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Abstract 

In a joint project of partners from industry and research, the automated recycling of construction and demolition 
waste (CDW) is investigated and tested by combing laser-induced breakdown spectroscopy (LIBS) and 
near-infrared (NIR) spectroscopy. Joint processing of information (data fusion) is expected to significantly 
improve the sorting quality of various materials like concrete, main masonry building materials, organic 
components, etc., and may enable the detection and separation of impurities such as SO3-cotaining building 
materials (gypsum, aerated concrete, etc.). The project focuses primarily on the Berlin site to analyze the entire 
value chain, minimize economic/technological barriers and obstacles at the cluster level, and sustainably increase 
recovery and recycling rates. 
First measurements with LIBS and NIR spectroscopy show promising results in distinguishing various material 
types and indicate the potential for a successful combination. In addition, X-ray fluorescence (XRF) spectroscopy 
is being performed to obtain more information about the quantitative elemental composition of the different 
building materials. Future work will apply the developed sorting methodology in a fully automated measurement 
setup with CDW on a conveyor belt.  
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1 Introduction 

Closed material cycles and unmixed material fractions are required to achieve high recovery 
and recycling rates in the building industry. In CDW recycling, the preference to date has been 
to apply simple but proven techniques to process large quantities of construction rubble in a 
short time. This contrasts with the increasingly complex composite materials and structures in 
the mineral building materials industry. Manual sorting involves many risks and dangers for 
the executing staff and is merely based on obvious, visually detectable differences for 
separation. An automated, sensor-based sorting of these building materials could complement 
or replace this practice to improve processing speed, recycling rates, sorting quality, and 
prevailing health conditions.  
Through the installation of sensor-based single particle sorting devices in building materials 
recycling, the individual components of the heterogeneous bulk materials could be identified 
and converted into single-sort material fractions in subsequent processes. In this context, the 
performance limits of the current sensor techniques as well as economic aspects must be 
considered. According to the current state of art, only coarser aggregates can be sorted 
technically and economically with this technology. Current investigations on sensor-based 
sorting technologies for CDW are based on the analysis of the visual (VIS) and/or the 
near-infrared (NIR) spectrum [1]. 
The aim is to detect and sort out foreign materials and impurities before processing. So far, no 
pre-screening technologies have been used in processing of CDW. However, this is necessary 
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to prevent further spreading of undesirable materials in recyclable material streams. This 
applies in particular to sulphate-containing building materials, such as gypsum plasters. 
A current research project with the acronym “LIBS-ConSort” aims to sort mineral CDW using 
laser-induced breakdown spectroscopy (LIBS) in combination with VIS/NIR spectroscopy. It 
is expected that the extension of established camera-based techniques will improve the 
reliability of sorting different groups of building materials. To emphasize this outlook, this 
study focuses on preliminary results of using LIBS alone to classify common CDW 
representatives, and provides initial examples of NIR spectra. The quantitative elemental 
composition of various building materials is further analyzed with X-ray fluorescence (XRF) 
spectroscopy. 

2 Methods 

2.1 Building Material Samples 

To investigate the capability of LIBS to discriminate different building materials, several 
samples were gathered, which are listed in Table 1. The eight material groups, comprising a 
total of 91 samples, are exemplary shown in Figure 1. Due to the present project progress, XRF 
and NIR spectroscopy are at first performed on individual subsets of 41 and 10 samples, 
respectively.  
Within the data set, 47 out of 91 samples were already known and labeled. The remaining 
44 samples were collected from recycling companies in the region of Berlin, Germany. Due to 
the lack of labels for these samples, a majority vote was conducted by three experts who 
assigned a material group to each sample.  
 
Table 1: Variety and number of building materials examined with LIBS, XRF and NIR spectroscopy. 

 Number of specimens 

Material group LIBS XRF NIR 

Aerated concrete   6   4 1 
Asphalt   2 - - 
Brick 42 28 4 
Concrete/Mortar 14   1 1 
Light concrete   5   4 1 
Natural stone   2 - - 
Plaster   7 - 2 
(Lime) Sandstone 13   4 1 

 

2.2 LIBS Measurements, Pre-processing and Classification   

Measurements were performed on the samples from Table 1 using the commercial LIBS 
instrument “concreteLIBS” from SECOPTA analytics GmbH. Nd:YAG laser (1064 nm) was 
used at a pulse energy of 1 mJ, puls width of 1.5 ns and a pulse repetition rate of 400 Hz. The 
detection of the emitted plasma emission was performed with a set four compact spectrometer 
covering the wavelength range of 250 nm - 940 nm with spectral resolution of approximate 
0.1 nm. An area of 20 mm x 20 mm was examined on each sample at a lateral resolution of 
0.5 mm (Figure 1). The entire dataset contains 152,971 spectra with 7774 data points per 
spectrum. It forms the basis for the following pre-processing and training of a classifier. 
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Figure 1: Exemplary pictures for each material group and the measuring area of LIBS on a concrete 

sample (blue square). 

 
Before extracting discriminating features, sample-related outliers in terms of total spectral 
intensity were removed from the dataset. Therefore, any spectrum below 75 % of the maximum 
total sample intensity (calculated by a trapezoidal rule integral) was discarded. This was done 
to exclude measurements with insufficient laser focus due to possible sample roughness or 
unevenness. Thus, the dataset was reduced to 75,591 spectra (roughly 50 %).   
To generate an input vector for the following classification task, the spectral line intensities of 
ten different elements are extracted from each spectrum (see Table 2). For this purpose, a 
baseline correction is performed for each spectral line, followed by a calculation of the integral 
line intensity. In addition to the ten extracted element features, the first two principal 
components were calculated by a Principal Component Analysis (PCA) over all standardized 
spectra.  
 

Table 2: Chemical elements and their center wavelength in the LIBS spectrum used for material 
classification and assignment of the corresponding building material class. 

Element Wavelength in nm 

Iron (Fe) 259.94 
Magnesium (Mg) 285.21 
Silicon (Si) 288.16 
Aluminum (Al) 309.27 
Calcium (Ca) 315.89 
Titanium (Ti) 334.94 
Potassium (K) 796.90 
Sodium (Na) 818.33 
Oxygen (O) 844.64 
Sulfur (S) 921.29 

 
The reduced data matrix of 75,591 × 12 (number of spectra × number of features extracted) is 
labeled according to the material groups in Table 1, which also define the eight desired output 
classes for the supervised training process. Here, a random forest classifier, included in the 
scikit-learn library (python) [2], is used in standard configuration (default parameters only). 
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To avoid the scenario of overfitting and to simulate a realistic classification problem of 
unknown samples, a cross validation is performed as follows: According to the total number of 
samples, we define 91 different training data sets, each excluding one individual sample, which 
in turn serves as the respective test data. This shall test the capability of a trained classifier to 
recognize an unknown sample. An exclusively correct classification on known samples and 
poor accuracies on others would indicate overfitting [3]. Therefore, 91 models are trained and 
applied on their respective unkown test sample to predict the material group. Instead of 
presenting 91 individual results, the achieved accuracies are accumulated and evaluated in one 
confusion matrix (see later Figure 4). 

2.3 NIR spectroscopy 

A subset of ten building materials (Table 1) was measured with the hyperspectral imaging (HSI) 
line cameras KUSTA1.7 and KUSTA2.2 from LLA instruments GmbH to provide first insights 
into the different reflectance spectra of CDW representatives. The former measures the NIR 
range from 0.95 µm to 1.7 µm, while the latter covers the short-wave infrared (SWIR) range 
from 1.6 µm to 2.2 µm. 
All samples were measured in a single recording for each camera, which is exemplary shown 
for the KUSTA 2.2 in Figure 2. From those, 5 px x 5 px regions of interest (ROI) were extracted 
to calculate the material specific mean reflectance in each ROI.   
 

 
Figure 2: Recorded grayscale image (camera: KUSTA 2.2) with applied ROIs for mean reflectance 

calculation. 

2.4 XRF 

To obtain additional information about the elemental composition, X-ray fluorescence analysis 
(XRF) was performed. For this purpose, 41 single-variety samples were analyzed (Table 1). 
The available materials were in particle sizes of 4 mm - 8 mm, so for the analysis 20 g of sample 
material were ground to powder with largest grain size of 63 µm. Concrete samples were dried 
at 40 °C in a vacuum oven and subsequently ignited at 950 °C for determining the loss on 
ignition (LOI). Brick samples were treated at 110 °C and 1,025 °C respectively for obtaining 
the LOI. Then, fusion beads were prepared by mixing the ignited sample with a lithium borate 
flux from Claisse in a ratio 1:10 and fused for 20 min. XRF analysis was carried out on a WD-
XRF instrument ZSX Primus IV from Rigaku (Rh anode, max. 4 kW) in vacuum atmosphere 
applying the fundamental parameter method to investigate the chemical composition from 
fluorine to uranium. 
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3 Results 

3.1 Classification by LIBS  

A general overview of the measured LIBS data set is given in Figure 3, which shows the 
standardized mean intensities and standard deviations of the twelve extracted element features 
for each material group. The figure gives a first impression of the feature-based separability of 
the examined samples and reveals characteristic distributions between the material groups. 
The first striking feature is the relatively high standard deviation for certain features and 
material groups. This is due to the heterogeneous samples such as concrete/mortar, light 
concrete, and natural stone, which may contain different materials and thus also different 
element concentrations within one measurement area.  
The second point to focus on is the separability of different material groups. Asphalt has 
comparatively low intensities for each feature and may therefore be classified better than 
plaster, light concrete, or sandstone, whose intensity distributions resemble one another. 
Relatively high intensities are also observed for bricks, especially for the first four features Fe, 
Mg, Si and Al. This may also indicate good detectability within the data set.   
    

 
Figure 3: Standardized mean intensities (color bars) and standard deviations (black lines) of the 

extracted features for each material group. 

 
The distribution discussed provide suitable information to obtain first indications of the 
classification accuracies archived for each material group, which are shown in form of a 
confusion matrix in Figure 4 a). The scores are given in the range from 0 to 1, standing for 0 % 
to 100 % of the respective test data. Here, the diagonal includes the most meaningful values 
and shows accuracies between 5 % and 99 %. Asphalt and brick can be classified best, which 
is in accordance with the good separability concerning their feature distribution discussed in 
Figure 3. Also, concrete/mortar, sandstone and aerated concrete achieved satisfying accuracies 
above 80 %. With a score of 64 %, plaster is often confused with sandstone or light concrete, 
the latter being correctly classified in only half of measurements. This could result from the 
heterogeneous structure discussed above, leading to comparatively higher deviations for the 
concerned features. Natural stone (5 % accuracy) was mostly recognized as brick. Here, the 
data set contained only two individual samples, which is insufficient for machine learning. 
These approaches generally require a large and diverse data basis to achieve accurate and robust 
classification results. However, asphalt, which was as well only represented by two samples, 
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showed an almost perfect classification result. Here, the distinctive distribution of relatively 
low intensities for every feature resulted in a high score. Unfortunately, it is not yet possible to 
say whether these findings are representative of the material group in question. Further samples 
of each class, especially for those that are still underrepresented, will provide further insights 
into their separability. 
So far, each individual LIBS spectrum within a measurement has been classified separately. 
With a sorting approach, the recognition of an entire sample is of greater importance, so Figure 

3 b) shows the scores obtained based on a sample majority vote. This means that each sample 
was classified according to the material group that was estimated most within the measurement 
area. In this way, the accuracies for each class, with the exception for plaster, increased 
significantly.  
Due to the possible contamination by other materials, plaster is considered a critical material to 
be excluded in the early stages of the recycling process. Here, the combination of LIBS with 
NIR spectroscopy might enable higher detection rates. 

 
Figure 4: Confusion matrixes of the performed cross validation, showing the achieved classification 

accuracies for each single LIBS spectrum (a) and with sample related majority vote (b).  Rows contain 
the true classes (black) and columns the predicted classes (blue). 

3.2 NIR spectroscopy 

The mean reflectance in the NIR and SWIR range for representatives of each considered 
material group is given in Figure 5. Here, every spectrum is normalized to its individual 
maximum for a proper comparison of the degrees of absorption. Generally, NIR spectra contain 
information about the major hydrogen bonds, i.e., C–H, O–H and N–H [5]. This means, that all 
molecules containing hydrogen show dominant absorption in the range of approx. 1.35 µm to 
1.55 µm and in the range of 1.85 µm and 2.05 µm. Except for the brick materials, all other types 
caused such a measurable decrease in the reflectance signal. They differ mainly in the degree 
of absorption and the associated wavelength of the reflection minimum. Plaster, which was 
pointed out as a crucial material in the previous section, shows comparatively strong absorption 
patterns for a generally broader wavelength range. This might help to compensate for the poorer 
classification accuracy by the sole use of LIBS, if both measurement techniques are combined. 
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Since the NIR investigation was only conducted on a small subset, the findings still need to be 
checked and validated against a larger data set. Therefore, further measurements and subsequent 
data fusion with LIBS are planned. 
   

 
Figure 5: Normalized mean reflectance of the investigated materials in the NIR (left) and SWIR 

(right) regions. 

3.3 XRF analysis 

The XRF results are shown in Figure 6. The following oxides were considered in the evaluation: 
SiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, K2O, TiO2, and SO3.  
For a first overview, the mean concentrations with their corresponding standard deviations are 
presented in Figure 6 a), which shows the main differences between the materials in terms of 
their chemical compositions. SiO2 has the highest concentrations across all materials analyzed 
(40-83 wt.%), while SO3 has concentrations close to 0 wt.% except for lightweight concrete 
(1 wt.%). Some material specific elements could be observed, like CaO, which made up to 
32 wt.% in aerated concentrates or NaO2 (up to 5.2 wt.%) in lightweight concrete. No clear 
differences can be defined based on the other oxides in Figure 6 a). 
 

 
Figure 6: a) Overview of the chemical composition (XRF data) of the different materials. 

Mean concentration values (colored bars) with standard deviations (black lines) are shown. b) 
PCA analysis based on the chemical composition for different materials (colored dots) and the 

influence of the oxides (arrows). 
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To gain better insight into the data, a PCA is performed, presented in Figure 6 b), where the 
investigated samples cluster together according to their chemical composition. We observe 2 
clusters: brick (to the left) and concrete-sandstone-aerated concrete (to the right). Only the 
lightweight concrete sample cannot be clearly assigned and forms its own cluster (in this 
representation). As expected, samples of the same materials are also cluster together. 
PC1 represents the gradient of Al2O3 or TiO2 to CaO, while PC2 is associated with the gradient 
SiO2 to Na2O. Hence, SiO2 rich samples have positive values for PC1 and all Na2O rich samples 
have negative ones. The same holds for CaO rich samples (positive values for PC1) and Al2O3 

rich samples (negative values for PC1). The clustering is in accordance with the 
three-phase diagram SiO2-flux (Fe2O3+CaO+MgO+K2O+Na2O)-Al2O3 of Müller [4]. 
 

4 Summary and Conclusion 

In this study, preliminary results of the classification of different groups of building materials 
by using LIBS were presented and insights into first investigations with NIR and XRF 
spectroscopy were given. Spectral information from 91 different CDW representatives were 
collected using LIBS, from which twelve features were extracted. These features, containing 
ten element-specific information and the first two principal components, were used to train 
numerous random forest classifiers, which were then applied to unknown test samples. 
Brick, asphalt, concrete/mortar, sandstone, and aerated concrete achieved satisfying accuracies, 
ranging from 81 % - 99 %. Plaster, light concrete, and natural stone showed lower accuracies 
of 64 %, 50 %, and 5 %, respectively.  In the case of light concrete and natural stone, the higher 
heterogeneity, similar spectral properties, and the low number of samples within the data set 
may explain the poor results. 
Since the presented work outlines only the first results of an ongoing research project, the 
achieved accuracies can generally be considered promising. It is expected that the underlying 
data set will grow significantly though the collection of further samples and will serve as a solid 
basis for the planned methodological combination with VIS/NIR-cameras. Here, first results of 
NIR spectroscopy show good potential to provide valuable information to further increase 
sorting quality.  
To gain further insight into the elemental composition of various building materials, XRF 
analysis was performed. Here, the generally good separability of brick materials, which was 
also achieved in the LIBS data, was confirmed by principal component analysis. The 
overlapping compositions of sandstone and aerated concrete were also found by both LIBS and 
XRF.   
Future works will investigate the influence of different moisture contents and surface 
contamination (dust, soil) on the individual measurement procedure as well as on the 
classification results. The results will help to plan effective pre-processing of CDW in the 
industrial prototype, which may include washing of samples prior to their identification.  
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