@article{ZschechLechowskiKuturkovaetal.2024, author = {Zschech, Ehrenfried and Lechowski, Bartlomiej and Kuturkova, Kristina and Panchenko, Luliana and Kr{\"u}ger, Peter and Clausner, Andr{\´e}}, title = {Laboratory X-ray microscopy of 3D nanostructures in the hard X-ray regime enabled by a combination of multilayer X-ray optics}, series = {Nanomaterials}, volume = {14}, journal = {Nanomaterials}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2079-4991}, doi = {10.3390/nano14020233}, year = {2024}, abstract = {High-resolution imaging of buried metal interconnect structures in advanced microelectronic products with full-field X-ray microscopy is demonstrated in the hard X-ray regime, i.e., at photon energies > 10 keV. The combination of two multilayer optics—a side-by-side Montel (or nested Kirkpatrick-Baez) condenser optic and a high aspect-ratio multilayer Laue lens—results in an asymmetric optical path in the transmission X-ray microscope. This optics arrangement allows the imaging of 3D nanostructures in opaque objects at a photon energy of 24.2 keV (In-Kα X-ray line). Using a Siemens star test pattern with a minimal feature size of 150 nm, it was proven that features < 150 nm can be resolved. In-Kα radiation is generated from a Ga-In alloy target using a laboratory X-ray source that employs the liquid-metal-jet technology. Since the penetration depth of X-rays into the samples is significantly larger compared to 8 keV photons used in state-of-the-art laboratory X-ray microscopes (Cu-Kα radiation), 3D-nanopattered materials and structures can be imaged nondestructively in mm to cm thick samples. This means that destructive de-processing, thinning or cross-sectioning of the samples are not needed for the visualization of interconnect structures in microelectronic products manufactured using advanced packaging technologies. The application of laboratory transmission X-ray microscopy in the hard X-ray regime is demonstrated for Cu/Cu6Sn5/Cu microbump interconnects fabricated using solid-liquid interdiffusion (SLID) bonding.}, subject = {X-ray microscopy; High-resolution radiography; Nanostructure; Advanced packaging; R{\"o}ntgenmikroskopie; Hochaufl{\"o}sende Radiographie; Nanostruktur; Erweiterte Verpackung; Nanostruktur; R{\"o}ntgenmikroskopie; Radiographie}, language = {en} } @article{RichterRachowIsraeletal.2023, author = {Richter, Jana and Rachow, Fabian and Israel, Johannes and Roth, Norbert and Charlafti, Evgenia and G{\"u}nther, Vivien and Flege, Jan Ingo and Mauss, Fabian}, title = {Reaction mechanism development for methane steam reforming on a Ni/Al2O3 catalyst}, doi = {10.3390/catal13050884}, year = {2023}, abstract = {In this work, a reliable kinetic reaction mechanism was revised to accurately reproduce the detailed reaction paths of steam reforming of methane over a Ni/Al2O3 catalyst. A steadystate fixed-bed reactor experiment and a 1D reactor catalyst model were utilized for this task. The distinctive feature of this experiment is the possibility to measure the axially resolved temperature profile of the catalyst bed, which makes the reaction kinetics inside the reactor visible. This allows for understanding the actual influence of the reaction kinetics on the system; while pure gas concentration measurements at the catalytic reactor outlet show near-equilibrium conditions, the inhere presented temperature profile shows that it is insufficient to base a reaction mechanism development on close equilibrium data. The new experimental data allow for achieving much higher quality in the modeling efforts. Additionally, by carefully controlling the available active surface via dilution in the experiment, it was possible to slow down the catalyst conversion rate, which helped during the adjustment of the reaction kinetics. To assess the accuracy of the revised mechanism, a monolith experiment from the literature was simulated. The results show that the fitted reaction mechanism was able to accurately predict the experimental outcomes for various inlet mass flows, temperatures, and steam-to-carbon ratios.}, subject = {1D modeling; Reaction rates; Methane steam reforming; Fixed-bed reactor experiments; Nickel catalyst; 1D-Modellierung; Reaktionsgeschwindigkeiten; Methan-Dampfreformierung; Festbettreaktor-Experimente; Nickel-Katalysator; Katalysator; Reaktionsmechanismus; Festbettreaktor; Steamreforming; Reaktionsgeschwindigkeit}, language = {en} } @phdthesis{Kutukova2023, author = {Kutukova, Kristina}, title = {In-situ study of crack propagation in patterned structures of microchips using X-ray microscopy}, doi = {10.26127/BTUOpen-6256}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-62567}, school = {BTU Cottbus - Senftenberg}, year = {2023}, abstract = {The motivation of this thesis was to control crack steering into regions of engineered 3D-nanopatterned structures with high fracture toughness and to determine the local critical energy release rate for crack propagation in 3D-nanopatterned systems. On-chip copper interconnect structures of advanced microchips, insulated by organosilicate glasses, were chosen as an example system to study fracture on small scale, since this is a well-defined 3D- nanopatterned system and since a high mechanical robustness is requested for microchips. An experiment for in-situ high-resolution 3D imaging of the fracture behavior of 3D-nanopatterned structures and of the kinetics of microcrack propagation in solids was designed and applied, combining a miniaturized micromechanical test and high-resolution X-ray imaging. Particularly, a miniaturized piezo-driven double cantilever beam test set-up (micro- DCB) was integrated in a laboratory X-ray microscope, and nano X-ray computed tomography was applied for high-resolution 3D imaging of the microcrack evolution in the on-chip interconnect stack of microchips manufactured in the 14 nm technology node. The measured geometry of the microcrack at several loading steps during the micro-DCB test and the subsequent data analysis based on linear elastic fracture mechanics and the Euler-Bernoulli beam model were the basis for the development and application of a new methodology to determine the critical energy release rate for crack propagation in sub- 100 nm regions of a processed wafer quantitatively. It was experimentally proven that specially designed metallic guard ring structures at the rim of the microchips dissipate energy in such a way that the microcrack propagation is efficiently slowed down and eventually stopped, i.e. they are effective to prevent mechanical damage of microchips. It was demonstrated that it is possible to steer the microcrack in a controlled way by tuning the fracture mode mixity locally at the crack tip. The established concept for a controlled crack propagation provides the basis for further fundamental studies of the fracture behavior of nanoscale materials and structures. The results have significant effects for the understanding of fracture mechanics at small scales, e.g. in microchips, but also in other nanopatterned materials, e.g. in bio-inspired, hierarchically structured engineered materials. The experimental results gathered at realistic microelectronic products provide valuable information to control the crack path in on-chip interconnect stacks for design-for-reliability in semiconductor industry and to manufacture mechanically robust microchips in leading-edge technology nodes. The experimental study of controlled microcrack steering into regions with high fracture toughness provides knowledge for the design of guard ring structures in microchips to stop the propagation of microcracks, e.g. generated during the wafer dicing process.}, subject = {R{\"o}ntgenmikroskopie; In-situ-Rissausbreitung; On-Chip-Interconnect-Stacks; Bruchmechanik; Schutzringstrukturen; X-ray microscopy; In-situ crack propagation; On-chip interconnect stacks; Fracture mechanics; Guard ring structures; Rissausbreitung; Mikroriss; Bruchverhalten; Bruchmechanik; Nanostrukturiertes Material; Chip; R{\"o}ntgenmikroskopie}, language = {en} } @phdthesis{Mahmoodinezhad2022, author = {Mahmoodinezhad, Ali}, title = {Atomic layer deposition and characterization of metal oxide thin films}, doi = {10.26127/BTUOpen-6134}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-61343}, school = {BTU Cottbus - Senftenberg}, year = {2022}, abstract = {This thesis describes low temperature growth of wide band gap metal oxide thin films deposited by thermal (T-) and plasma-enhanced (PE-) atomic layer deposition (ALD) techniques in which high quality materials are grown with atomic level precision. Metal oxides are extensively investigated due to their exceptional physical and chemical properties, including relatively wide band gap, high dielectric constant and high thermal stability. This variety of properties results in a wide range of different applications. Thin films of indium oxide (InOx), gallium oxide (GaOx), zinc oxide (ZnOx), and quaternary InOx/GaOx/ZnOx (IGZO), in addition to the well-known aluminum oxide (AlOx), and the catalyst cerium oxide (CeOx), have proven to be superior candidates for many applications; from microelectronics and optoelectronics to gas sensor devices. The demanding requirements of low-temperature deposition processes for thermal sensitive substrates, which include high layer homogeneity and conformality over large areas, makes ALD a pioneer deposition technique. Although many oxides have been grown by TALD and PEALD, the deposition of wide band gap oxides at low temperatures are rarely reported and/or being investigated. In this work, the deposition method of the individual binary oxide films and combining the respective binary processes into the developed super-cycle growth of quaternary compound have been investigated at relatively low-temperatures by TALD and PEALD. Besides, the growth characteristics and chemical properties of the deposited films were evaluated by in-situ and ex-situ characterization techniques such as spectroscopic ellipsometry (SE) and X-ray photoelectron spectroscopy (XPS), where the influence of ALD process parameters on the growth mechanism and films composition are discussed in detail for any potential applications.}, subject = {Thermal atomic layer deposition; Plasma-enhanced atomic layer deposition; Indium gallium zinc oxide; Aluminum oxide; Cerium oxide; Thermische Atomlagenabscheidung; Plasmaunterst{\"u}tzte Atomlagenabscheidung; IGZO; AlOx; CeOx; Tieftemperatur; Atomlagenabscheidung; Beschichtung; Metallschicht; D{\"u}nne Schicht; Aluminiumoxide; Ceroxide; Indiumoxide}, language = {en} } @phdthesis{Akhtar2022, author = {Akhtar, Fatima}, title = {Graphene synthesis under Si-CMOS compatible conditions}, doi = {10.26127/BTUOpen-5927}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-59270}, school = {BTU Cottbus - Senftenberg}, year = {2022}, abstract = {Due to the unique electronic band structure, graphene has opened the great potential to extend the functionality of a large variety of graphene-based devices in health and environment, energy storage, or various microelectronic applications, to mention a few. At this point, the implementation of graphene into Silicon (Si) semiconductor technology is strongly dependent on several key challenges. Among them, high-quality and wafer-scale graphene synthesis on CMOS compatible substrates is of the highest importance. Though large-area graphene can be achieved on substrates like copper, platinum, silicon carbide, or single-crystal Ni, however, high growth temperatures, unavailability of large scale, or contamination issues are the main drawbacks of their usage. In this PhD work, 8-inch scale graphene synthesis is attempted on alternative substrates such as epitaxial Germanium on Si and polycrystalline Nickel on Si. To achieve the growth of the highest quality of graphene, this work focuses on the investigations of various nucleation and growth mechanisms, substrate-graphene interfaces, effects of different substrate orientations, and detailed microscopic and macroscopic characterization of the grown films. Finally, it should also be stressed that the experiments in this work were carried out in a standard BiCMOS pilot-line, making this study unique, as its results might directly pave the way to further graphene integration and graphene-based device prototyping in mainstream Si technologies.}, subject = {Graphene; Chemical vapor deposition; Growth; Oxidation; Germanium; Nickel; Graphen; CVD; Wachstum; Oxidation; Graphen; Keimbildung; Wachstum; CVD-Verfahren; Nickel; Germanium}, language = {en} } @phdthesis{Hartmann2018, author = {Hartmann, Claudia}, title = {Surface and interface characterization of CH₃NH₃PbI₍₃₋ₓ₎Clₓ and CsSnBr₃ perovskite based thin-film solar cell structures}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-46358}, school = {BTU Cottbus - Senftenberg}, year = {2018}, abstract = {The chemical and electronic structure of hybrid organometallic (CH₃NH₃PbI₍₃₋ₓ₎Clₓ) and inorganic (CsSnBr₃) perovskite materials on compact TiO₂ (c-TiO₂) is studied using x-ray and electron based spectroscopic techniques. The morphology and local elemental composition of CH₃NH₃PbI₍₃₋ₓ₎Clₓ, used as absorbers in PV devices, defining the film quality and influencing the performance of respective solar cells is studied in detail by using photoemission electron microscopy (PEEM). An incomplete coverage, with holes reaching down to the c-TiO₂ was revealed; three different topological regions with different degrees of coverage and chemical composition were identified. Depending on the degree of coverage a variation in I oxidation and the formation of Pb⁰ in the vicinity of the c-TiO₂ is found. The valence band maxima (VBM) derived from experimental data for the perovskite and c-TiO₂, combined with information from literature on spiro-MeOTAD suggests an energy level alignment resulting in an excellent charge selectivity at the absorber/spiro-MeOTAD and absorber/c-TiO₂ interfaces respectively. Further, the derived energy level alignment indicates a large recombination barrier (~2 eV), preventing shunts due to direct contact between c-TiO₂ and spiro-MeOTAD in the pin-holes. In-situ ambient pressure hard x-ray photoelectron spectroscopy (AP-HAXPES) studies of 60 and 300 nm CH₃NH₃PbI₍₃₋ₓ₎Clₓ have been performed under varies conditions (i.e. vacuum/water and dark/UV light) to gain insight into the degradation mechanism responsible for the short lifetime of the absorber. The 60 nm perovskite forms Pb⁰ in water vapor (non-defined illumination) in presence of x-rays. The 300 nm perovskite sample shows a complex behavior under illumination/dark. In water vapor/dark the perovskite dissolves into its organic (MAI) and inorganic (PbI₂) components. Under illumination PbI₂ further decomposes to Pb⁰ induced by UV light and x-rays. For alternative inorganic CsSnBr₃ perovskites, the impact of SnF₂ on the chemical and electronic structure is studied to identify its role for the improved performance of the solar cell. HAXPES and lab-XPS measurements performed on CsSnBr₃ with and without SnF₂ indicate two Sn, Cs, and Br species in all samples, where the second Sn species is attributed to oxidized Sn (Sn⁴⁺). When adding SnF₂ to the precursor solution, the coverage is improved and less Sn⁴⁺ and Cs and Br secondary species can be observed, revealing an oxidation inhibiting effect of SnF₂. Additionally, SnF₂ impacts the electronic structure, enhancing the density of states close to the VBM.}, subject = {Perovskite; Photoelectron spectroscopy; Thin-film solar cell; Solid-state physics; Photovoltaics; Photovoltaik; Festk{\"o}rperphysik; D{\"u}nnschichtsolarzelle; Photoelektronenspektroskopie; Perowskite; Fotovoltaik; Halbleiter; D{\"u}nnschichtsolarzelle; Perowskit; Photoelektronenspektroskopie}, language = {en} } @phdthesis{Rouissi2017, author = {Rouissi, Zied}, title = {Role of substrates morphology and chemistry in ALD HfO₂ on Si(111)-H terminated surfaces as model}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-42418}, school = {BTU Cottbus - Senftenberg}, year = {2017}, abstract = {This work presents an approach to investigate fundamental aspects concerning the early stage of the atomic layer deposition (ALD) growth process on stepped surfaces. The first interaction between precursors and surface is strongly important for the ALD growth that it is still far away from the status to be completely understood. For this purpose, a few ALD-cycles withtetrakis(dimethylamido)hafnium (TDMAH) and trimethylaluminum (TMA) as metallic precursors and water (H₂O) as oxidant has been performed in order to study the initial metal oxide film growth on stepped surfaces such as silicon Si(111)-H terminated, highly oriented pyrolytic graphite (HOPG) and silver deposited HOPG (Ag-HOPG). These investigations have been carried out at various substrate temperatures, where scanning tunneling microscopy (STM) has been used systematically to probe the ALD features. This technique is delivering unique knowledge about the locality and the density of nucleation's sites on the different substrates. The data collected are then subjected to a mathematical model to understand the growth and to determine the effect of the surface morphology and chemistry on the behavior of the nucleation. The in-situ cycle-by-cycle STM investigation of 4 initial ALD cycles of TDMAH and H₂O on Si(111)-H terminated at room temperature (RT) and at 280°C displays two regimes of growth: In Regime I (1st - 2nd cycle) an increase in roughness in the first cycle to 0.2nm and 0.34nm respectively for RT and 280°C with a partial surface coverage of 71\% and 54\% is observed. In the 2nd cycle, the coverage increased to ~98\% and 94\% maintaining the same film height of the 1st cycle. A complete layer is formed in this regime. The results are discussed in reference to the Puurunen model. Following this model, the determination of the reaction mechanism in relation to the number of Hf atoms/nm² attached to the surface reveals that two ligands exchanges occur at RT and one ligand exchange at 280°C in the first regime. In addition, the origin of the reaction saturation was determined to be caused by the steric hindrance effect. In this first regime, the growth model is governed by random deposition followed by Mullins diffusion as determined from the universal values found for the roughness dynamic exponents (α, β, 1/z) of the film.}, subject = {ALD; Stepped surface; Morphology; Growth statistics; STM; Gestufte Oberfl{\"a}che; Wachstumsstatistik; Morphologie; Rastertunnelmikroskopie (RTM); Halbleiteroberfl{\"a}che; Schichtwachstum; Atomlagenabscheidung; Rastertunnelmikroskopie}, language = {en} } @phdthesis{FelixDuarte2016, author = {Felix Duarte, Roberto}, title = {Analysis and optimization of interfaces in "wide-gap" chalcopyrite-based thin film solar cell devices}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-37402}, school = {BTU Cottbus - Senftenberg}, year = {2016}, abstract = {The chemical and electronic structure of chalcopyrite absorbers with different bulk band gap energies, Egbulk, [i.e., low-gap Cu(In,Ga)Se2 (CIGSe, Egbulk ~ 1.2 eV) and wide-gap CuInS2 (CIS, Egbulk ~ 1.5 eV)] and of buffer/absorber heterointerfaces based on these materials are studied with soft and hard x-ray spectroscopy techniques. Mechanisms that benefit (limit) the performance of low(wide)-gap chalcopyrite-based solar cells are identified. This knowledge is used to develop surface tailoring treatments to optimize buffer/absorber heterointerfaces based on wide-gap chalcopyrites and improve the performance of their solar cells. Photoemission spectroscopy (PES) characterization of the two absorbers (i.e., CIGSe and CIS) reveal compositional-depth profiles. The changes detected in CIGSe include: a near surface Ga-depletion, a strongly Cu-poor surface and a strong presence of surface Na that (likely) occupies Cu vacancies. A similar Cu-deficiency is found in CIS. The depth-composition changes result in significant widening of the band gap at the surface, Egsurf, (i.e., CIGSe, Egsurf: 1.70 ± 0.2 eV and CIS, Egsurf: 1.88 ± 0.2 eV) as evident by ultraviolet photoelectron spectroscopy (UPS) and inverse photoemission spectroscopy (IPES) measurements. Differences in the interaction of the CIGSe and CIS surfaces with deposited buffer materials are identified. PES and modified Auger parameter studies reveal strong intermixing at the CdS/CIGSe and ZnS/CIGSe heterointerfaces. S L2,3 x-ray emission spectroscopy (XES) measurements of CIGSe substrates submitted to CdS chemical bath deposition (CBD-CdS) treatments show the formation of In2S3 and defect-rich/nanostructured CdS at the interface, compounds with higher band gap values than the measured Egsurf for CIGSe. S L2,3 XES spectra of CIGSe substrates submitted to CBD-ZnS treatments reveal the formation of (Zn,In)(S,Se)2 chemical analogs at the interface. PES and XES measurement series show that the CdS/CIS heterointerface is more abrupt, with no detected interface chemical species. Direct measurement of the band alignment of these heterointerfaces reveals: an ideal conduction band offset (CBO) configuration for CdS/CIGSe (i.e., CBO: +0.11 ± 0.25 eV), a spike CBO configuration for ZnS/CIGSe (i.e., CBO: +1.06 ± 0.4 eV), and a highly unfavorable cliff CBO configuration for CdS/CIS (i.e., CBO: -0.42 ± 0.25 eV). The performance of solar cell devices based on these heterointerfaces is correlated to their CBO configuration. Two surface tailoring approaches intended to correct the CBO configuration of the CdS/CIS heterointerface are presented. One method is based on rapid thermal processing (RTP) selenization treatments of CIS absorbers, aiming to exchange Se for S in treated samples. The idea behind this approach is to modify the surface of a wide-gap chalcopyrite so that it forms a more favorable heterointerface with CdS, such as heterointerfaces within low-gap chalcopyrite devices. X-ray fluorescence analysis and PES measurements of RTP-treated CIS samples show a greater treatment effect at the surface of the sample compared to the bulk (i.e., surface [Se]/[S+Se] range: 0.23 ± 0.05 to 0.83 ± 0.05, compared to bulk [Se]/[S+Se] range: 0.01 ± 0.03 to 0.24 ± 0.03). Tuning of the Cu:In:(S+Se) surface composition from a Cu-poor 1:3:5 to a 1:1:2 stoichiometry is observed in RTP-treated CIS samples with lower to higher surface Se contents, respectively. UPS measurements show a shift in valence band maximum toward the Fermi level in samples with higher surface Se content (i.e., -0.88 ± 0.1 to -0.51 ± 0.1 eV), as expected for a reduction in Egsurf due to exchange of Se for S. Ultraviolet-visible spectrophotometry reveals a reduction in the optical band gap of samples with greater Se incorporation (i.e., from 1.47 ± 0.05 to 1.08 ± 0.05 eV), allowing for a working window for optimization purposes. The second tailoring method involves surface functionalization of CIS absorbers with dipole-charge-inducing self-assembled monolayers (SAM) of benzoic acid derivatives and thiol molecules. The introduction of dipole charges between a heterointerface can tune the relative alignment of the electronic bands composing its electronic structure; thus, use of a suitable dipole-inducing SAM could correct the CBO misalignment in the CdS/CIS heterointerface. UPS measurements of the secondary electron cut-off region of CIS samples treated with a selected set of SAMs show a work function modulation of CIS (i.e., 4.4 ± 0.2 eV - 5.2 ± 0.2 eV). Small gains in solar cell parameters of solar cells based on SAM-modified heterointerfaces are measured. An overview of the performance of chalcopyrite(kesterite)-based solar cells in relation to the electronic properties of their corresponding buffer/absorber heterointerface suggests that optimization approaches extending beyond the buffer/absorber heterointerface may be needed for further performance gains in wide-gap chalcopyrite-based solar cell devices.}, subject = {Photovoltaics; Thin Film Solar Cells; Chalcopyrite absorbers; Solid-state Physics; Photovoltaik; R{\"o}ntgenspektroskopie; D{\"u}nnschichtsolarzelle; Chalkopyrit-Absorbermaterialien; Festk{\"o}rperphysik; X-ray spectroscopy; Kupferkies; D{\"u}nnschichtsolarzelle; Festk{\"o}rperphysik; Fotovoltaik}, language = {en} } @phdthesis{Das2015, author = {Das, Chittaranjan}, title = {Spectroscopic and electrochemical study of TiO₂/Si photocathode}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-36924}, school = {BTU Cottbus - Senftenberg}, year = {2015}, abstract = {Diese Dissertationsschrift besch{\"a}ftigt sich mit der Atomlagenabscheidung (ALD) d{\"u}nner TiO₂-Schichten auf p-Typ Silizium, untersucht die elektronischen Eigenschaften der abgeschiedenen Schichten und beschreibt die elektrochemische Charakterisierung von TiO₂/Si-Photoelektroden. Die Abscheidungsparameter, die elektronischen Eigenschaften und die Stabilit{\"a}t der TiO₂/Si-Proben werden miteinander korreliert. Mittels der ALD-Technik wurden TiO₂-Schichten mit zwei verschiedenen Prekursoren (Titan- Isopropoxid und Titan-Methoxid) auf Si-Substraten abgeschieden. Labor- und Synchrotron basierte R{\"o}ntgen-Spektroskopietechniken wurden benutzt, um die abgeschiedenen Schichten zu charakterisieren. Die Qualit{\"a}t der Schichten wurde dabei mittels R{\"o}ntgen-Photoelektronenspektroskopie (XPS) beurteilt, wobei die St{\"o}chiometrie, das Ti³⁺/Ti⁴⁺-Verh{\"a}ltnis sowie Defektzust{\"a}nde in den TiO₂-Filmen Kriterien darstellten. Um verschiedene Polymorphe von TiO₂ zu erhalten, wurde die Heizmethode der Schichten innerhalb der ALD-Prozedur variiert. Die elektronischen Eigenschaften amorpher und Anatas-TiO₂-Schichten wurden mittels Synchrotronstrahlung bestimmt und mit denen eines TiO₂-Rutil-Einkristalls verglichen. R{\"o}ntgen- Absorptionsspektroskopie (XAS) und resonante Photoelektronenspektroskopie (res-PES) wurden mit Synchrotronstrahlung durchgef{\"u}hrt. Dabei diente die XAS der Bestimmung der Art des Polymorphen und der elektronischen Struktur der TiO₂-Schichten. Res-PES-Messungen wurden an den O1s- und Ti2p- Kanten durchgef{\"u}hrt, um Auger-Prozesse mit multiplen Loch-Endzust{\"a}nden sowie polaronische und Ladungstransferzust{\"a}nde zu untersuchen und um die elektronische Bandl{\"u}cke der TiO₂-Schichten zu bestimmen. Eines der Hauptergebnisse dieser Arbeit stellt die Bestimmung der partiellen Zustandsdichten (pDOS) von Sauerstoff und Titan im Valenz- und Leitungsband dar. In der Analyse der res-PES-Daten wurde die pDOS mit den entsprechenden Bandkantenpositionen kombiniert, um die energetische Lage der Ladungsneutralit{\"a}tsniveaus (‚Charge neutrality levels') der verschiedenen TiO₂-Polymorphe zu ermitteln. Photoelektrochemische Messungen wurden an unbeschichteten und TiO₂-beschichteten Si- Photoelektroden durchgef{\"u}hrt. Dabei wurde die elektrochemische Performance der Photoelektroden in verschiedenen Elektrolytmedien mit pH-Werten zwischen 1 und 13 untersucht. Die Beschichtung der Si- Oberfl{\"a}che mit einer d{\"u}nnen TiO₂-Schicht verbesserte die Performance der Si-Photoelektrode, wobei die Stabilit{\"a}t der Elektrode in allen untersuchten Elektrolytmedien w{\"a}hrend der gesamten Messdauer von 12 Stunden erh{\"o}ht wurde. Außerdem wurde festgestellt, dass die TiO₂/Si-Photoelektrode weniger empfindlich auf {\"A}nderungen des pH-Wertes reagiert. Die elektrochemischen Ergebnisse werden auf Basis der elektronischen Eigenschaften der TiO₂-Schichten diskutiert. Die durch die spektroskopischen Messungen bestimmte elektronische Bandl{\"u}cke sowie die photoelektrochemischen Charakterisierungen werden zur Erkl{\"a}rung der Performance und Stabilit{\"a}t der TiO₂/Si-Photoelektroden herangezogen. Die Arbeit adressiert außerdem die Stabilit{\"a}t von mikrostrukturierten Photoelektroden (SiMP), die elektrochemisch pr{\"a}pariert wurden. Zun{\"a}chst verschlechterte sich die Stabilit{\"a}t der SiMP schneller als bei der planaren Si-Photoelektrode. Jedoch f{\"u}hrte die Nutzung einer TiO₂-ALD-Schutzschicht auf der SiMP zu einer besseren Gesamtperformance der SiMP auch im Vergleich zum System TiO₂/ planares Si.}, subject = {ALD; TiO2; Photocathodes; XPS; XAS; Atomlagenabscheidung; Photokathode; R{\"o}ntgenphotoelektronenspektroskopie; R{\"o}ntgenabsorptionsspektroskopie; Atomlagenabscheidung; Photokathode; R{\"o}ntgenabsorptionsspektroskopie; R{\"o}ntgen-Photoelektronenspektroskopie}, language = {en} } @phdthesis{Niese2014, author = {Niese, Sven}, title = {Lab-based in-situ X-ray microscopy - methodical developments and applications in materials science and microelectronics}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:co1-opus4-35665}, school = {BTU Cottbus - Senftenberg}, year = {2014}, abstract = {The method of microscopic imaging using X-rays and diffractive lenses was developed at synchrotron radiation facilities and it was recently transferred to systems with laboratory X-ray sources. The first part of this thesis focuses on instrumentation, in particular on the fabrication, characterization, and application of multilayer Laue lenses (MLL). The second part describes a micromechanical in-situ test that is used to study crack propagation with X-ray microscopy in microchips in a dedicated fracture mechanics experiment called micro double cantilever beam test (MicroDCB). MLLs were fabricated from WSi2/Si multilayer coatings using mechanical preparation and focused ion beam milling. Initial characterization of the obtained lenses using scanning electron microscopy and X-ray microscopy was used to evaluate the quality of the multilayer stack and particularly to identify geometrical imperfections of individual lens elements. Crossed partial MLLs were assembled as a compact lens device for two-dimensional operation, i.e. point focusing of synchrotron radiation or full-field transmission imaging. The optical properties were simulated using a geometrical optics approximation and a physical optics model. Experimental results verify full-field imaging using crossed partial MLLs with a focal length of 8.0 mm for Cu-Ka radiation in a laboratory X-ray microscope. Sub-100 nm resolution is shown and remaining aberrations are discussed. So-called wedged MLLs employ dynamic diffraction to increase the diffraction efficiency. A fabrication process is presented that allows a subsequent geometrical modification of the lens element using a stress layer. Thus, the wedged geometry is realized independently of the multilayer coating. The resulting layer tilt is measured using a laboratory X-ray microscope. First investigations of such wedged MLLs with synchrotron radiation at a photon energy E=15.25 keV show an enhancement of the diffraction efficiency of 57 \% in comparison to a tilted MLL with the same dimensions. The long working distance of the X-ray microscope facilitates the integration of customized equipment to perform in-situ experiments. The MicroDCB tester was designed and built to drive a crack in an appropriately prepared specimen. It is compatible with the X-ray microscope and it allows tomographic studies under load. In particular, the method was applied to investigate crack propagation in the on-chip interconnect stack of advanced microelectronics products. Stable crack propagation at this location was achieved. Subsequent tomographies were acquired at several load steps. The reconstructed datasets show no critical distortions. This test is assumed to provide valuable information about crack propagation such heterogeneous structures, what is of interest to address reliability issues.}, subject = {X-ray microscopy; Diffractive X-ray lens; Double cantilever beam test; R{\"o}ntgenmikroskopie; Diffraktive R{\"o}ntgenlinse; R{\"o}ntgenlinse; Rissausbreitung; R{\"o}ntgenmikroskopie}, language = {en} }