@phdthesis{Groenke2020, author = {Gr{\"o}nke, Martin}, title = {Synthesis and characterization of layered transition metal trihalides MCl₃ (M = Ru, Mo, Ti, Cr) and CrX₃ (X = Cl, Br, I)}, doi = {10.26127/BTUOpen-5282}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-52828}, school = {BTU Cottbus - Senftenberg}, year = {2020}, abstract = {The investigation of novel structure-to-property relations of many transition metal trihalides MX₃ by downscaling to promising monolayer is still pending. However, the production of two-dimensional MX₃ sheets that are both high crystalline and thin is an experimental challenge. This thesis is focused on the rational synthesis planning and the derived targeted preparation of thin MX₃ nanosheets (≤ 100 nm) on suitable substrates by chemical vapor transport (CVT) as well as their characterization by complementary analytical methods. CVT of nanosheets directly on substrates benefits of low timescales, less material consumption and only few structural distortions. For the determination of optimal growth conditions, the CVT processes of investigated compounds were initially simulated by using the Calphad method (program package TRAGMIN). Thus, the occurring transport efficient gas species and temperature dependent, dominating vapor transport equilibria were calculated to optimize the growth process in a direct and straightforward way. Based on prior simulation results single crystalline sheets of MCl₃ (M = Ru, Mo, Ti, Cr) and CrX₃ (X = I, Br, Cl) were successfully prepared at temperatures between 573 - 1023 K on YSZ (yttrium stabilized zirconia) or sapphire substrates. The adjustable CVT parameters (transport duration, temperatures or weighed starting material) were optimized with respect to the targeted synthesis of either bulk or nanosheets at substrates. Microsheets with thicknesses of less than 4 μm (α-TiCl₃) and about 20 nm thin nanosheets (α-RuCl₃, CrCl₃ and CrI₃) down to ultrathin flakes (≈ 3 nm, α-MoCl₃ and CrBr₃) were obtained by CVT. As a highlight, monolayers of α-RuCl₃ and CrCl₃ were isolated successfully by means of a subsequent delamination. The MX₃ sheets morphology and dimension was described by optical and electron microscopy, highlighting their two-dimensional nature. By several X-ray spectroscopy and diffraction techniques the desired composition (M:X = 1:3), high crystallinity and phase-purity of thick and thin MX₃ platelets was confirmed subsequently. With respect to MX₃ nanosheets a slight increase (α-RuCl₃, α-MoCl₃ and CrBr₃) or decrease (CrCl₃) in phonon energies was observed in comparison to their bulk counterparts. The magnetic properties of CrCl₃ micro- and nanosheets were determined to be solely ferromagnetic and thus different than those of the bulk samples. Finally, the structure-to-property relations were investigated at a first example. The catalytic properties of α-TiCl₃ microsheets were investigated by gas-phase polymerization of ethylene. By downscaling the catalysts thickness by CVT, we obtained an activity improvement of 24 \% in comparison to bulk α-TiCl₃.}, subject = {Crystal; Thermodynamic; Vapor phase; Synthesis; Simulation; Kristall; Thermodynamik; Gasphase; Synthese; Simulation; Syntheseplanung; {\"U}bergangsmetallverbindungen; Metallhalogenide; Rutheniumhalogenide; Molybd{\"a}nhalogenide; Gasphasenreaktion}, language = {en} }