRISM’s
PGS solver is generally faster. Concerning the method of Jacobi, the solvers de-
liver comparable runtime and memory consumption. Significant differences as for
transient analysis are not observable (with exception of the GS solvers). On the
whole I would say that both tools play at the same league. Steady state analysis
is not MARCIE’s speciality. However, it should be noted that the employment
of multi-threading decreases significantly the runtimes as it is illustrated with
the KANBAN model in Figure 6.17.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 2 8 14 20 26 32 38 44 50 56 62

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 6 7 8 9 10 11 12 13 14 15 16

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

m
e

m
o

ry
 i
n

 G
B

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 6 7 8 9 10 11 12 13 14 15

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

 0

 100

 200

 300

 400

 500

 600

 6 7 8 9 10 11 12 13 14 15

 25 28 31 34 37 40 43 46 49 52 55 58 61 64
it
e

ra
ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

KANBAN N=8 S=?[x1 < N/2]

Figure 6.17: S=?[φ] – KANBAN multi-threaded Jacobi

6.4 Embedded Markov Chain

The third experiment type is used to judge the analysis capabilities with regard
to the embedded Markov chain. The main application of such an analysis is to
determine the probability to reach a set of states. The PRISM model checker
supports several reward-related operators extending CSL [76] which enable for

179

6 Evaluation

instance to specify the following formula template

R{̺}=?[Fφ].
It asks for the expected accumulated reward until reaching one of the φ-states.
If the reward structure ̺ represents the sojourn time, we can determine the
expected time until reaching such a state6. The numerical computation behind
the scenes considers the embedded Markov chain. I deploy this formula pattern
to trigger the following multi-threaded experiments using the method of Jacobi.
Table 6.5 gives the model-specific details, as for instance the number of iterations
(in this case not limited) or the number of the MTBDD terminal nodes, which
often inhibit the generation of PRISM’s internal data structures.

Table 6.5: Overview of experiments R{̺}=?[Fφ].
Model N # #E φ it plot

AKAP 4 1,978 1,572,694 cAMP < N/2 127 6.18
CLOCK 20 - - a < N/2 15 6.19
ERK 30 - - ERK < N/2 15 6.19
MAPK 10 - - kpp + kkpp < N/2 15 6.20
LEV 10 - - kpp + kkpp < N/2 15 6.20
FMS 10 74 16,507 P1 < N/2 32 6.21
KANBAN 8 14 949 x1 < N/2 180 6.21
PSS 20 44 81 s1 = 1 ∧ ¬(s = 1 ∧ a = 1) 15 6.22
WC 128 141 222,4954 Down 4 = 0 43 6.22

’#’ is the number of terminal nodes in the MTBDD representation. ’#E ’ is the number of
terminal nodes in the MTBDD representation (embedded Markov chain). ’–’ PRISM did not
finished the initialization because it exceeded the time limit or terminated with a memory

error. ’it’ is the number of iterations.

6 MARCIE specifies implicitly a reward structure time for this purpose.

180

6.4 Embedded Markov Chain

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 2 7 12 17 22 27 32 37 42 47 52

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 7 8 9 10 11 12 13 14 15 16 17 18

 22 25 28 31 34 37 40 43 46 49 52 55

m
e

m
o

ry
 i
n

 G
B

 0

 0.5

 1

 1.5

 2

 2.5

 3

 6 7 8 9 10 11 12 13 14 15 16 17

 22 25 28 31 34 37 40 43 46 49 52 55

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

 0

 200

 400

 600

 800

 1000

 1200

 1400

 6 7 8 9 10 11 12 13 14 15 16 17

 22 25 28 31 34 37 40 43 46 49 52 55
it
e

ra
ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

AKAP N=4 R{”time”}=?[F[cAMP < N/2]]

Figure 6.18: R{̺}=?[Fφ] – AKAP

181

6 Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 2 3 4 5 6 7 8

 2 4 6 8 10 12 14 16 18 20 22 24

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3 4 5 6 7 8 9

 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
m

e
m

o
ry

 i
n

 G
B

 0

 0.5

 1

 1.5

 2

 2.5

 3 4 5 6 7 8

 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 3 4 5 6 7 8

 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

it
e

ra
ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

CLOCK N=20 R{”time”}=?[F[a < N/2]]

 0

 1

 2

 3

 4

 5

 6

 7

 2 3 4 5 6 7 8 9 10

 2 7 12 17 22 27 32 37 42 47 52

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 4 5 6 7 8 9 10 11

 21 24 27 30 33 36 39 42 45 48 51 54

m
e

m
o

ry
 i
n

 G
B

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 4 5 6 7 8 9 10

 21 24 27 30 33 36 39 42 45 48 51 54

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

 0

 20

 40

 60

 80

 100

 120

 4 5 6 7 8 9 10

 21 24 27 30 33 36 39 42 45 48 51 54

it
e

ra
ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

ERK N=30 R{”time”}=?[F[ERK < N/2]]

Figure 6.19: R{̺}=?[Fφ] – CLOCK and ERK
182

6.4 Embedded Markov Chain

 0

 20

 40

 60

 80

 100

 120

 140

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 2 7 12 17 22 27 32 37 42 47 52 57

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 23 26 29 32 35 38 41 44 47 50 53 56

m
e

m
o

ry
 i
n

 G
B

 0

 1

 2

 3

 4

 5

 6

 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 23 26 29 32 35 38 41 44 47 50 53 56

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 23 26 29 32 35 38 41 44 47 50 53 56

it
e

ra
ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

MAPK N=10 R{”time”}=?[F[kpp+ kkpp < N/2]]

 0

 20

 40

 60

 80

 100

 120

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 2 7 12 17 22 27 32 37 42 47 52 57

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 23 26 29 32 35 38 41 44 47 50 53 56

m
e

m
o

ry
 i
n

 G
B

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 23 26 29 32 35 38 41 44 47 50 53 56

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 23 26 29 32 35 38 41 44 47 50 53 56

it
e

ra
ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

LEV N=10 R{”time”}=?[F[kpp+ kkpp < N/2]]

Figure 6.20: R{̺}=?[Fφ] – MAPK and LEV
183

6 Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 8

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

 2 8 14 20 26 32 38 44 50 56 62

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 8 9 10 11 12 13 14 15 16 17 18 19 20

 25 28 31 34 37 40 43 46 49 52 55 58 61 64
m

e
m

o
ry

 i
n

 G
B

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 7 8 9 10 11 12 13 14 15 16 17 18 19

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 7 8 9 10 11 12 13 14 15 16 17 18 19

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

it
e

ra
ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

FMS N=10 R{”time”}=?[F[P1 < N/2]]

 0

 10

 20

 30

 40

 50

 60

 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 2 8 14 20 26 32 38 44 50 56 62

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 0

 5

 10

 15

 20

 25

 30

 6 7 8 9 10 11 12 13 14 15 16

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

m
e

m
o

ry
 i
n

 G
B

 0

 1

 2

 3

 4

 5

 6

 7

 8

 6 7 8 9 10 11 12 13 14 15

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 6 7 8 9 10 11 12 13 14 15

 25 28 31 34 37 40 43 46 49 52 55 58 61 64

it
e

ra
ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

KANBAN N=8 R{”time”}=?[F[x1 < N/2]]

Figure 6.21: R{̺}=?[Fφ] – FSM and KANBAN
184

6.4 Embedded Markov Chain

 0

 5

 10

 15

 20

 25

 30

 35

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 2 4 6 8 10 12 14 16 18 20 22 24 26

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

m
e

m
o

ry
 i
n

 G
B

 0

 0.5

 1

 1.5

 2

 2.5

 3

 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

 0

 50

 100

 150

 200

 250

 8 9 10 11 12 13 14 15 16 17 18 19 20 21

 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

it
e

ra
ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

PSS N=20 R{”time”}=?[F[s1 = 1 ∧ ¬[s = 1 ∧ a = 1]]]

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 2 6 10 14 18 22 26 30 34 38 42

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(t1)
	MARCIE(t2)
	MARCIE(t4)
	MARCIE(t8)

	PRISM

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 6 7 8 9 10 11 12 13 14 15 16

 17 19 21 23 25 27 29 31 33 35 37 39 41 43

m
e

m
o

ry
 i
n

 G
B

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 6 7 8 9 10 11 12 13 14 15

 17 19 21 23 25 27 29 31 33 35 37 39 41 43

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 6 7 8 9 10 11 12 13 14 15

 17 19 21 23 25 27 29 31 33 35 37 39 41 43

it
e

ra
ti
o

n
 t

im
e

 i
n

 s
e

c
o

n
d

s

WC N=128 R{”time”}=?[F[Down 4 = 0]]

Figure 6.22: R{̺}=?[Fφ] – PSS and WC
185

6 Evaluation

Discussion. Most of the presented plots do not contain figures for PRISM. In
particular I obtained only results for the FMS, KANBAN and the PSS models.
For the biological models, PRISM terminated with an internal memory error7.
For the WC model, the limited runtime of at most three hours did not suffice to
initialize the required data structures. I observed the same effects for the biolog-
ical models when investigating smaller scaling factors (e.g. ERK N=10). For the
models where PRISM is able to deliver results, the average time per iteration
is comparable to MARCIE 8. Again, multi-threading decreases significantly the
runtime, though not linear to the number of threads. For the FMS system, the
initialization effort inhibits an effective analysis with PRISM. MARCIE requires
generally the half of the memory compared with PRISM.

In this discipline, MARCIE’s on-the-fly engine is clearly superior to PRISM’s
hybrid engine.

6.5 Markovian Approximation

In this section I present experimental results for the computation of the distri-
bution of the accumulated reward deploying the CSRL-pattern

P{̺}=?[F[τ,τ][0,y]φ].
It differs slightly from the syntax definition given in Section 3.4. The additional
specification of the reward structure ̺ enables to change conveniently the con-
sidered MRM. For each experiment I consider a model-specific reward structure
representing the frequency of a selected Petri net transition9 (see Section 3.1).
The formula pattern can be understood as follows: ”What is the probability to
be at time τ in a φ-state under the constraint that the specified transition has
fired at most y times.”

There is no published tool which could be used for a comparison with MARCIE.
The only existing CSRL model checker MRMC [69] does not support the path

formula [ΦU[τ,τ][0,y]Ψ]. Further, it deploys techniques to compute the distribution

which can not be used for the considered state space sizes [107]. However, to

7 The reported error is caused by the CUDD library. One could try to use the option -cuddmaxmem

to allow PRISM to allocate more memory.
8 On could easily improve PRISM’s implementation by a representation of the embedded Markov
chain using a policy similar to EMV .

9 MARCIE defines implicitly for all transitions of a Petri net reward structures which can be used
by the related transition name.

186

6.5 Markovian Approximation

permit a judgement, I consider also SPN models with MARCIE and PRISM10

which approximate explicitly the MRMs (see Section 3.2.2).

For all experiments, I set the reward bound y to three and specified 30 dis-
cretization steps which gives for the constant ∆ a value of 0.1. Please note that
the choice of the number of steps affects the state space size of the underlying
approximating CTMC. The experiments compare the transient analysis of the
approximating SPN implicitly (IMP) and explicitly (EXP) with MARCIE and
explicitly with PRISM. The model-specific settings are summarized in Table 6.6.

Table 6.6: Overview of experiments P{̺}=?[F[τ,τ][0,y]
φ].

Model N ∣SA∣ # φ τ it plot

AKAP 3 52,231,168 525 cAMP < N/2 0.001 11 6.23
CLOCK 10 20,614,528 78 a < N/2 0.005 9 6.24
ERK 20 54,291,776 894 ERK < N/2 0.00625 19 6.24
MAPK 6 43,936,832 31 kpp + kkpp < N/2 0.01 59 6.25
LEV 6 43,936,832 98 kpp + kkpp < N/2 0.01 13 6.25
FMS 6 17,208,576 58 P1 < N/2 0.05 11 6.26
KANBAN 6 14,543,200 15 x1 < N/2 0.1 17 6.26
PSS 15 23,592,960 5 s1 = 1 ∧ ¬(s = 1 ∧ a = 1) 0.01 13 6.27
WC 32 958,880 78 Down 4 = 0 0.01 705 6.27

’∣SA ∣’ is the number of reachable states of the approximating CTMC. ’#’ is the number of

terminal nodes in the MTBDD representation. ’it’ is the number of iterations.

10 MARCIE offers export functions to generate the approximating SPN of a given SRN (undocu-
mented feature).

187

6 Evaluation

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

 2 6 10 14 18 22 26 30 34 38 42

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(EXP_t1)
	MARCIE(EXP_t8)
	MARCIE(IMP_t1)
	MARCIE(IMP_t8)

	PRISM

 0

 1

 2

 3

 4

 5

 6

 7

 6 7 8 9 10 11 12 13 14 15 16 17

 17 19 21 23 25 27 29 31 33 35 37 39 41 43

m
e
m

o
ry

 i
n
 G

B

 0

 1

 2

 3

 4

 5

 6

 7

 7 8 9 10 11 12 13 14 15 16 17 18

 17 19 21 23 25 27 29 31 33 35 37 39 41 43

ti
m

e
 p

e
r

it
e
ra

ti
o
n
 i
n
 s

e
c
o
n
d
s

00:00

05:00

10:00

15:00

20:00

25:00

30:00

35:00

40:00

45:00

50:00

 7 8 9 10 11 12 13 14 15 16 17 18

 17 19 21 23 25 27 29 31 33 35 37 39 41 43

to
ta

l
ti
m

e
 i
n
 m

:s

AKAP N=3 P{”f pPDE8 d cAMP”}=?[F
[0.001,0.001]
[0,3] [cAMP < N/2]]

Figure 6.23: P{̺}=?[F[τ,τ][0,y]
φ] – AKAP

188

6.5 Markovian Approximation

 0

 2

 4

 6

 8

 10

 12

 14

 2 3 4 5 6 7 8 9

 2 4 6 8 10 12 14 16 18 20 22 24 26 28

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(EXP_t1)
	MARCIE(EXP_t8)
	MARCIE(IMP_t1)
	MARCIE(IMP_t8)

	PRISM

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 3 4 5 6 7 8 9

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

m
e

m
o

ry
 i
n

 G
B

 0

 1

 2

 3

 4

 5

 6

 3 4 5 6 7 8 9

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00

00:15

00:30

00:45

01:00

01:15

01:30

01:45

02:00

02:15

 3 4 5 6 7 8 9

 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

to
ta

l
ti
m

e
 i
n

 m
:s

CLOCK N=10 P{”bind a”}=?[F
[0.0005,0.0005]
[0,3] [a < N/2]]

 0

 50

 100

 150

 200

 250

 2 3 4 5 6 7 8 9 10 11

 2 7 12 17 22 27 32 37 42 47 52 57

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(EXP_t1)
	MARCIE(EXP_t8)
	MARCIE(IMP_t1)
	MARCIE(IMP_t8)

	PRISM

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 4 5 6 7 8 9 10 11

 24 27 30 33 36 39 42 45 48 51 54 57 60

m
e

m
o

ry
 i
n

 G
B

 0

 1

 2

 3

 4

 5

 6

 7

 8

 4 5 6 7 8 9 10 11

 24 27 30 33 36 39 42 45 48 51 54 57 60

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

08:00

09:00

10:00

11:00

12:00

 4 5 6 7 8 9 10 11

 24 27 30 33 36 39 42 45 48 51 54 57 60

to
ta

l
ti
m

e
 i
n

 m
:s

ERK N=20 P{”r1”}=?[F
[0.00625,0.00625]
[0,3] [ERK < N/2]]

Figure 6.24: P{̺}=?[F[τ,τ][0,y]
φ] – CLOCK and ERK

189

6 Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 2 6 10 14 18 22 26 30 34 38 42 46 50

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(EXP_t1)
	MARCIE(EXP_t8)
	MARCIE(IMP_t1)
	MARCIE(IMP_t8)

	PRISM

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 20 23 26 29 32 35 38 41 44 47 50
m

e
m

o
ry

 i
n

 G
B

 0

 1

 2

 3

 4

 5

 6

 7

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 20 23 26 29 32 35 38 41 44 47 50

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00

01:00

02:00

03:00

04:00

05:00

06:00

07:00

08:00

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 20 23 26 29 32 35 38 41 44 47 50

to
ta

l
ti
m

e
 i
n

 m
:s

MAPK N=6 P{”a kkk e1”}=?[F
[0.01,0.01]
[0,3] [kpp+ kkpp < N/2]]

 0

 50

 100

 150

 200

 250

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 2 6 10 14 18 22 26 30 34 38 42 46 50

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(EXP_t1)
	MARCIE(EXP_t8)
	MARCIE(IMP_t1)
	MARCIE(IMP_t8)

	PRISM

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 20 23 26 29 32 35 38 41 44 47 50

m
e

m
o

ry
 i
n

 G
B

 0

 1

 2

 3

 4

 5

 6

 7

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 20 23 26 29 32 35 38 41 44 47 50

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00

00:15

00:30

00:45

01:00

01:15

01:30

01:45

02:00

02:15

02:30

02:45

 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

 20 23 26 29 32 35 38 41 44 47 50

to
ta

l
ti
m

e
 i
n

 m
:s

LEV N=6 P{”a kkk e1”}=?[F
[0.01,0.01]
[0,3] [kpp+ kkpp < N/2]]

Figure 6.25: P{̺}=?[F[τ,τ][0,y]
φ] – MAPK and LEV190

6.5 Markovian Approximation

 0

 10

 20

 30

 40

 50

 60

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 2 7 12 17 22 27 32 37 42 47 52

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(EXP_t1)
	MARCIE(EXP_t8)
	MARCIE(IMP_t1)
	MARCIE(IMP_t8)

	PRISM

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 8 9 10 11 12 13 14 15 16 17 18 19 20

 22 25 28 31 34 37 40 43 46 49 52 55

m
e

m
o

ry
 i
n

 G
B

 0

 1

 2

 3

 4

 5

 6

 7

 8 9 10 11 12 13 14 15 16 17 18 19 20

 22 25 28 31 34 37 40 43 46 49 52 55

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00

00:15

00:30

00:45

01:00

01:15

01:30

01:45

02:00

02:15

 8 9 10 11 12 13 14 15 16 17 18 19 20

 22 25 28 31 34 37 40 43 46 49 52 55

to
ta

l
ti
m

e
 i
n

 m
:s

FMS N=6 P{”tP1”}=?[F
[0.05,0.05]
[0,3] P1 < N/2]

 0

 5

 10

 15

 20

 25

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 2 7 12 17 22 27 32 37 42 47 52

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(EXP_t1)
	MARCIE(EXP_t8)
	MARCIE(IMP_t1)
	MARCIE(IMP_t8)

	PRISM

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 6 7 8 9 10 11 12 13 14 15 16

 20 23 26 29 32 35 38 41 44 47 50

m
e

m
o

ry
 i
n

 G
B

 0

 0.5

 1

 1.5

 2

 2.5

 6 7 8 9 10 11 12 13 14 15 16

 20 23 26 29 32 35 38 41 44 47 50

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00

00:30

01:00

01:30

02:00

02:30

03:00

03:30

 6 7 8 9 10 11 12 13 14 15 16

 20 23 26 29 32 35 38 41 44 47 50

to
ta

l
ti
m

e
 i
n

 m
:s

KANBAN N=4 P{”s1”}=?[F
[0.1,0.1]
[0,3] x1 < N/2]

Figure 6.26: P{̺}=?[F[τ,τ][0,y]
φ] – FMS and KANBAN 191

6 Evaluation

 0

 5

 10

 15

 20

 25

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

 2 4 6 8 10 12 14 16 18 20 22 24

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(EXP_t1)
	MARCIE(EXP_t8)
	MARCIE(IMP_t1)
	MARCIE(IMP_t8)

	PRISM

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 6 7 8 9 10 11 12 13 14 15 16 17

 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

m
e

m
o

ry
 i
n

 G
B

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 6 7 8 9 10 11 12 13 14 15 16 17

 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

 6 7 8 9 10 11 12 13 14 15 16 17

 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

to
ta

l
ti
m

e
 i
n

 m
:s

PSS N=15 P{”serve1”}=?[F
[0.01,0.01]
[0,3] s1 = 1 ∧ ¬[s = 1 ∧ a = 1]]

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 2 5 8 11 14 17 20 23 26 29 32 35 38

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation layer MARCIE

truncation layer PRISM

	MARCIE(EXP_t1)
	MARCIE(EXP_t8)
	MARCIE(IMP_t1)
	MARCIE(IMP_t8)

	PRISM

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0.32

 6 7 8 9 10 11 12 13 14 15 16

 16 18 20 22 24 26 28 30 32 34 36 38 40

m
e

m
o

ry
 i
n

 G
B

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 6 7 8 9 10 11 12 13 14 15 16

 16 18 20 22 24 26 28 30 32 34 36 38 40

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

16:00

 6 7 8 9 10 11 12 13 14 15 16

 16 18 20 22 24 26 28 30 32 34 36 38 40

to
ta

l
ti
m

e
 i
n

 m
:s

WC N=32 P{”Fail 0”}=?[F
[0.1,0.1]
[0,3] [Down 4 = 0]]

Figure 6.27: P{̺}=?[F[τ,τ][0,y]
φ] – PSS and WC

192

6.6 GSPN versus SPN

Discussion. The analysis of the implicit representation of the approximating
SPN clearly outperforms the explicit representation concerning runtime as well
as memory consumption. Again, deploying multi-threading speeds up the numer-
ical computation. With regard to the explicit representation, the comparison of
MARCIE with PRISM fits into the picture we got in Section 6.2.

6.6 GSPN versus SPN

Finally, I present some figures for the analysis of GSPN. I run experiments
deploying transient analysis as described in Section 6.2 for the GSPN and the
related SPN of the FMS (N=4) and WC (N=256) models. We can expect a high
runtime and of course a high memory consumption due to the consideration of
the vanishing states and the iterative propagation of probabilities.

The obtained figures are shown in Figure 6.28 and I think they speak for them-
selves.

6.7 Summary

In this chapter I provided results of an experimental comparison of MARCIE’s
symbolic on-the-fly engine with the hybrid engine of the probabilistic model
checker PRISM. The presented figures reveal that the on-the-fly approach can
in all circumstances compete with established state-of-the-art techniques. Multi-
threading always permits to decrease the computation time. With exception of
the steady state analysis, MARCIE outperforms PRISM’s hybrid engine. With
regard to the computation of the distribution of the accumulated reward, MAR-
CIE is currently the most efficient software.

193

6 Evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation level SPN

truncation level GSPN

	SPN
	GSPN

 0.084

 0.086

 0.088

 0.09

 0.092

 0.094

 0.096

 0.098

 0.1

 0.102

 8 9 10 11 12 13 14 15 16 17 18 19 20

 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
m

e
m

o
ry

 i
n

 G
B

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 8 9 10 11 12 13 14 15 16 17 18 19 20

 8 9 10 11 12 13 14 15 16 17 18 19 20 21

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:00

00:02

00:04

00:06

00:08

00:10

00:12

00:14

 8 9 10 11 12 13 14 15 16 17 18 19 20

 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

to
ta

l
ti
m

e
 i
n

 m
:s

FMS N=4 P=?[F
[0.1,0.1][P1 = 0]]

 0

 2

 4

 6

 8

 10

 12

 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

truncation level SPN

truncation level GSPN

	SPN
	GSPN

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0.26

 0.27

 6 7 8 9 10 11 12 13 14 15 16

 6 7 8 9 10 11 12 13 14 15 16

m
e

m
o

ry
 i
n

 G
B

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 6 7 8 9 10 11 12 13 14 15 16

 6 7 8 9 10 11 12 13 14 15

ti
m

e
 p

e
r

it
e

ra
ti
o

n
 i
n

 s
e

c
o

n
d

s

00:30

00:40

00:50

01:00

01:10

01:20

01:30

01:40

01:50

 6 7 8 9 10 11 12 13 14 15 16

 6 7 8 9 10 11 12 13 14 15

to
ta

l
ti
m

e
 i
n

 m
:s

WC N=256 P=?[F
[1,1][Down4 = 1]]

Figure 6.28: P=?[F[τ,τ]φ] – FMS and WC – GSPN versus SPN

194

7 Conclusions and Outlook

7.1 Conclusions

In this thesis I developed an efficient approach for the numerical analysis of
stochastic Petri nets whose semantics are Continuous-time Markov chains. The
motivation was basically not the lack of tools for this purpose. For the anal-
ysis of large Markov models there are tools like PRISM [78] or SMART [29]
which implement advanced techniques as Multi-terminal Binary Decision Dia-
grams or Kronecker expression represented as Matrix Diagrams. My work was
rather motivated by the restrictions which are sometimes imposed by these tech-
niques. The application of Kronecker-based techniques requires structured mod-
els, whose specification may be challenging, especially when dealing with biologic
networks. MTBDD-based approaches suffer from an increase of the BDD vari-
ables when enlarging the range of model variables and from an high number
of distinct values of the encoded matrix. Therefor my main motivation was to
study the combination of an on-the-fly enumeration of the entries of the rate ma-
trix (and of course secondary matrices) with the potential of a symbolic Interval
Decision Diagram (IDD)-based state space representation.

Nevertheless, the resulting tool MARCIE offers additional features which have
been indeed discussed in the literature, but are not part of available tools. MAR-
CIE offers the multi-threaded computation of (cumulative) transient, steady
state and performability measures for large Markov models. A model checker for
the Continuous Stochastic Reward Logic works on top of the related numerical
engine.

To be self-contained I provided in Chapter 2 and Chapter 3 background knowl-
edge without digging to much into detail. In Chapter 4 I discussed the symbolic
on-the-fly technique and important improvements. In Chapter 5 I gave some
insights to the implementation of MARCIE’s multi-threaded numerical solvers.
In Chapter 6 I presented an elaborated comparison with the hybrid engine of
the widely used probabilistic model checker PRISM by the help of eight (nine)

195

7 Conclusions and Outlook

case studies1. It proves empirically the efficiency of the proposed approach for
transient and steady state analysis, performability computation and the analysis
based on the embedded Markov chain. We have seen that multi-threading en-
ables to speed-up substantially every kind of analysis I considered. But also in
the single-threaded caseMARCIE’s numerical engine is competitive and with ex-
ception of the steady-state computation clearly superior to the hybrid MTBDD-
engine of the PRISM model checker.

7.2 Outlook

Of course, there are several directions for possible future work.

On the one hand, it would be interesting to investigate the potential of the
proposed on-the-fly approach with regard to other formalisms as for instance
Continuous-time Markov decision processes as a more general semantics of gen-
eralized stochastic Petri nets [13]. It is also desirable that MARCIE supports
probabilistic model checking of the Linear Time Logic. Further, the existing im-
plementation offers a lot of potential for improvements. The solvers using the
Gauss-Seidel and the Pseudo-Gauss-Seidel method are currently restricted to
single-threading. The implementation of the Gauss-Seidel solver is in general
quite slow. The sparse matrix engine, which is a good choice for small state
spaces, could be complemented by a variant exploiting the computation power
of graphical processing units as it is discussed in [16] for the PRISM model
checker.

On the other hand, the capabilities of the numerical analysis stay still behind
the potential of symbolic state space representation techniques.
Indeed, Interval Decision Diagrams, as a representative, enable an extreme com-
pact representation of huge sets of states [115], and the combination of such
representation with an on-the-fly enumeration of the matrix entries gives a very
memory-efficient approach for the numerical analysis, if the DD-traversal is trun-
cated near the terminal node layer. The problematic increase of the runtime can
be reduced on modern work stations by applying multi-threading. But, a severe
problem remains. The computation vectors have to be in the size of the reachable
states.

To deal with this problem we have to increase the available memory, either by
using disc memory (out-of-core techniques), or the aggregated main memory

1 Eight with regard to the model structure. Nine with regard to the rate matrix.

196

7.2 Outlook

of several processing units (distributed). Out-of-core techniques were basically
developed to store the generator Q [46]. But the technique was also used with a
symbolic MTBDD-based matrix representation to store the computation vectors
[87].

Distributed numerical analysis with an explicit representation of states and state
transitions are reported in [74] and [14]. Both approaches use also out-of-core
techniques to store the generator.

In my opinion, further research should be directed to distributed symbolic
techniques and I want to make a specific suggestion:
The existing distributed approaches are based on an explicit state space repre-
sentation where the states and, thus implicitly, the state transition relation and
the computation vectors, are distributed over a set of processors. The mapping
of states to processors is generally realized by a hash-based partition function.
The efficiency of a distributed analysis approach depends on the ratio of local
and remote computations [74, 14]. Local computation is carried out on the data
a specific processor can access without any communication. [74] suggests for in-
stance a row (state) reordering to approximate the locality which can be achieved
by applying a sequential BFS state space generation.

I propose to deploy the on-the-fly technique with a specialization of the lexico-
graphic partition, described in Section 5.1.2. The on-the-fly approach enables to
partition the state transition relation without a genuine partition of the states.
Due to the symbolic IDD encoding, every processor could possess a copy of the
LIDD representation ĜS , although its numerical computation would be restricted
to the indices of one set in the partition PN 2.

P0 P1 P2 P3 P4 P5 P6 P7

P0 1209 34 0 0 0 0 0 0

P1 102 1211 34 0 0 0 0 0

P2 0 102 1211 34 0 0 0 0

P3 0 0 102 1212 34 0 0 0

P4 0 0 0 102 1211 34 0 0

P5 0 0 0 0 102 1211 34 0

P6 0 0 0 0 0 102 1212 34

P7 0 0 0 0 0 0 102 1204

P0 P1 P2 P3 P4 P5 P6 P7

P0 772 0 138 272 0 274 135 0

P1 34 772 0 137 272 0 274 135

P2 133 34 736 0 137 136 0 272

P3 263 134 34 772 0 0 0 0

P4 0 263 134 34 772 0 0 0

P5 275 0 129 0 34 736 0 1

P6 102 307 0 0 0 34 772 0

P7 1 102 271 0 0 0 34 766

Figure 7.1: The distribution of the non zero entries in the rate matrix of the running
example for different variable orders.

In the context of this thesis the ordering/indexing of states is induced by the
variable order of the LIDD. In Example 12 I illustrated that Petri net transitions

2 This holds of course for every symbolic representation of the state space and the state transition
relation.

197

7 Conclusions and Outlook

affecting the places at the top layers generate state transitions which represent
remote computations. If the place with the maximal boundedness degree is set to
the top of the order, the lexicographic partition is based on its possible markings.
Petri net transitions which do not affect this place define local state transitions.
For the SPN of the running example in Figure 3.3 with N = 32 and a state
transition partition of size k = 8, the variable order

π1 = b1 < b2 < res < to1 < to2 < item < ready < req
gives 91% local state transitions (Figure 7.1 left), whereas the variable order

π2 = to2 < to1 < item < ready < req < res < b2 < b1
gives only 57% local transitions (Figure 7.1 right). I am convinced that an con-
sideration of this idea may deliver good results.

198

A Appendix

A.1 Abstract Net Description Language

The graphical representation is next to the formal semantics the strength of
the Petri net approach. Various available tools offer a convenient graphical user
interface to specify Petri net models as for instance SNOOPY [58].

However, sometimes it is also advantageous to use a compact textual description
language. The Abstract Net Description Language (ANDL) [106] is a lightweight
and human readable description language which complements the model speci-
fication with bloated XML-based languages and serves as exchange format be-
tween MARCIE and SNOOPY [58]. It has similarities to command guarded
languages as the PRISM language [96] which is in turn inspired by the reactive
modules formalism [3]. The case studies in Appendix A.2 are given in ANDL
and as graphics.

The ANDL representation of a GSPN model consists of three lists. Constant
declarations are crucial for scalable models as they permit to parametrize ini-
tial token values, arc weights, firing rates of stochastic transitions, or weights
of immediate transitions. The constants are followed by the place and transi-
tion declarations, which have both to be non-empty. Each declaration block
is opened by a keyword – constants, places, and transitions.

Constants can either be declared to be of type integer or of type double. Inte-
ger constants can be used as initial token values, as arc weights or as part of
firing rates of timed transitions or weights of immediate transitions. Double con-
stants can only be used for the definition of rate or weight functions. Constant
declarations in ANDL resemble those in C-like programming languages.

A place declaration resembles a variable initialization: the place name followed by
an assignment of the initial number of tokens. A transitions declaration consists
the following four parts:

1. A transition name.

2. A ′&′-separated list of Boolean guard expressions. Each expression repre-

199

A Appendix

sents the connection to a place by a weighted read arc, a weighted inhibitor
arc, a weighted equal arc (graphic:)1, or an unweighted modifier arc,
which in fact allows four expression types:

� place < number for an inhibitor arc,

� number <= place for a read arc,

� number <= place < number for the combination of a read and an
inhibitor arc,

� number = place for an equal arc.

� place for a modifier arc.

The place is the identifier of a place. The number can be an arbitrary
meaningful arithmetic expression containing also constants.

3. A ′&′-separated list of arithmetic update expressions. Each expression rep-
resents the connection to a place by a weighted standard arc. Therefor we
have again two expression types:

� place − number for a decrease of tokens,

� place + number for an increase of tokens,

again with place as the identifier of a place and number as a meaningful
arithmetic expression defining a natural number.

4. A function, which can be an arbitrary arithmetic expression containing
place and constant names. The function may represent the firing rate of a
timed transition or the weight of an immediate transition. To distinguish
the transition types, ANDL defines the keywords stochastic and immedi-
ate. When specifying biological networks the rate functions often represent
specific kinetics as mass-action. ANDL offers a pre-defined MassAction(c)
macro, where c is a meaningful arithmetic expression defining a real num-
ber.

Although the concept of guards and update expressions is semantically and syn-
tactically close to the specification style of commands in the PRISM language,
there are important differences:

1. The guards and updates encode the set of arcs of the net.

2. There is no force to bound the value range of variables (places).

1 An equal arc with weight w can be emulated by a read arc with weight w and an inhibitor arc with
weight w + 1. Equal arcs are syntactic sugar.

200

A.1 Abstract Net Description Language

3. Update expressions implicitly have the semantics of transition firing. A
transition which decreases the amount of tokens on a place is only enabled,
if there are enough tokens. No further guard is required.

Example 14

The ANDL specification of the running example (Figure 3.1) looks as
follows.

gspn [running_example_gspn] {

constants:

int N;

double i2 = 3;

double i1 = 2;

double c1 = 0.9;

double c2 = 1- c1;

double f1 = 0.8;

double f2 = 1 - f2;

double cr = 1;

double sr = 1;

places:

msg = 0;

b1 = 0;

b2 = 0;

req = 1;

response = 0;

to1 = 0;

to2 = 0;

item = 0;

ready = 1;

transitions: //stochastic by default

consume : /* empty */ : [req + 1] & [response - 1] : cr;

send : [b1] & [b2] : [msg + 1] & [item + 1] & [ready - 1] :

sr/(1+b1+b2);

insert_b1 : [b1 < N] : [b1 + 1] & [ready + 1] & [item - 1] & [to1 - 1] :

i1*(1+b1);

insert_b2 : [b2 < N] : [b2 + 1] & [ready + 1] & [item - 1] & [to2 - 1] :

i2*(1+b2);

immediate:

fetch_b1 : /* empty */ : [response + 1] & [b1 - 1] & [req - 1] : f1;

fetch_b2 : /* empty */ : [response + 1] & [b2 - 1] & [req - 1] : f2;

choose_b2 : /* empty */ : [to2 + 1] & [msg - 1] : c2;

choose_b1 : /* empty */ : [to1 + 1] & [msg - 1] : c1;

}

☀

201

A Appendix

In ANDL a reward structure is defined next to the Perti net model. The keyword
rewards indicates a reward structure definition followed by the reward structure
name. Curly brackets enclose the set of reward items. A reward item consists of
an interval logic expression, the guard, and an arithmetic expression, the rate
reward, separated by a colon. The reward items are separated by semicolons.

Example 15

The reward structure given in Example 6 looks as follows:

//waiting time

rewards [wt] {

to1 > 0 & b1 = N & b2 < N : 1 ;

to2 > 0 & b2 = N & b1 < N : 1 ;

}

☀

A.2 Case studies

In the following I give the ANDL specifications of the case studies I deployed for
the experimental evaluation presented in Chapter 6. All models are taken from
the literature and edited as SPN or GSPN. The scalable Petri nets were created
with the Petri net editor Snoopy [58]. Its export to ANDL yields the following
specifications. I considered four biological networks and four technical models.
The state space sizes for selected settings are given in Table 2.1 and Table 2.2.
The technical models represent established CTMC benchmarks. I do not present
here a detailed explanation of the models and refer to the related literature for
background reading.

A.2.1 Biological Networks

A-kinase anchoring protein (AKAP)

An SPN modeling the scaffold-mediated crosstalk between the cyclic adeno-
sine monophosphate (cAMP) and the Raf-1/MEK/ERK pathways. The model
is taken from [4] where it is given in the PRISM language. The model is scal-
able by the initial number of tokens on the places PDE8 and S000 and by the
arc weights of inhibitor arcs specifying the boundedness degree of the places
represented by the model constant N .

202

A.2 Case studies

spn [AKAP] {

constants:

double CONC = 12 ; int N ; double H = CONC/N ;

int camp_max = 10*N ; int camp_init = 0 ; int basal_camp = 1 ;

int scaffold_init = N ; int u_scaffold_init = N ; int scaffold_max = N ;

int u_scaffold_max = N ;

int pde8_init = N/2 ; int pde8_max = N/2 ;

int pde8_p_init = 0 ; int pde8_p_max = N/2 ;

int pp_init = scaffold_init ; int pp_u_init = u_scaffold_init ;

double diffuse_rate_cAMP = 1 ; double diffuse_rate_PP = 1 ;

double pka_activate1 = 1 ; double camp_inhib = 1 ;

double camp_more_inhib = 2.5 ; double raf_phospho = 1;

double raf_dephospho = 1 ; double release_camp1 = 1 ;

double release_camp2 = 1.5*release_camp1 ; double release_camp3 = 2.0*release_camp2;

double pde8_phospho = raf_phospho ; double pde8_dephospho = raf_dephospho ;

double p_pde8_degrade = raf_dephospho ; double pde8_degrade = raf_dephospho/3 ;

double free_pde8_phospho = pde8_phospho/3 ; double free_pde8_dephospho = free_pde8_phospho ;

double free_p_pde8_degrade = p_pde8_degrade/3 ; double free_pde8_degrade = pde8_degrade/3 ;

int p = 2 ; int tick_max = 10 ; int tick_med = 5 ;

places:

cAMP = 0; tick = 0; S00 = u_scaffold_init;

S10 = 0; S01 = 0; S11 = 0;

S000 = scaffold_init; S100 = 0;

S101 = 0; S110 = 0; S011 = 0;

S010 = 0; S001 = 0; S111 = 0;

PP_u = pp_u_init; PP = pp_init ;

PDE8_P = pde8_p_init; PDE8 = pde8_init;

transitions:

diffuse1_in_cAMP : [tick < tick_med] & [cAMP < camp_max] : [tick + 1]& [cAMP + 1] :

diffuse_rate_cAMP / H ;

diffuse3_in_cAMP : [tick = tick_max] & [cAMP < camp_max] : [tick -tick_max] & [cAMP + 1] :

diffuse_rate_cAMP / H ;

diffuse2_in_cAMP : [tick_med <= tick < tick_max] & [cAMP < (camp_max -1)] : [tick + 1] :

diffuse_rate_cAMP / H ; activate_PKA_1 : [S100 < scaffold_max] & [

basal_camp <= cAMP] : [S100 + 1] & [S000 - 1] & [cAMP - 1] :

pka_activate1*H*S000*cAMP ;

activate_u_PKA_1 : [S10 < u_scaffold_max] & [basal_camp <= cAMP] :

[cAMP - 1] & [S10 + 1] & [S00 - 1] : pka_activate1*H*S00*cAMP ;

release1cAMP : [S011 < scaffold_max] & [cAMP < camp_max] :

[S111 - 1] & [S011 + 1] & [cAMP + 1] : release_camp1*S111 ;

release1cAMP_u : [S01 < u_scaffold_max] & [cAMP < camp_max] :

[S01 + 1] & [S11 - 1] & [cAMP + 1] : release_camp1*S11 ;

free_pPDE8_degrades_cAMP : [1 <= PDE8_P] : [cAMP - 1] : free_p_pde8_degrade*H*PDE8_P*cAMP;

pPDE8_degrades_cAMP1 : [1 <= S011] : [cAMP - 1] : p_pde8_degrade*H*S011*cAMP;

pPDE8_degrades_cAMP2 : [1 <= S001] : [cAMP - 1] : p_pde8_degrade*H*S001*cAMP;

PDE8_degrades_cAMP_1 : [1 <= S100] : [cAMP - 1] : pde8_degrade*H*S100*cAMP;

PDE8_degrades_cAMP_2 : [1 <= S110] : [cAMP - 1] : pde8_degrade*H*S110*cAMP;

PDE8_degrades_cAMP_3 : [1 <= S000] : [cAMP - 1] : pde8_degrade*H*S000*cAMP;

PDE8_degrades_cAMP_4 : [1 <= S010] : [cAMP - 1] : pde8_degrade*H*S010*cAMP;

free_PDE8_degrades_cAMP : [1 <= PDE8] : [cAMP - 1] : free_pde8_degrade*H*PDE8*cAMP;

phospho_u_Raf : [S11 < u_scaffold_max] : [S10 - 1] & [S11 + 1] : raf_phospho*S10 ;

dephospho2_Raf : [1 <= PP] & [S001 < scaffold_max] : [S001 + 1] & [S011 - 1] :

raf_dephospho*H*PP *S011 ;

dephospho_u_Raf : [1 <= PP] & [S00 < u_scaffold_max] : [S00 + 1] & [S01 - 1] :

203

A Appendix

raf_dephospho*H*PP *S01 ;

phospho_Raf : [S110 < scaffold_max] : [S110 + 1] & [S100 - 1] : raf_phospho*S100 ;

phospho_Raf_pPDE8 : [S111 < scaffold_max] : [S111 + 1] & [S101 - 1] : raf_phospho*S101 ;

phospho_PDE8 : [S101 < scaffold_max] : [S100 - 1] & [S101 + 1] : pde8_phospho*S100 ;

phospho_PDE8_pRaf : [S111 < scaffold_max] : [S110 - 1] & [S111 + 1] : pde8_phospho*S110 ;

phospho_u_PDE8 : [PDE8_P < pde8_p_max] & [1 <= S10] : [PDE8_P +1] & [PDE8-1] :

free_pde8_phospho*H*PDE8*S10 ;

phospho_u_PDE8_bis : [1 <= S11] : [PDE8_P +1] & [PDE8 -1] :

free_pde8_phospho*PDE8*H *S11 ;

PP_dephospho_pPDE8_1 : [1 <= PP] & [S010 < scaffold_max] : [S010 + 1] & [S011 - 1] :

pde8_dephospho*PP*S011 ;

PP_dephospho_pPDE8_2 : [1 <= PP] & [S000 < scaffold_max] : [S001 - 1] & [S000 + 1] :

pde8_dephospho*PP*S001;

dephospho_free_PDE8 : [1 <= PP] & [PDE8 < pde8_max] : [PDE8_P - 1] & [PDE8 + 1] :

free_pde8_dephospho*H*PP*PDE8_P ;

}

204

A.2 Case studies

cAMP

cAMP

cAMP

cAMP

cAMP

cAMP

tick

S00

u scaffold init

S10

S01

S11

S000
scaffold init

S100

S101

S110

S011

S010

S001

S111

PP u

pp u init

PP

pp init

PP

pp init

PDE8 P

pde8 p init

PDE8

pde8 init

free PDE8 degrades cAMP

free pPDE8 degrades cAMP

diffuse3 in cAMP

diffuse2 in cAMP

diffuse1 in cAMP

PDE8 degrades cAMP 3

PDE8 degrades cAMP 1

release1cAMP

release1cAMP u

pPDE8 degrades cAMP1

pPDE8 degrades cAMP2

PDE8 degrades cAMP 2

PDE8 degrades cAMP 4

activate u PKA 1

activate PKA 1

dephospho1 Raf

dephospho u Raf

dephospho2 Raf

PP dephospho pPDE8 1

phospho Raf

phospho Raf pPDE8phospho PDE8

phospho PDE8 pRaf

phospho u Raf

PP dephospho pPDE8 2

dephospho free PDE8

phospho u PDE8 bis

phospho u PDE8

tick max

basal camp

basal camp

camp max

tick max

camp max

tick med

scaffold max

scaffold max

scaffold max

scaffold max

scaffold max

u scaffold max

scaffold max

u scaffold max

scaffold max

scaffold max

scaffold max

scaffold max

u scaffold max

pde8 p max

camp max

camp max

u scaffold max

tick med

205

A Appendix

Circadian Clock (CLOCK)

An SPN of the circadian clock model published in [117]. The model is scalable con-
cerning the boundedness degree of the places a,ma,mr,r and c by means of inhibitor
arc weights. The rate functions are specified by means of the MassAction function
pattern.

a

c

dada a

drdr a

ma

mr

r

bind a

bind r

deactive

deg a

deg c

deg ma

deg mr

deg r

rel a

rel r

transc da

transc da a

transc dr

transc dr a

transl a

transl r

N

N

NN

N

NN

N N

N

spn [CLOCK_N] {

constants:

int N ;

double p_transc_da = 50;

double p_transc_da_a = 500;

double p_transc_dr = 0.01;

double p_transc_dr_a = 50;

double p_transl_a = 50;

double p_bind_a = 1;

double p_transl_r = 5;

double p_bind_r = 1;

double p_rel_a = 50;

double p_rel_r = 100;

double p_deactive = 2;

double p_deg_a = 1;

double p_deg_c = 1;

double p_deg_r = 0.2;

double p_deg_ma = 10;

double p_deg_mr = 0.5;

places:

a = 0;

c = 0;

da = 1;

da_a = 0;

dr = 1;

dr_a = 0;

ma = 0;

mr = 0;

r = 0;

transitions:

bind_a : : [da_a + 1] & [da - 1] & [a - 1] : MassAction(p_bind_a);

bind_r : : [dr_a + 1] & [a - 1] & [dr - 1] : MassAction(p_bind_r);

deactive : [c < N] : [c + 1] & [a - 1] & [r - 1] : MassAction(p_deactive);

deg_a : : [a - 1] : MassAction(p_deg_a);

deg_c : [r < N] : [r + 1] & [c - 1] : MassAction(p_deg_c);

deg_ma : : [ma - 1] : MassAction(p_deg_ma);

deg_mr : : [mr - 1] : MassAction(p_deg_mr);

deg_r : : [r - 1] : MassAction(p_deg_r);

rel_a : [a < N] : [da + 1] & [a + 1] & [da_a - 1] : MassAction(p_rel_a);

rel_r : [a < N] : [a + 1] & [dr + 1] & [dr_a - 1] : MassAction(p_rel_r);

transc_da : [da >= 1] & [ma < N] : [ma + 1] : MassAction(p_transc_da);

transc_da_a : [da_a >= 1] & [ma < N] : [ma + 1] : MassAction(p_transc_da_a);

transc_dr : [dr >= 1] & [mr < N] : [mr + 1] : MassAction(p_transc_dr);

transc_dr_a : [dr_a >= 1] & [mr < N] : [mr + 1] : MassAction(p_transc_dr_a);

transl_a : [ma >= 1] & [a < N] : [a + 1] : MassAction(p_transl_a);

transl_r : [mr >= 1] & [r < N] : [r + 1] : MassAction(p_transl_r);

}

206

A.2 Case studies

ERK

An SPN model of RKIP inhibited ERK pathway published in [26]. The model is
scalable by the initial state. The number of tokens on the places Raf1Star, MAKPP,

RKIPP and RP is represented by the constant N . The rate functions are specified by
means of the MassAction function pattern.

N

Raf1Star

N

RKIP

Raf1Star RKIP

ERKPP

MEKPP ERK

Raf1Star RKIP ERKPP

RKIPP RP

N

MEKPP

N

ERK RKIPP

N

RP

r1 r2

r3 r4

r6 r7 r9 r10r5

r8 r11

spn [ERK_N]

{

constants:

in N = 1;

places:

Raf1Star = N;

RKIP = N;

Raf1Star_RKIP = 0;

ERKPP = 0;

MEKPP_ERK = 0;

Raf1Star_RKIP_ERKPP = 0;

RKIPP_RP = 0;

MEKPP = N;

ERK = N;

RKIPP = 0;

RP = N;

transitions:

r1 : : [Raf1Star_RKIP + 1] & [Raf1Star - 1] & [RKIP - 1] : MassAction(0.53);

r2 : : [Raf1Star + 1] & [RKIP + 1] & [Raf1Star_RKIP - 1] : MassAction(0.0072);

r3 : : [Raf1Star_RKIP_ERKPP + 1] & [Raf1Star_RKIP - 1] & [ERKPP - 1] : MassAction(0.625);

r4 : : [Raf1Star_RKIP + 1] & [ERKPP + 1] & [Raf1Star_RKIP_ERKPP - 1] : MassAction(0.00245);

r6 : : [MEKPP_ERK + 1] & [MEKPP - 1] & [ERK - 1] : MassAction(0.8);

r7 : : [ERK + 1] & [MEKPP + 1] & [MEKPP_ERK - 1] : MassAction(0.0075);

r9 : : [RKIPP_RP + 1] & [RP - 1] & [RKIPP - 1] : MassAction(0.92);

r10 : : [RP + 1] & [RKIPP + 1] & [RKIPP_RP - 1] : MassAction(0.00122);

r5 : : [ERK + 1] & [RKIPP + 1] & [Raf1Star + 1] & [Raf1Star_RKIP_ERKPP - 1] : MassAction(0.0315);

r8 : : [ERKPP + 1] & [MEKPP + 1] & [MEKPP_ERK - 1] : MassAction(0.071);

r11 : : [RKIP + 1] & [RP + 1] & [RKIPP_RP - 1] : MassAction(0.87);

}

207

A Appendix

Mitogen-Actived Protein Kinase (MAPK)

An SPN of the mitogen-actived protein kinase cascade (MAPK) derived from the
PRISM specification taken from [77]. The layout of the SPN is taken from [51]. The
rate functions are specified by means of the MassAction function pattern. I consider
also a second version (LEV) with different rate-specific constants to define the mass-
action kinetics which are deployed in [51]. The model is scalable by the number of
initial tokens on the places k,kk and kkk.

e1

e2

k N

k kkpp

kk N

kk kkkp

kkk N

kkk e1

kkkp

kkkp e2

kkp

kkp kkkp

kkp ptase

kkpp

kkpp ptase

kkptase

kp

kp kkpp

kp ptase

kpp

kpp ptase

kptase

k k kk k k kk

k k ptase k k ptase

k kk kkk
k kk kkk

k kk ptase k kk ptase

k kkk e1

k kkk e2

a d kkk e1

a d kkk e2

a d kk ptase

a d kk kkk

a d kk ptase

a d kk kkk

a d k kk

a d k ptase

a d k kk

a d k ptase

spn [MAPK_N] {

//MAPK //LEV

constants:

double N = 1;

double a1 = 1 / N; // 1 / N

double a2 = 1 / N; // 0.5 / N

double a3 = 1 / N; // 3.3 / N

double a4 = 1 / N; // 10 / N

double a5 = 1 / N; // 3.3 / N

double a6 = 1 / N; // 10 / N

double a7 = 1 / N; // 20 / N

double a8 = 1 / N; // 5 / N

double a9 = 1 / N; // 20 / N

double a10 = 1 / N; // 5 / N

double d1 = 150; // 0.4

double d2 = 150; // 0.1

double d3 = 150; // 0.42

double d4 = 150; // 0.8

double d5 = 150; // 0.4

double d6 = 150; // 0.8

double d7 = 150; // 0.6

double d8 = 150; // 0.4

double d9 = 150; // 0.6

double d10 = 150; // 0.4

double k1 = 150; // 0.1

double k2 = 150; // 0.1

double k3 = 150; // 0.1

double k4 = 150; // 0.1

double k5 = 150; // 0.1

double k6 = 150; // 0.1

double k7 = 150; // 0.1

208

A.2 Case studies

double k8 = 150; // 0.1

double k9 = 150; // 0.1

double k10 = 150; // 0.1

places:

e1 = 1;

e2 = 1;

k = N;

k_kkpp = 0;

kk = N;

kk_kkkp = 0;

kkk = N;

kkk_e1 = 0;

kkkp = 0;

kkkp_e2 = 0;

kkp = 0;

kkp_kkkp = 0;

kkp_ptase = 0;

kkpp = 0;

kkpp_ptase = 0;

kkptase = 1;

kp = 0;

kp_kkpp = 0;

kp_ptase = 0;

kpp = 0;

kpp_ptase = 0;

kptase = 1;

transitions:

a_k_kk : : [k_kkpp + 1] & [k - 1] & [kkpp - 1] : MassAction(a7);

a_k_kk_ : : [kp_kkpp + 1] & [kkpp - 1] & [kp - 1] : MassAction(a9);

a_k_ptase : : [kp_ptase + 1] & [kptase - 1] & [kp - 1] : MassAction(a8);

a_k_ptase_ : : [kpp_ptase + 1] & [kptase - 1] & [kpp - 1] : MassAction(a10);

a_kk_kkk : : [kk_kkkp + 1] & [kk - 1] & [kkkp - 1] : MassAction(a3);

a_kk_kkk_ : : [kkp_kkkp + 1] & [kkkp - 1] & [kkp - 1] : MassAction(a5);

a_kk_ptase : : [kkp_ptase + 1] & [kkp - 1] & [kkptase - 1] : MassAction(a4);

a_kk_ptase_ : : [kkpp_ptase + 1] & [kkptase - 1] & [kkpp - 1] : MassAction(a6);

a_kkk_e1 : : [kkk_e1 + 1] & [e1 - 1] & [kkk - 1] : MassAction(a1);

a_kkk_e2 : : [kkkp_e2 + 1] & [e2 - 1] & [kkkp - 1] : MassAction(a2);

d_k_kk : : [k + 1] & [kkpp + 1] & [k_kkpp - 1] : MassAction(d7);

d_k_kk_ : : [kkpp + 1] & [kp + 1] & [kp_kkpp - 1] : MassAction(d9);

d_k_ptase : : [kptase + 1] & [kp + 1] & [kp_ptase - 1] : MassAction(d8);

d_k_ptase_ : : [kptase + 1] & [kpp + 1] & [kpp_ptase - 1] : MassAction(d10);

d_kk_kkk : : [kk + 1] & [kkkp + 1] & [kk_kkkp - 1] : MassAction(d3);

d_kk_kkk_ : : [kkkp + 1] & [kkp + 1] & [kkp_kkkp - 1] : MassAction(d5);

d_kk_ptase : : [kkp + 1] & [kkptase + 1] & [kkp_ptase - 1] : MassAction(d4);

d_kk_ptase_ : : [kkptase + 1] & [kkpp + 1] & [kkpp_ptase - 1] : MassAction(d6);

d_kkk_e1 : : [e1 + 1] & [kkk + 1] & [kkk_e1 - 1] : MassAction(d1);

d_kkk_e2 : : [e2 + 1] & [kkkp + 1] & [kkkp_e2 - 1] : MassAction(d2);

k_k_kk : : [kp + 1] & [kkpp + 1] & [k_kkpp - 1] : MassAction(k7);

k_k_kk_ : : [kpp + 1] & [kkpp + 1] & [kp_kkpp - 1] : MassAction(k9);

k_k_ptase : : [kptase + 1] & [k + 1] & [kp_ptase - 1] : MassAction(k8);

k_k_ptase_ : : [kp + 1] & [kptase + 1] & [kpp_ptase - 1] : MassAction(k10);

k_kk_kkk : : [kkp + 1] & [kkkp + 1] & [kk_kkkp - 1] : MassAction(k3);

k_kk_kkk_ : : [kkpp + 1] & [kkkp + 1] & [kkp_kkkp - 1] : MassAction(k5);

k_kk_ptase : : [kk + 1] & [kkptase + 1] & [kkp_ptase - 1] : MassAction(k4);

k_kk_ptase_ : : [kkp + 1] & [kkptase + 1] & [kkpp_ptase - 1] : MassAction(k6);

k_kkk_e1 : : [kkkp + 1] & [e1 + 1] & [kkk_e1 - 1] : MassAction(k1);

k_kkk_e2 : : [e2 + 1] & [kkk + 1] & [kkkp_e2 - 1] : MassAction(k2);

}

209

A Appendix

A.2.2 Technical Systems

KANBAN

An SPN model of the Kanban system with four cells taken from [34]. The model is
scalable concerning the capacity of the places xi and wi which is realized by inhibitor
arcs with weight N.

x1

y1

z1

x2

y2

z2

x3

y3

z3

x4

y4

z4

w1

w2

w3

w4

in

t1 1 t1 2

t1 3

t2 1 t2 2

t2 3

s2
s1

t3 1

t3 3

t3 2

t4 1 t4 2

t4 3

t5

N

N
N

N

N

N

N

N

spn [KANBAN_N] {

constants:

int N = 5;

places:

x1 = 0;

y1 = 0;

z1 = 0;

x2 = 0;

y2 = 0;

z2 = 0;

x3 = 0;

y3 = 0;

z3 = 0;

x4 = 0;

y4 = 0;

z4 = 0;

w1 = 0;

w2 = 0;

w3 = 0;

w4 = 0;

transitions:

in : [x1 < N] & [w1 < N] : [x1 + 1] & [w1 + 1] : 1 ; // in1

t1_1 : : [y1 + 1] & [x1 - 1] : 0.36 ; // redo1

t1_2 : : [x1 + 1] & [y1 - 1] : 0.3 ; // back2

t1_3 : : [z1 + 1] & [x1 - 1] : 0.84 ; // ok1

t2_1 : : [y2 + 1] & [x2 - 1] : 0.42 ; // redo2

t2_2 : : [x2 + 1] & [y2 - 1] : 0.3 ; // back2

t2_3 : : [z2 + 1] & [x2 - 1] : 0.98; // ok2

s2 : [w4 < N] & [x4 < N] :

[w4 + 1] & [x4 + 1] & [z2 - 1] & [z3 - 1] & [w2 - 1] & [w3 - 1] : 0.5 ; //synch234;

s1 : [w3 < N] & [w2 < N] & [x2 < N] & [x3 < N] :

[x2 + 1] & [w2 + 1] & [w3 + 1] & [x3 + 1] & [z1 - 1] & [w1 - 1] : 0.4 ; //synch123;

t3_1 : : [y3 + 1] & [x3 - 1] : 0.39 ; // redo3

t3_3 : : [z3 + 1] & [x3 - 1] : 0.91 ; // ok3

t3_2 : : [x3 + 1] & [y3 - 1] : 0.3 ; // back3

t4_1 : : [y4 + 1] & [x4 - 1] : 0.33 ; // redo4

t4_2 : : [x4 + 1] & [y4 - 1] : 0.3 ; // back4

t4_3 : : [z4 + 1] & [x4 - 1] : 0.77 ; // ok4

t5 : : [z4 - 1] & [w4 - 1] : 0.9 ; // out4;

}

210

A.2 Case studies

Polling Server System (PSS)

An SPN of a polling server [65] and two clients. In the figure, the grey colored places
s and a are logical places and model the server instance. The places si represent each
a client which either needs service (a token on si) or not (si empty). The model is
scalable by increasing the number of clients which means to change the net structure.
A recommendable approach to define a scalable polling server system is to deploy
colored Petri nets [82] which are also supported by Snoopy. For the experiments I used
a model with 20 and 15 clients, respectively.

s sa a

s1 s2

loop1a loop1bserve1 serve2 loop2bloop2a

2

22

spn [polling_N2] {

constants:

int N =2 ;

double gamma = 200 ;

double mu = 1.0 ;

double lambda = mu / N;

places:

s = 1 ;

a = 0 ;

s1 = 0 ;

s2 = 0 ;

transitions:

loop1a : [s1 < 1] & [a < 1] & [s = 1] : [s + 1] : gamma;

serve1 : [s = 1] : [s1 - 1] & [a - 1] & [s + 1] : mu ;

loop1b : [s1 = 1] & [a < 1] & [s = 1] : [a + 1] :gamma ;

t1 : [s1 < 1] : [s1 + 1] : lambda ;

loop2a : [s2 < 1] & [a < 1] & [s = 2]: [s - 1] : gamma ;

serve2 : [s = 2] : [s2 - 1] & [a -1] & [s - 1] : mu ;

loop2b : [s2 = 1] & [a < 1] & [s = 2] : [a + 1] : gamma ;

t2 : [s2 < 1] : [s2 + 1] : lambda ;

}

211

A Appendix

Flexible Manufacturing System (FMS)

A GSPN model of the flexible manufacturing system with four machines taken from
[35]. The model is scalable concerning the initial states by defining different amount
of tokens on the places P1,P2,P3 and P12. For the experiments I used the stochas-
tically equivalent SPN2. The original FMS system contains transitions which have
adjacent arcs with state-dependent weights (tP1s,tP12s,tP2s,tP3s). For instance
the firing of transition tP1s consumes all available tokens on place P1s and produces
the same amount of tokens on place P1. MARCIE does not support state-dependent
arcs weights. However, assuming an upper bound max for the range of N we can in-
troduce max different transitions for tP1s. Each transition P1s i represents the case
that there are exactly i tokens on place P1s which will be consumed and created on
P1. Therefor we need only standard and inhibitor arcs. The same adaption has to be
applied for the transitions tP12s,tP2s and tP3s.

P1

N

P1wM1 P1M1

M1

P1s

P12s

P12M3

M3

P12wM3
P12

P1wP2

P2wP1
P2 N

P2wM2

P2M2

M2

P2s

P3
N

P3M2

P3s

P1d

P2d

tP3
tP3M2

tP1

tP2

tP12

tP1M1

tP12M3

tP2M2

tM1

tP1e

tP1j

tx

tM3

tM2

tP2j

tP2e

#P2s

#P3s

#P12s

#P12s

#P1s

#P2s

#P3s

#P12s

#P1sgspn [FMS_GSPN_Nless10] {

constants:

int N = 10;

int np = 3*N/2;

places:

P1 = N;

P1wM1 = 0;

P1M1 = 0;

M1 = 3;

P1s = 0;

P12s = 0;

P12M3 = 0;

M3 = 2;

P12wM3 = 0;

P12 = 0;

P1wP2 = 0;

P2wP1 = 0;

P2 = N;

P2wM2 = 0;

P2M2 = 0;

M2 = 1;

P2s = 0;

P3 = N;

P3M2 = 0;

P3s = 0;

P1d = 0;

P2d = 0;

2available on request

212

A.2 Case studies

transitions:

tP3 : [P1] & [P2] & [P12] : [P3M2 + 1] & [P3 - 1] : P3*max(1,np/(P1+P2+P3+P12));

tP3M2 : : [M2 + 1] & [P3s + 1] & [M2 - 1] & [P3M2 - 1] : 0.5;

tP1 : [P2] & [P12] & [P3] : [P1wM1 + 1] & [P1 - 1] : P1*max(1,np/(P1+P2+P3+P12));

tP2 : [P1] & [P12] & [P3] : [P2wM2 + 1] & [P2 - 1] : P2*max(1,np/(P1+P2+P3+P12));

tP12 : [P1] & [P2] & [P3] : [P12wM3 + 1] & [P12 - 1] : P12*max(1,np/(P1+P2+P3+P12));

P1s_eq_1 : [P1s = 1] : [P1 + 1] & [P1s - 1] : 1/60;

P1s_eq_2 : [P1s = 2] : [P1 + 2] & [P1s - 2] : 1/60;

...

P1s_eq_10 : [P1s = 10] : [P1 + 10] & [P1s - 10] : 1/60;

P12s_eq_1 : [P12s = 1] : [P1 + 1] & [P2 + 1] & [P12s - 1] : 1/60;

P12s_eq_2 : [P12s = 2] : [P1 + 2] & [P2 + 2] & [P12s - 2] : 1/60;

...

P12s_eq_10 : [P12s = 10] : [P1 + 10] & [P2 + 10] & [P12s - 10] : 1/60;

P3s_eq_1 : [P3s = 1] : [P3 + 1] & [P3s - 1] : 1/60;

P3s_eq_2 : [P3s = 2] : [P3 + 2] & [P3s - 2] : 1/60;

...

P3s_eq_10 : [P3s = 10] : [P3 + 10] & [P3s - 10] : 1/60;

P2s_eq_1 : [P2s = 1] : [P2 + 1] & [P2s - 1] : 1/60;

P2s_eq_2 : [P2s = 2] : [P2 + 2] & [P2s - 2] : 1/60;

...

P2s_eq_10 : [P2s = 10] : [P2 + 10] & [P2s - 10] : 1/60;

immediate:

tM1 : : [P1M1 + 1] & [P1wM1 - 1] & [M1 - 1] : 1;

tP1e : : [P1s + 1] & [P1d - 1] : 0.8;

tP1j : : [P1wP2 + 1] & [P1d - 1] : 0.2;

tx : : [P12 + 1] & [P1wP2 - 1] & [P2wP1 - 1] : 1;

tM3 : : [P12M3 + 1] & [P12wM3 - 1] & [M3 - 1] : 1;

tM2 : : [P2M2 + 1] & [P2wM2 - 1] & [M2 - 1] : 1;

tP2j : : [P2wP1 + 1] & [P2d - 1] : 0.4;

tP2e : : [P2s + 1] & [P2d - 1] : 0.6;

}

213

A Appendix

Workstation Cluster (WC)

AGSPNmodel of a workstation cluster taken from [56]. The given net has been created
by flattening a colored Petri net. The single components are structurally identical and
represent two sets of workstations (suffix 0 and 1) connected by two switches (suffix 2
and 3) and a backbone. Each component may fail because of an error and only a single
repair unit is available for repair. The model is scalable concerning the initial number
of tokens N on the places Up 0 and Up 1, which represent the number of available
workstations. For the experiments I deploy the stochastically equivalent SPN3.

Down 0

Down 1

Down 2

Down 3

Down 4

InRepair 0

InRepair 1

InRepair 2

InRepair 3

InRepair 4

RepairUnit

Up 0N

Up 1
N

Up 2

Up 3

Up 4

Fail 0

Fail 1

Fail 2

Fail 3

Fail 4

Repair 0

Repair 1

Repair 2

Repair 3

Repair 4

Inspect 0

Inspect 1

Inspect 2

Inspect 3

Inspect 4

gspn [WC] {

constants:

int N;

double bb_fail = 0.0002;

double ws_fail = 0.002;

double s_fail = 0.00025;

places:

Down_0 = 0;

Down_1 = 0;

Down_2 = 0;

Down_3 = 0;

Down_4 = 0;

InRepair_0 = 0;

InRepair_1 = 0;

InRepair_2 = 0;

InRepair_3 = 0;

InRepair_4 = 0;

RepairUnit = 1;

Up_0 = N;

Up_1 = N;

Up_2 = 1;

Up_3 = 1;

Up_4 = 1;

transitions:

Fail_0 : : [Down_0 + 1] & [Up_0 - 1] : ws_fail*Up_0;

Fail_1 : : [Down_1 + 1] & [Up_1 - 1] : ws_fail*Up_1;

Fail_2 : : [Down_2 + 1] & [Up_2 - 1] : s_fail;

Fail_3 : : [Down_3 + 1] & [Up_3 - 1] : s_fail;

Fail_4 : : [Down_4 + 1] & [Up_4 - 1] : bb_fail;

Repair_0 : : [Up_0 + 1] & [RepairUnit + 1] & [InRepair_0 - 1] : 2;

Repair_1 : : [Up_1 + 1] & [RepairUnit + 1] & [InRepair_1 - 1] : 2;

Repair_2 : : [Up_2 + 1] & [RepairUnit + 1] & [InRepair_2 - 1] : 0.25;

Repair_3 : : [Up_3 + 1] & [RepairUnit + 1] & [InRepair_3 - 1] : 0.25;

Repair_4 : : [Up_4 + 1] & [RepairUnit + 1] & [InRepair_4 - 1] : 0.125;

immediate:

Inspect_0 : : [InRepair_0 + 1] & [Down_0 - 1] & [RepairUnit - 1] : 1;

Inspect_1 : : [InRepair_1 + 1] & [Down_1 - 1] & [RepairUnit - 1] : 1;

Inspect_2 : : [InRepair_2 + 1] & [Down_2 - 1] & [RepairUnit - 1] : 1;

Inspect_3 : : [InRepair_3 + 1] & [Down_3 - 1] & [RepairUnit - 1] : 1;

Inspect_4 : : [InRepair_4 + 1] & [Down_4 - 1] & [RepairUnit - 1] : 1;

}

3available on request

214

Bibliography

[1] A. Alexandrescu. Modern C++ design: generic programming and design
patterns applied. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2001.

[2] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time.
Information and Computation, 104(1):2–34, 1993.

[3] R. Alur and T. A. Henzinger. Reactive Modules. Formal Methods in
System Design, 15(1):7–48, 1999.

[4] O. Andrei and M. Calder. A Model and Analysis of the AKAP Scaffold.
Electronic Notes in Theoretical Computer Science, 268:3–15, 2010.

[5] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Verifying continuous
time Markov chains. In Proc. International Conference Computer Aided
Verification (CAV), volume 1102 of LNCS, pages 269–276. Springer, 1996.

[6] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model checking continuous
time Markov chains. Transactions on Computational Logic (TOCL), 1(1),
2000.

[7] C. Baier, E. M. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and
M. Ryan. Symbolic Model Checking for Probabilistic Processes. In Proc.
International Colloquium Automata, Languages and Programming (ICALP
1997), volume 1256 of LNCS, pages 430–440. Springer, 1997.

[8] C. Baier, L. Cloth, B. R. Haverkort, H. Hermanns, and J. P. Katoen.
Performability assessment by model checking of Markov reward models.
Formal Methods in System Design, 36(1):1–36, 2010.

[9] C. Baier, B. Haverkort, H. Hermanns, and J. P. Katoen. Model checking
Contiuous-Time Markov Chains by transient Analysis. In Proc. Inter-
national Conference Computer Aided Verification (CAV), volume 1855 of
LNCS, pages 358–372. Springer, 2000.

[10] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. On the Logical
Characterisation of Performability Properties. In Automata, Languages

215

Bibliography

and Programming, volume 1853 of LNCS, pages 780–792. Springer, 2000.

[11] C. Baier, B. Haverkort, H. Hermanns, and J. P. Katoen. Model-checking
algorithms for continuous-time Markov chains. IEEE Transactions on Soft-
ware Engineering, 29(6):524–541, 2003.

[12] C. Baier, H. Hermanns, and J. P. Katoen. Approximative Symbolic Model
checking of Contiuous-Time Markov Chains. In Proc. International Con-
ference of Concurrency Theory (CONCUR), volume 1664 of LNCS, pages
163–175. Springer, 1999.

[13] C. Baier, H. Hermanns, J. P. Katoen, and B. R. Haverkort. Efficient com-
putation of time-bounded reachability probabilities in uniform continuous-
time Markov decision processes. Theoretical Computer Science, 345(1):2–
26, 2005.

[14] A. Bell and B. R. Haverkort. Distributed disk-based algorithms for model
checking very large Markov chains. Formal Methods in System Design,
29(2):177–196, 2006.

[15] A. Benoit, L. Brenner, P. Fernandes, B. Plateau, and W. J. Stewart. The
PEPS Software Tool. In Computer Performance Evaluations, Modelling
Techniques and Tools, volume 2794 of LNCS, pages 98–115. Springer, 2003.

[16] D. Bosnaki, S. Edelkamp, D. Sulewski, and A. Wijs. Parallel probabilistic
model checking on general purpose graphics processors. Software Tools for
Technology Transfer (STTT), 13:21–35, 2011.

[17] K. S. Brace and R. L. R. R. E. Bryant. Efficient implementation of a BDD
package. In Proc. International Design Automation Conference, DAC ’90,
pages 40–45, New York, NY, USA, 1990. ACM.

[18] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipula-
tion. IEEE Transactions on Computers, C-35(8):677–691, 1986.

[19] P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper. Complexity of
Memory-Efficient Kronecker Operations with Applications to the solution
of markov models. INFORMS Journal on Computing, 12(3):203–222, 2000.

[20] P. Buchholz, J. P. Katoen, P. Kemper, and C. Tepper. Model-checking large
structured Markov chains. Journal of Logic and Algebraic Programming,
56(1-2):69–97, 2003.

[21] P. Buchholz and P. Kemper. A Toolbox for the Analysis of Discrete Event
Dynamic Systems. In Proc. International Conference Computer Aided Ver-
ification (CAV), volume 1633 of LNCS, pages 483–486. Springer, 1999.

216

Bibliography

[22] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic Model Checking: 1020 States and Beyond. In Proc. IEEE Sym-
posium on Logic in Computer Sience, volume 5, pages 428–439, 1990.

[23] M. Calder, V. Vyshemirsky, D. Gilbert, and R. Orton. Analysis of sig-
nalling pathways using continuous time Markov chains. Transactions on
Computational Systems Biology, 4220:44–67, 2006.

[24] D. Cerotti, S. Donatelli, A. Horváth, and J. Sproston. CSL Model Checking
for Generalized Stochastic Petri Nets. In Proc. International Conference
on the Quantitative Evaluation of Systems (QEST), pages 199–210. IEEE
Computer Society, 2006.

[25] G. Chiola, S. Donatelli, and G. Franceschinis. GSPNs versus SPNs: what is
the actual role of immediate transitions? . In Proc. Internatinal Workshop
Petri Nets and Performance Models (PNPM), pages 20–31, 1991.

[26] K. H. Cho, S. Y. Shin, H. W. Kim, O. Wolkenhauer, B. McFerran, and
W. Kolch. Mathematical modeling of the influence of RKIP on the ERK
signaling pathway. In Proc. International Conference on Computational
Methods in Systems Biology (CMSB), volume 2602 of LNCS/LNBI, pages
127–141. Springer, 2003.

[27] G. Ciardo. Data Representation and Efficient Solution: A Decision Dia-
gram Approach. In Formal Methods for Performance Evaluation (SFM
2007), volume 4486 of LNCS, pages 371–394. Springer, 2007.

[28] G. Ciardo, A. Blakemore, P. F. Chimento, J. K. Muppala, and K. S.
Trivedi. Automated generation and analysis of Markov reward models
using Stochastic Reward Nets. IMA Volumes in Mathematics and its Ap-
plications: Linear Algebra, Markov Chains, and Queueing Models, 48:145–
191, 1993.

[29] G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceanu. Logical and
stochastic modeling with SMART. Performance Evaluation, 63(1):578–
608, 2006.

[30] G. Ciardo, G. Lüttgen, and R. Siminiceanu. Saturation: An Efficient Itera-
tion Strategy for Symbolic State-Space Generation. In Proc. International
Conference on Tools and Algorithms for the Construction and Analysis of
Systems, volume 2031 of LNCS, pages 328–342. Springer, 2001.

[31] G. Ciardo, G. Lüttgen, and A. J. Yu. Improving static variable orders
via invariants. In Proc. Application and Theory of Petri Nets and Other
Models of Concurrency (ICATPN, volume 4546 of LNCS, pages 83–103.

217

Bibliography

Springer, 2007.

[32] G. Ciardo and A. S. Miner. A data structure for the efficient Kronecker
solution of GSPNs. In Proc. International Workshop on Petri Nets and
Performance Models (PNPM), pages 22–31. IEEE Computer Society Press,
1999.

[33] G. Ciardo and R. Siminiceanu. Using Edge-Valued Decision Diagrams for
Symbolic Generation of Shortest Paths. In Proc. International Conference
on Formal Methods in Computer-Aided Design, volume 2517 of LNCS,
pages 256–273. Springer, 2002.

[34] G. Ciardo and M. Tilgner. On the Use of Kronecker Operators for the So-
lution of Generalized Stocastic Petri Nets. ICASE Report 96-35, Institute
for Computer Applications in Science and Engineering, 1996.

[35] G. Ciardo and K. S. Trivedi. A Decomposition Approach for Stochastic
Reward Net Models. Performance Evaluation, 18(1):37–59, 1993.

[36] E. M. Clarke and E. A. Emerson. Design and Synthesis of Synchronization
Skeletons Using Branching-Time Temporal Logic. In Workshop on Logic
of Programs, pages 52–71. Springer, 1982.

[37] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of
finite-state concurrent systems using temporal logic specifications. Trans-
actions on Programming Languages and Systems, 8:244–263, 1986.

[38] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press,
2001.

[39] E. M. Clarke, K. L. McMillan, X. Zhao, M. Fujita, and J. Yang. Spec-
tral transforms for large boolean functions with applications to technology
mapping. In Proc. International Design Automation Conference, DAC ’93,
pages 54–60. ACM, 1993.

[40] L. Cloth. Model Checking Algorithms for Markov Reward Models. PhD
thesis, University of Twente, 2006.

[41] L. Cloth and B. R. Haverkort. Model checking for survivability! In Quan-
titative Evaluation of Systems, pages 145–154. IEEE Computer Society,
2005.

[42] L. Cloth and B. R. Haverkort. Five Performability Algorithms. A Com-
parison. In MAM 2006: Markov Anniversary Meeting, pages 39–54. Boson
Books, 2006.

218

Bibliography

[43] T. Courtney, S. Gaonkar, K. Keefe, E. Rozier, and W. H. Sanders. Möbius
2.3: An extensible tool for dependability, security, and performance evalu-
ation of large and complex system models. In DSN, pages 353–358, 2009.

[44] L. de Alfaro, M. Kwiatkowska, G. Norman, D. Parker, and R. Segala.
Symbolic Model Checking of Probabilistic Processes Using MTBDDs and
the Kronecker Representation. In Proc. International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 1785 of LNCS, pages 395–410. Springer, 2000.

[45] D. Deavours and W. H. Sanders. ”On-the-Fly” Solution Techniques for
Stochastic Petri Nets and Extensions. In IEEE Transactions on Software
Engineering, pages 132–141, 1997.

[46] D. D. Deavours and W. H. Sanders. An efficient disk-based tool for solving
large Markov models. Performance Evaluation, 33(1):67–84, 1998.

[47] S. Donatelli. Superposed Generalized Stochastic Petri Nets: Definition and
Efficient Solution. In Proc. International Conference on Application and
Theory of Petri Nets, volume 815 of LNCS, pages 258–277. Springer, 1994.

[48] S. Donatelli, M. Ribaudo, and J. Hillston. A Comparison of Performance
Evaluation Process Algebra and Generalized Stochastic Petri Nets. In
Proc. International Workshop on Petri Nets and Performance Models,
pages 158–168. IEEE Computer Society Press, 1995.

[49] E. A. Emerson, A. K. Mok, A. P. Sistla, and J. Srinivasan. Quantitative
Temporal Reasoning. In Computer Aided Verification, CAV ’90, pages
136–145, London, UK, UK, 1991. Springer.

[50] B. L. Fox and P. W. Glynn. Computing Poisson probabilities. Communi-
cations of the ACM, 31:440–445, 1988.

[51] D. Gilbert, M. Heiner, and S. Lehrack. A Unifying Framework for Mod-
elling and Analysing Biochemical Pathways Using Petri Nets . In Proc.
International Conference on Computational Methods in Systems Biology,
volume 4695 of Lecture Notes in Computer Sience/LNBI, pages 200–216.
Springer, 2007.

[52] P. J. E. Goss and J. Peccoud. Quantitative modeling of stochastic systems
in molecular biology by using stochastic Petri nets. Proc. of the National
Acadamy of Science of the United States of America, 95:2340–2361, 1998.

[53] G. D. Hachtel, E. Macii, A. Pardo, and F. Somenzi. Probabilistic analysis
of large finite state machines. In Proc. Design Automation Conference,

219

Bibliography

DAC ’94, pages 270–275, New York, NY, USA, 1994. ACM.

[54] H. Hansson and B. Jonsson. A Logic for Reasoning about Time and Reli-
ability. Formal Aspects of Computing, 6:102–111, 1994.

[55] B. Haverkort, L. Cloth, H. Hermanns, J.-P. Katoen, and C. Baier. Model
Checking Performability Properties. In Dependable Systems and Networks,
DSN ’02, pages 103–112. IEEE Computer Society, 2002.

[56] B. R. Haverkort, H. Hermanns, and J. P. Katoen. On the Use of Model
Checking Techniques for Dependability Evaluation. In Symposium on Re-
liable Distributed Systems, SRDS ’00, pages 228–237. IEEE Computer So-
ciety, 2000.

[57] B. R. Haverkort and K. S. Trivedi. Specification techniques for Markov
reward models. Discrete Event Dynamic Systems, 3:219–247, 1993.

[58] M. Heiner, M. Herajy, F. Liu, C. Rohr, and M. Schwarick. Snoopy – a
unifying Petri net tool. In Proc. Application and Theory of Petri Nets,
volume 7347 of LNCS, pages 398–407. Springer, 2012.

[59] M. Heiner, C. Rohr, and M. Schwarick. MARCIE - Model checking And
Reachability analysis done effiCIEntly. In Proc. PETRI NETS 2013, vol-
ume 7927 of LNCS, pages 389–399. Springer, 2013.

[60] M. Heiner, C. Rohr, M. Schwarick, and S. Streif. A Comparative Study
of Stochastic Analysis Techniques . In Proc. International Conference on
Computational Methods in Systems Biology (CMSB), pages 96–106. ACM
digital library, 2010.

[61] M. Heiner, M. Schwarick, and A. Tovchigrechko. DSSZ-MC-A Tool for
Symbolic Analysis of Extended Petri Nets. In Application and Theory of
Petri Nets, volume 5606 of LNCS, pages 323–332, 2009.

[62] H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for perfor-
mance evaluation. Theoretical Computer Science, 274(1-2):43–87, 2002.

[63] H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi Terminal Binary
Decision Diagrams to Represent and Analyse Continuous Time Markov
Chains. In Proc. International Workshop on Numerical Solution of Markov
Chains (NSMC’99), pages 188–207. Prensas Universitarias de Zaragoza,
1999.

[64] J. Hillston. A compositional approach to performance modelling. Cam-
bridge University Press, New York, NY, USA, 1996.

220

Bibliography

[65] O. Ibe and K. Trivedi. Stochastic Petri Net Models of Polling Systems.
IEEE Journal on Selected Areas in Communications, 8(9):1649–1657, 1990.

[66] D. N. Jansen, J.-P. Katoen, M. Oldenkamp, M. Stoelingan, and Zapreev.
How Fast and Fat Is Your Probabilistic Model Checker? In Haifa Verifi-
cation Conference 2007, LNCS, pages 69–85. Springer, 2008.

[67] K Lampka. A symbolic approach to the state graph based analysis of high-
level Markov reward models. PhD thesis, Universität Erlangen-Nürnberg,
2007.

[68] J. P. Katoen, M. Kwiatkowska, G. Norman, and D. Parker. Faster and
Symbolic CTMC Model Checking. In Proc. International Workshop on
Process Algebra and Probabilistic Methods, Performance Modeling and
Verification (PAPM/PROBMIV’01), volume 2165 of LNCS, pages 23–38.
Springer, 2001.

[69] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen.
The Ins and Outs of The Probabilistic Model Checker MRMC. In Proc.
International Conference on Quantitative Evaluation of Systems (QEST),
pages 167–176. IEEE Computer Society, 2009.

[70] P. Kemper. Numerical Analysis of Superposed GSPNs. IEEE Transactions
on Software Engineering, 22(9):615–628, 1996.

[71] P. Kemper. Parallel Randomization for Large Structured Markov Chains.
In Proc. International Conference on Dependable Systems and Networks,
DSN ’02, pages 657–668. IEEE Computer Society, 2002.

[72] P. Kemper and R. Lübeck. Model checking based on Kronecker algebra.
Technical report, Universität Dortmund, Fachbereich Informatik, 1998.

[73] W. J. Knottenbelt. Parallel Performance Analysis of Large Markov Mod-
els. PhD thesis, Department of Computing, Imperial College of Science,
Technology and Medicine. University of London., 1999.

[74] W. J. Knottenbelt and P. G. Harrison. Distributed Disk-based Solution
Techniques for Large Markov Models. In Proc. International Workshop on
the Numerical Solution of Markov Chains (NSMC), pages 58–75, 1999.

[75] M. Kwiatkowska, G. Norman, and A. Pacheco. Model checking expected
time and expected reward formulae with random time bounds. Computers
and Mathematics with Applications, 51(2):305–316, 2006.

[76] M. Kwiatkowska, G. Norman, and D. Parker. Stochastic Model Checking.
In Formal Methods for the Design of Computer, Communication and Soft-

221

Bibliography

ware Systems: Performance Evaluation (SFM’07), volume 4486 of LNCS
(Tutorial Volume), pages 220–270. Springer, 2007.

[77] M. Kwiatkowska, G. Norman, and D. Parker. Using probabilistic model
checking in systems biology. ACM SIGMETRICS Performance Evaluation
Review, 35(4):14–21, 2008.

[78] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of
Probabilistic Real-time Systems. In Computer Aided Verification, volume
6806 of LNCS, pages 585–591. Springer, 2011.

[79] M. Kwiatkowska, D. Parker, Y. Zhang, and R. Mehmood. Dual-Processor
Parallelisation of Symbolic Probabilistic Model Checking. In Proc. Inter-
national Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS), pages 123–130. IEEE Com-
puter Society Press, 2004.

[80] Y. T. Lai and S. Sastry. Edge-valued binary decision diagrams for multi-
level hierarchical verification. In Proc. International Design Automation
Conference, DAC ’92, pages 608–613. IEEE Computer Society Press, 1992.

[81] K. Lautenbach and H. Ridder. A Completion of the S-invariance Tech-
nique by means of Fixed Point Algorithms. Technical report, Universität
Koblenz-Landau, 1995.

[82] F. Liu. Colored Petri Nets for Systems Biology . PhD thesis, BTU Cottbus,
Dep. of CS, 2012.

[83] V. Maisonneuve. Automatic heuristic-based generation of MTBDD vari-
able orderings for PRISM models. Internship report, ENS Cachan & Ox-
ford University Computing Laboratory, 2009.

[84] M. A. Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis.
Modelling with Generalized Stochastic Petri Nets. Wiley Series in Parallel
Computing, John Wiley and Sons, 1995. 2nd Edition.

[85] M. A. Marsan, G. Conte, and G. Balbo. A class of generalized stochas-
tic Petri nets for the performance evaluation of multiprocessor systems.
Transactions on Computer Systems, 2(2):93–122, 1984.

[86] K. L. McMillan. Symbolic model checking. Kluwer Academic Publishers,
1993.

[87] R. Mehmood. Disk-based techniques for efficient solution of large Markov
chains. PhD thesis, University of Birmingham, 2004.

222

Bibliography

[88] R. Mehmood, D. Parker, and M. Kwiatkowska. An Efficient BDD-Based
Implementation of Gauss-Seidel for CTMC Analysis. Technical Report
CSR-03-13, School of Computer Science, University of Birmingham, 2003.

[89] J. F. Meyer. Performability: A Retrospective and Some Pointers to the
Future. Performance Evaluation, 14(3-4):139–156, 1992.

[90] A. Miner and D. Parker. Symbolic Representations and Analysis of Large
State Spaces. In Proc. Validation of Stochastic Systems, volume 2925 of
LNCS, pages 296–338. Springer, 2004.

[91] A. S. Miner. Data structures for the analysis of large structured markov
models. PhD thesis, The College of William and Mary, 2000.

[92] V. Moler and C. V. Loan. Nineteen Dubious Ways to Compute the Expo-
nential of a Matrix, Twenty-Five Years Later. SIAM Review, 45(1):3–49,
2003.

[93] M. K. Molloy. Performance Analysis Using Stochastic Petri Nets. IEEE
Transactions on Computers, 31:913–917, 1982.

[94] L. Napione, D. Manini, F. Cordero, A. Horvath, A. Picco, M. D. Pierro,
S. Pavan, M. Sereno, A. Veglio, F. Bussolino, and G. Balbo. On the Use of
Stochastic Petri Nets in the Analysis of Signal Transduction Pathways for
Angiogenesis Process. In Proc. International Conference on Computational
Methods in Systems Biology, volume 5688 of LNCS/LNBI, pages 281–295.
5688, Springer, 2009.

[95] Noack. A ZBDD Package for Efficient Model Checking of Petri Nets (in
German). Technical report, BTU Cottbus, Dep. of CS, 1999.

[96] D. Parker. Implementation of Symbolic Model Checking for Probabilistic
Systems. PhD thesis, University of Birmingham, 2002.

[97] B. Plateau. On the stochastic structure of parallelism and synchroniza-
tion models for distributed algorithms. ACM SIGMETRICS Performance
Evaluation Review, 13:147–154, 1985.

[98] A. Pnueli. The Temporal Logic of Programs. In Symposium on the Foun-
dations of Computer Science, volume 18, pages 46–57. IEEE Computer
Society Press, 1977.

[99] L. Priese and H. Wimmel. Theoretische Informatik: Petri-Netze. Springer,
2002.

[100] A. Reibman and K. S. Trivedi. Transient Analysis of Cumulative Mea-

223

Bibliography

sures of Markov Model Behavior. Communications in Statistics-Stochastic
Models, 5:683–710, 1989.

[101] A. Remke, B. R. Haverkort, and L. Cloth. Model Checking Infinite-State
Markov Chains. In Proc. International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS’00), volume 3440
of LNCS, pages 237–252. Springer, 2005.

[102] H. Ridder. Analysis of Petri Net Models with Decision Diagrams (in Ger-
man). PhD thesis, Universität Koblenz-Landau, 1997.

[103] O. Roig, J. Cortadella, and E. Pastor. Verification of Asynchronous Cir-
cuits by BDD-based Model Checking of Petri Nets. In Proc. Interntional
Conference on Application and Theory of Petri Nets, volume 935 of LNCS,
pages 374–391. Springer, 1996.

[104] R. A. Sahner, K. S. Trivedi, and A. Puliafito. Performance and Reliability
Analysis of Computer Systems: An Example-Based Approach Using the
SHARPE Software Packag. Kluwer Academic Publishers, 1996.

[105] M. Schwarick. IDD-MC - a model checker for bounded Stochastic Petri
nets. In Proc. Workshop AWPN, volume 643, pages 80–87. CEUR-WS,
2010.

[106] M. Schwarick. Manual: Marcie - An analysis tool for Generalized Stochastic
Petri nets. BTU Cottbus, Dep. of CS, 2010.

[107] M. Schwarick. Symbolic model checking of stochastic reward nets. In Proc.
International Workshop on Concurrency, Specification, and Programming
(CS&P 2012), volume 928 of CEUR Workshop, pages 343–357. CEUR-
WS.org, 2012.

[108] M. Schwarick and M. Heiner. CSL model checking of biochemical networks
with Interval Decision Diagrams . In Proc. International Conference on
Computational Methods in Systems Biology, volume 5688 of LNCS/LNBI,
pages 296–312. Springer, 2009.

[109] M. Schwarick, C. Rohr, and M. Heiner. MARCIE – Model checking And
Reachability analysis done effiCIEntly. In Proc. International Conference
on Quantitative Evaluation of SysTems (QEST 2011), pages 91–100. IEEE
Computer Society Pres, 2011.

[110] M. Schwarick and A. Tovchigrechko. IDD-based model validation of bio-
chemical networks. Theoretical Computer Sience, 412:2884–2908, 2010.

[111] R. I. Siminiceanu and Ciardo. New metrics for static variable ordering in

224

Bibliography

decision diagrams. In Proc. International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’00), volume
3920 of LNCS, pages 328–342. Springer, 2006.

[112] W. J. Stewart. Introduction to the Numerical Solution of Markov Chains.
Princeton University Press, 1994.

[113] K. Strehl and L. Thiele. Symbolic Model Checking Using Interval Diagram
Techniques. Technical report, Computer Engineering and Networks Lab
(TIK), Swiss Federal Institute of Technology (ETH) Zurich, 1998.

[114] R. Tarjan. Depth-First Search and Linear Graph Algorithms. SIAM Jour-
nal on Computing, 1(2):146–160, 1972.

[115] A. Tovchigrechko. Model Checking Using Interval Decision Diagrams. PhD
thesis, BTU Cottbus, Dep. of CS, 2008.

[116] D. Vandevoorde and N. M. Josuttis. C++ Templates: The Complete Guide.
Addison-Wesley Professional, 1 edition, 2002.

[117] J. Vilar, H.-Y. Kueh, N. Barkai, and S. Leibler. Mechanisms of Noise-
Resistance in Genetic Oscillators. Proc. National Academy of Sciences of
the United States of America, 99(9):5988–5992, 2002.

[118] A. Williams. C++ Concurrency in Action; Practical Multithreading. Man-
ning Publications Co., Shelter Island, USA, 2012.

[119] T. Yoneda, H. Hatori, A. Takahara, and S. Minato. BDDs vs. Zero-
Suppressed BDDs: for CTL Symbolic Model Checking of Petri Nets. In
Proc. International Conference on Formal Methods in Computer-Aided De-
sign (FMCAD), volume 1166 of LNCS, pages 435–449. Springer, 1996.

225

	Abstract
	Zusammenfassung
	Introduction
	Petri Nets
	Petri Nets
	Symbolic State Space Representation
	Interval Decision Diagrams
	State Space Representation for Petri Nets

	CTL Model Checking
	Computation Tree Logic - CTL
	Model Checking

	Summary

	Stochastic Petri Nets
	Stochastic Petri Nets
	Extensions
	Generalized Stochastic Petri Nets
	Stochastic Reward Nets

	Numerical analysis
	Transient Analysis
	Limiting Analysis

	CSRL Model Checking
	Continuous Stochastic Reward Logic
	Model Checking

	Summary

	Advanced Matrix Representation
	Classical Sparse Matrix Representation
	State of the Art
	The Kronecker Algebraic Approach
	Multi-terminal Decision Diagram-based Approaches

	IDD-based On-the-fly Matrix Generation
	Enumeration of State Indices
	Enumeration of State Transitions
	Performance Tuning
	First Results

	Summary

	Implementation of Numerical Solvers
	Concepts
	Policy-based Design
	Multi-threading
	A Generic Solver

	Miscellaneous
	Parker's Pseudo-Gauss-Seidel
	Generalized Stochastic Petri Nets
	Stochastic Reward Nets

	Summary

	Evaluation
	Methodology
	Transient Analysis
	Steady State Analysis
	Embedded Markov Chain
	Markovian Approximation
	GSPN versus SPN
	Summary

	Conclusions and Outlook
	Conclusions
	Outlook

	Appendix
	Abstract Net Description Language
	Case studies
	Biological Networks
	Technical Systems

	Bibliography

